A Block Parallel Majorize-Minimize Memory Gradient Algorithm

Abstract : In the field of 3D image recovery, huge amounts of data need to be processed. Parallel optimization methods are then of main interest since they allow to overcome memory limitation issues, while benefiting from the intrinsic acceleration provided by recent multicore computing architectures. In this context, we propose a Block Parallel Majorize-Minimize Memory Gradient (BP3MG) algorithm for solving large scale optimization problems. This algorithm combines a block coordinate strategy with an efficient parallel update. The proposed method is applied to a 3D microscopy image restoration problem involving a depth-variant blur, where it is shown to lead to significant computational time savings with respect to a sequential approach.
Type de document :
Communication dans un congrès
BASP 2017 - International Biomedical and Astronomical Signal Processing Frontiers workshop, Jan 2017, Villars-sur-Oulon, Switzerland. pp.1
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01634531
Contributeur : Emilie Chouzenoux <>
Soumis le : mardi 14 novembre 2017 - 11:29:05
Dernière modification le : jeudi 5 juillet 2018 - 14:45:42
Document(s) archivé(s) le : jeudi 15 février 2018 - 14:10:07

Fichier

abstract.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01634531, version 1

Citation

Sara Cadoni, Emilie Chouzenoux, Jean-Christophe Pesquet, Caroline Chaux. A Block Parallel Majorize-Minimize Memory Gradient Algorithm. BASP 2017 - International Biomedical and Astronomical Signal Processing Frontiers workshop, Jan 2017, Villars-sur-Oulon, Switzerland. pp.1. 〈hal-01634531〉

Partager

Métriques

Consultations de la notice

274

Téléchargements de fichiers

26