The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics

Abstract : In the absence of external loads or in the presence of symmetries (i.e., translational and rotational invariance) the nonlinear dynamics of continuum systems preserves the total linear and the total angular momentum. Furthermore, under assumption met by all classical models, the internal dissipation in the system is non-negative. The goal of this work is the systematic design of conserving algorithms that preserve exactly the conservation laws of momentum and inherit the property of positive dissipation forany step-size. In particular, within the specific context of elastodynamics, a second order accurate algorithm is presented that exhibits exact conservation of both total (linear and angular) momentum and total energy. This scheme is shown to be amenable to a completely straightforward (Galerkin) finite element implementation and ideally suited for long-term/large-scale simulations. The excellent performance of the method relative to conventional time-integrators is conclusively demonstrated in numerical simulations exhibiting large strains coupled with a large overall rigid motion.
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01635171
Contributeur : Anders Thorin <>
Soumis le : mardi 14 novembre 2017 - 18:38:13
Dernière modification le : mercredi 15 novembre 2017 - 01:09:45

Fichier

JSCNTB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

J. Simo, N. Tarnow. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 1992, 43 (5), pp.757-792. 〈10.1007/BF00913408〉. 〈hal-01635171〉

Partager

Métriques

Consultations de
la notice

21

Téléchargements du document

4