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Modelling of the vibro-impact drilling system is undertaken in this study, and the results of the
numerical analysis and comparison between two selected models are presented. The first one is a newly
developed model of an existing experimental rig (three masses model) and the second one is a simplified
low dimensional model (Pavlovskaia et al., 2001 [22]) created to describe the dynamic interaction
between the drill-bit and the drilled formation. The optimal loading parameters are identified in this
work based on the analysis of the system responses, and the influence of the additional degrees-of-
freedom on the loading optimisation strategy is investigated. Three main control parameters are
considered, and they are the applied static force, and the amplitude and the frequency of the applied
dynamic force.

Our investigations confirm that the best progression rates are achieved when the system response is
periodic and the frequency of the response is the same as the frequency of the applied dynamic force,
and the value of the static force is smaller than the amplitude of the applied dynamic excitation. This
result is valid for both models considered. Also in both cases, zero progression rates are obtained for
lower values of the excitation amplitudes and the average progression increases with the increase in the
dynamic amplitudes. Both models also predict zero progression rates at the higher excitation
frequencies.

Based on the analysis undertaken, it can be concluded that the low dimensional model provides good
estimates of the optimal static force and the amplitude of the dynamic force, and it could be used for the
operational control of the drilling system to adjust the loading parameters while drilling through
different formations. The choice of the optimal frequency, however, should be made based on the
predictions of the more detailed model of the drilling system as additional degrees of freedom
significantly influence the structure of the internal resonances and they should be taken into account.

1. Introduction

The idea of utilising impact energy to drill rock formations has
been tried by the engineering community since the late 1940s,
when a number of tools were developed known as downhole
hammers, percussive hammers, percussive drills and others [1].
They all had a similar operating principle, where a compressed-air
or hydraulically operated piston impacts upon a drilling rod (or
series of rods) transferring the potential energy into kinetic energy
of the drill-bit [2]. As a result, rocks are chipped and crushed and
the drill-bit together with the drill-string penetrate into the rock.
To further enhance penetration rates, rotary action may be super-
imposed upon the percussive motion of the drill bit. A fresh area of
the rock surface is then presented to the drill-bit at each succes-
sive blow provided that cuttings are being effectively removed
from the drilling zone.

The performance of percussive hammers [1] has been studied
extensively both in the laboratory and in the field. Guarin et al. [3]
presented one of the first reports on the usage of the rotary
percussion-drilling technique to drill an almost 4 km deep well.
The authors considered the effect of weight on bit (WOB) and
rotary speed upon the tool performance in various formations, and
also studied the behaviour of the various drill-bits during percus-
sive drilling. In general, substantial improvements in penetration
rates were achieved in comparison with rotary drilling. In 1958
Topanelian [4] conducted an experimental study in the laboratory
investigating the effect of the frequency of percussive drilling in
the range from 5 to 17 Hz (low frequency range) on granite blocks.
In these experiments the drill-bit was held stationary and the test
block was rotated and forced upwards by a hydraulically lifted
rotary table. It was concluded that using percussive action more
than doubled the penetration rate normally produced by the static
WOB. In 1964 Bates [5] presented some field results of percussive
air drilling. He has demonstrated that the pressure to operate the
percussion tool was the most significant single factor affecting the
progression and that selection of the bit was very important for
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the operation. Further field results were presented by Smith and
Kopczynski [6] who also concluded that “air-rotary-percussive
drilling is a valuable tool for the industry” and requires further
development and optimisation.

The fundamental mechanisms of percussive drilling were inves-
tigated by a number of researchers including Simon [7,8], Hustrulid
and Fairhurst [9–12], Lundberg [13–17], Franca and Weber [18,19],
and the Centre for Applied Dynamics Research in Aberdeen [20-26].
Simon [7,8] considered the energy in the stress wave in the drill
steel produced by the striker impact together with the energy
required for breaking the rock and computed the efficiency of
stress wave energy conversion into work done by the bit on the
rock. He also discussed the possibilities of improving utilisation of
the energy to drill rock. Hustrulid and Fairhurst analysed the
efficiency of impact energy transfer from drill to rock both theore-
tically [9] and experimentally [11]. They also studied the force–
penetration relationship both in static and dynamic loading condi-
tions using indentation tests and a “drop test” [10]. In [12] a series of
full-time drilling tests made using three different percussive
machines were presented, where blow energy, blow frequency,
rotational speed, thrust, penetration rate, and the impact-produced
strain waves were measured. It was shown that the minimum thrust
required for optimum energy transfer to the rock is a function of the
blow frequency and the initial and rebound momentum of the
piston, the latter depending on the incident waveform and the
force–penetration curve. Aspects of energy conversion, energy
transfer and efficiency were considered in [13–17] by Lundberg
and his co-authors, who also compared the efficiencies of different
percussive processes in these papers. With the exception of [16],
where dynamic 3D models were used, wave phenomena in drills
have generally been studied using 1D wave theory.

Drifting oscillator models suitable for percussive drilling
dynamics description were introduced in [20,22] and have been
extensively studied in the past, see for example [23,24], to find the
optimum characteristics of the applied static and dynamic forces.
In these studies the impacted media was represented by the so-
called sliders which provided the contact force acting on the drill-
bit during the interactions. These models were developed further
in [25,26] to take into account the influence of contact geometries
and the governing force–displacement relationship during the
crashing stages of the interactions.

Franca [18] conducted a series of experiments on an in-house
designed rotary-percussive drilling rig and proposed a phenom-
enological bit-rock interaction model for rotary-percussive drilling
aiming to obtain quantitative information from drilling data
related to rock properties, bit conditions and drilling efficiency.
More recently Franca and Weber [19] conducted experimental and
numerical studies of a new resonance hammer drilling model with
drift and showed that the behaviour of the system may vary
significantly from simple periodic regimes to chaos. Wiercigroch
et al. [21] presented extensive studies of ultrasonic percussive
drilling with diamond-coated tools in the laboratory conditions on
rocks such as sandstone, limestone, granite and basalt. The studies
aimed to explore the applicability of this technique to downhole
drilling and were supported by the development of mathematical
models capable of describing the main phenomena occurring
during drilling.

Despite these technological advances, significant scientific
interest and activities in this area, there are still a number of
challenges to be addressed for the technology to become the norm
in the industry [1,27]. An extensive research programme con-
ducted in the University of Aberdeen in the last few years aims to
develop the Resonance Enhanced Drilling (RED) technique [28]
and this paper will present some of the results of the mathema-
tical modelling and analysis obtained during this project. The main
idea behind this technology is to apply an adjustable high

frequency dynamic stress (generated by axial oscillations) in
combination with rotary action in order to enhance the penetra-
tion rates by creating resonance conditions between the drill-bit
and the drilled formation. This resonance needs to be maintained
for varying drilling conditions by adjusting the frequency and
amplitude to produce a steadily propagating fracture zone and it is
particularly beneficial while drilling the hard rocks.

An experimental rig shown in Fig. 1 was designed and manu-
factured to explore these ideas. To assist data gathering during
experiments, in the current rig the vertical oscillations of the drill-
bit generated by a PEX magneto-strictive device and static weight
on bit provided by the hydraulic cylinder are separated from the
rotary motion of the specimen which is supplied by the rotating
table of the vertical lathe. This arrangement allows for a significant
simplification of the rig instrumentation but maintains the com-
bined rotary percussive action applied at the rock/drill-bit
interface.

This paper is focussed on the modelling of the percussive
component of the system dynamics and it presents the results of
the numerical analysis and a comparison of the two models. The
first one is a newly developed model of the experimental rig and
the second one is a simplified low dimensional model [22] created
to describe the dynamic interaction between the drill-bit and the
drilled formation. Our aim is to identify how the complexity of
the model including additional degrees of freedom influences the
prediction of the optimal loading parameters. The rest of the paper
is organised as follows. In Section 2 the mathematical model of
the experimental rig is introduced and the equations of motion are
presented. The next section describes typical behaviour of the
system and examines the influence of the external force para-
meters on the system dynamics. Section 4 presents the compar-
ison between the predictions of the optimal loading calculated
according to this new model and the model introduced in [22].
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back mass

spring

load-cell

load-cell

hydraulic
cylinder

drill-bit

frame

rock sample

rotating table

accelerometer

accelerometer
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Fig. 1. Schematic of the experimental rig. The drill string consists of a number of
elements including exciter (PEX magneto-strictive device) providing the dynamic
external force, two structural springs and back mass to control vibrations within
the system, and a drill-bit. The static force is applied using the hydraulic cylinder
which drives the system downwards when the rock is broken and the progression
takes place. The rotary action is generated through the rotating table where only
the rock specimen is rotated. As indicated there are a number of load-cells, LVDTs
and other sensors to monitor the system dynamics.
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2. Physical and mathematical modelling

The RED drill-string is modelled as a three mass system as
shown in Fig. 2, where a frictional slider has been included to
account for the rock dynamics. This model facilitates an insight
into the overall dynamics of the RED drill-string during drilling
operations.

The drill-bit is modelled by a mass m1, which is initially
positioned at a distance G from the surface of the rock. The rock
is modelled by a visco-elastic slider [22]. For small contact
forces, the spring of stiffness k1 and damper of damping
coefficient c1 account for the elastic behaviour and the damping
of the rock. However, if the force acting on the slider would
exceed Pr, it starts to move while maintaining a constant
resistive force Pr. Here, the displacement of the drill-head is
x1, that of the rock surface is xt and the displacement of the
slider is xb. When the drill-head and the rock are not in contact,
the velocity of the slider is zero and provides no force, i.e. Pc¼0.
During this free motion regime the surface of the rock moves
(xt) under the forces of the spring k1 and the damper c1. When
the drill-head is in contact with the rock, the displacement x1 of
the drill-head and xt of the rock surface differ by the value of
initial gap G only.

The equivalent oscillating mass of the frame is modelled as the
top mass m3. This is a large mass when compared to the two
others connected to the mass of the exciter m2 by a spring of
constant k3 and a damping coefficient c3. The resulting equation of
motion for this mass is therefore given as

m3 €x3þc3ð _x3� _x2Þþk3ðx3�x2Þ ¼ 0: ð1Þ

The mass of the RED module is marked as m2 and it is
connected to the drill-bit via a structural spring that has a spring
constant of k2 and a damping coefficient of c2. The resulting
equation of motion for this part of the model is given by

m2 €x2þc3ð _x2� _x3Þþc2ð _x2� _x1Þþk3ðx2�x3Þþk2ðx2�x1Þ ¼ Fs: ð2Þ

The bottom mass m1 is the drill bit and it has three different
regimes of operation depending on its position with respect to the
rock surface.

No contact:

x1oxtþG: ð3Þ
This first stage, No contact, lasts until the drill bit reaches the slider
at x1 ¼ xtþG. During this stage the contact force is
Pc ¼ k1ðxt�xbÞþc1ð _xt� _xbÞ ¼ 0, and the mass, the rock surface and
the slider move according to the following equations of motion:

m1 €x1þk2ðx1�x2Þþc2ð _x1� _x2Þ ¼ F0 cos ðΩtþϕÞ;
_xt ¼�k1

c1
ðxt�xbÞ;

_xb ¼ 0: ð4Þ
Contact without progression:

x1ZxtþG; _x140; 0ok1ðxt�xbÞþc1ð _xt� _xbÞoPr : ð5Þ
The contact force can be computed as

Pc ¼ k1ðxt�xbÞþc1ð _xt� _xbÞ: ð6Þ
This stage ends when the contact force Pc exceeds the threshold Pr,
then the third stage starts (see below). If the contact force Pc falls
below zero, contact stops, and stage 1 starts (see above). During
this stage the massless rock surface moves together with the drill
bit, xt ¼ x1�G, _xt ¼ _x1 and _xb ¼ 0. The resulting equations of
motion for this phase are given by

m1 €x1þc2ð _x1� _x2Þþc1 _x1þk2ðx1�x2Þ�k1ðGþxbÞ ¼ F0 cos ðΩtþϕÞ;
xt ¼ x1�G;
_xb ¼ 0: ð7Þ

Contact with progression:

x1ZxtþG; _x140; k1ðxt�xbÞþc1ð _xt� _xbÞZPr : ð8Þ
In this case the slider moves under the combined action of the
resistance force Pr and the spring between the slider and the rock
surface, and due to its zero mass we have

k1ðxt�xbÞþc1ð _xt� _xbÞ�Pr ¼ 0: ð9Þ
The contact force acting on the drill-bit in this case is equal to the
resistance force Pr. Since the drill-bit moves together with the rock
surface, _xt ¼ _x1, the equation for the motion of the slider can be
expressed from the above equation as

_xb ¼ _xtþk1
c1
ðxt�xbÞ�

Pr

c1
: ð10Þ

This stage lasts until the value of k1ðxt�xbÞþc1ð _xt� _xbÞ falls below
Pr, then stage 2 above restarts. The resulting equations of motion
for this phase are given by

m1 €x1þc2ð _x1� _x2Þ�c1ð _x1� _xbÞþk2ðx1�x2Þ�k1ðxt�xbÞ
¼ F0 cos ðΩtþϕÞ;

xt ¼ x1�G; c1ð _x1� _xbÞþk1ðx1�G�xbÞ ¼ Pr : ð11Þ
To make the simulations clearer, the equations of motion are
transformed into a non-dimensional form. The non-dimensional
parameters and variables are derived as follows:

Ω0 ¼
ffiffiffiffiffiffiffi
k1
m1

s
; ω¼ Ω

Ω0
; a¼ F0

Pr
;

b¼ Fs
Pr

; ξ¼ c1
2m1Ω0

; g ¼ k
Pr
G ;

α3 ¼
m1

m3
; α2 ¼

m1

m2
; β3 ¼

k3
k1

;

β2 ¼
k2
k1

; γ3 ¼
c3
c1

; γ2 ¼
c2
c1

;

τ¼Ω0t ; z1 ¼ x3
k1
Pr

; z2 ¼
dz1
dτ

; z3 ¼ x2
k1
Pr

;

Fig. 2. Physical model of the experimental rig. Here the drill-bit is modelled by
mass m1, mass m2 represents the RED module and mass m3 accounts for the
equivalent oscillating mass of the frame. The rock is modelled by a visco-elastic
slider [22], where the elastic behaviour and the damping of the rock are described
by the spring of stiffness k1 and damper of damping coefficient c1. When the force
acting on the slider exceeds Pr, the whole system moves downward simulating the
progression of the drill-bit.
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z4 ¼
dz3
dτ

; z5 ¼ x1
k1
Pr

; z6 ¼
dz5
dτ

;

z7 ¼ xt
k1
Pr

; z8 ¼ xb
k1
Pr

:

Finally, we get the equations

z′1 ¼ z2
z′2 ¼�α3β3z1�2ξα3γ3z2þα3β3z3þ2ξα3γ3z4
z′3 ¼ z4
z′4 ¼ α2β2z1þ2ξα2γ2z2�α2ðβ2þβ3Þz3�2ξα2ðγ2þγ3Þz4þα2β2z5þα2b

z′5 ¼ z6
z′6 ¼ a cos ðωτþϕÞ�β2ðz5�z3Þ�2ξγ2ðz6�z4Þ

�P1P2ð1�P3Þð2ξz6þz7�z8Þ�P1P3

z′7 ¼ P1z6�ð1�P1Þðz7�z8Þ=ð2ξÞ
z′8 ¼ P1P2P3ððz7�z8�1Þ=ð2ξÞþz6Þ; ð12Þ
where P1 ¼Hðz7�z8Þ, P2 ¼Hð2ξz6þz7Þ, P3 ¼Hð2ξz6þz7�1Þ,
P4 ¼Hðz6Þ and Hð�Þ is the Heaviside step function. These ordinary
differential equations were solved numerically using standard
subroutine in FORTRAN based on Adams–Moulton's method and
the results are presented in the following sections.

3. Dynamics of a large system

As it has been shown earlier [29–31], the periodic regimes are
most beneficial from the practical point of view of achieving the
best progression rates. It should be noted that since the system
considered is piecewise linear, its dynamic response can be con-
structed by stitching linear solutions at points of discontinuities.

A typical sequence of period one motion is comprised of the
following phases:

� Phase I: Progression; the mass and the slider are in contact.
� Phase II: Contact without progression; the mass and the slider

are in contact but the slider bottom is not moving.
� Phase III: No contact; the mass and the slider are moving

separately.
� Phase IV: Contact without progression; the same as Phase II.

Fig. 3 demonstrates such typical period-1 response of the
system. Here and in Figs. 4 and 5, the curves related to the top
mass are shown by black lines, those related to the middle (back)
mass are in red and those related to the drill-bit are in blue. Parts
(a)–(c) of these figures demonstrate motions of the three masses
on the special phase plane where the relative displacement
between the masses and the slider bottoms is shown. Part
(d) presents displacements of the masses as a function of time
for a chosen time interval long after the initial transition period.
Finally, in part (e) the relative displacements as functions of time
are shown.

As can be seen from Fig. 3(c), for the period-1 response, there is
one impact per period of external excitation and the system is
moving forward achieving good penetration rate. Here the mass
m3 experiences very little oscillatory motion as can be seen from
its trajectory given by the black line in Fig. 3(d), and the energy in
the system is focussed to produce the oscillations of the drill-bit
capable of generating high impact forces to break rock and
progress forward.

Two other possible system responses are shown in Figs. 4 and 5.
The first one presents period-2 response observed for higher
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Fig. 3. Typical period-1 response of the system calculated for: g¼ 0:1, ξ¼ 0:01, α2 ¼ 0:1, α3 ¼ 0:01, β2 ¼ 0:1, β3 ¼ 0:1, γ2 ¼ 1:0, γ3 ¼ 50, φ¼ 0, a¼0.5, b¼0.32, ω¼ 0:4.
Trajectories of the top mass, middle mass and the drill-bit are shown in red, black and blue respectively. (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this article.)
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the reader is referred to the web version of this article.)
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Trajectories of the top mass, middle mass and the drill-bit are shown in red, black and blue respectively. (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this article.)
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excitation frequency but similar ratio of static and dynamic forces.
Here the drill-bit experiences one impact per two periods of
external excitation and the progression rate achieved is much
lower. In Fig. 5 typical aperiodic response is shown. As can be seen
the level of vibrations is higher in this case but the penetration rate
is lower, and therefore such a combination of the excitation
parameters should be avoided.

Our simulations revealed that a large variety of system
responses could be obtained depending on the excitation para-
meters, and therefore the influence of these parameters on the
dynamic behaviour of the system has been studied. The main aim
of these investigations was to generate optimal parameter combi-
nations that would lead to enhanced penetration rates in the RED
test rig. The average penetration rate (or progression per period)
over a significantly long period of time has been chosen to monitor
the system performance. The optimal progression was sought for
different system configurations by modifying three main control
parameters which are the static force, the excitation frequency and
the excitation amplitude. In the next subsections the results of
simulations are presented where the influence of these control
parameters on progression rate was considered for a selected set
of the system parameters describing the experimental rig.

3.1. Influence of static force

The static force was considered first. It is intuitive that the
static force (i.e. weight on bit) will have a strong influence on
the progression achieved. Fig. 6(a) shows the trend followed by
the average progression with changes in the level of the static
force applied. Five different curves are presented and they are
obtained for different amplitudes of the dynamic excitation
amplitude, a¼ F0=Pr .

It can be seen that for every curve except for a¼0.8, there is a
well pronounced maximum up to which point the progression is
smooth. Our simulations show that as soon as the static force is
increased beyond this maximum, the system response becomes
chaotic and the average progression per period decreases. Typical
bifurcation diagram calculated for a¼0.5 and g¼0.1, ξ¼ 0:01,
α2 ¼ 0:1, α3 ¼ 0:2, β2 ¼ 0:1, β3 ¼ 0:01, γ2 ¼ 1, γ3 ¼ 50, b¼ 0:35,
φ¼ 0 and showing the system response under varying static force
is presented in Fig. 6(b). It can be seen that in the considered range
of the static force b, the periodic response of the system is
observed for bAð0:1;0:225Þ, which is followed by a reasonably
large window of chaotic motion for bA ð0:225;0:450Þ. The begin-
ning of the range of chaotic behaviour corresponds to the visible
drop in the average progression and by the end of this range the
average progression becomes almost zero.

Similar analysis was performed for the other values of the
excitation amplitude, and it was shown that for any chosen
dynamic amplitude, an optimal static force can be identified from
the region where the system response is periodic. As can be seen
from Fig. 6(a), for the smaller values of the dynamic amplitudes
(a¼0.3, 0.5, 0.6) the average progression can drop as low as zero as
the static force increases. However when the static force increases
further, progression per period may become larger again, but that
would require a significant increase in the energy pumped into the
system.

3.2. Influence of excitation amplitude

The amplitude of the dynamic high-frequency excitation is
another major parameter that could influence the average pro-
gression. Fig. 7(a) demonstrates the dependence of average pro-
gression per period on the dynamic amplitude for three different
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Fig. 6. (a) Average progression per period calculated over 500 periods vs. static force b calculated for g¼ 0:1, ξ¼ 0:01, α2 ¼ 0:1, α3 ¼ 0:2, β2 ¼ 0:1, β3 ¼ 1:0, γ2 ¼ 1:0, γ3 ¼ 50,
φ¼ 0, ω¼ 0:35. (b) Typical bifurcation diagram showing the dependence of the drill-bit velocity on the static force for a¼0.5 and the same parameters as in part (a).

Fig. 7. (a) Average progression per period calculated over 500 periods vs. dynamic amplitude a calculated for g¼ 0:1, ξ¼ 0:01, α2 ¼ 0:1, α3 ¼ 0:2, β2 ¼ 0:1, β3 ¼ 1:0, γ2 ¼ 1:0,
γ3 ¼ 50, φ¼ 0, ω¼ 0:35. (b) Typical bifurcation diagram showing the dependence of the drill-bit velocity on the dynamic amplitude for b¼0.2 and the same parameters as in
part (a).
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values of the static force, b. It is surprising to note that in the range
0:3oao0:6, the lower static force b¼0.2 delivers the highest
progression. Our analysis shows that in the part of this range
0:42oao0:60 the system responds periodically for b¼0.2 (see
Fig. 7(b)) and it operates within the optimal dynamic amplitude
range. In contrast, for b¼ 0:3; 0:4, the system response is chaotic
and therefore less effective from the progression point of view. Our
simulations also show that chaotic regimes are observed for
ao0:6 for b¼0.3 and for ao0:73 for b¼0.4. It is evident from
the presented results that it is more effective to operate with a
smaller static force in the periodic regime than with a large static
force in the chaotic regime.

3.3. Influence of excitation frequency

Excitation frequency is the most important factor governing the
progression of the drill-bit. To study the effect of a change in excitation
frequency on progression, the RED model was simulated for varying
excitation amplitudes giving the results shown in Fig. 8(a). As can be
seen from this figure, for each curve corresponding to different
dynamic amplitudes there is a well pronounced maximum in average
progression per period. It is located within the periodic range of
system response as shown in a typical bifurcation diagram in Fig. 8(b).
It is important to note that maxima for all considered dynamic
amplitudes lie in the frequency range 0:3oωo0:4. If the frequency
increases further, the system response remains periodic but the rate of
progression drops. This result for the higher dimensional system
corresponds well with the previous conclusions obtained for the
simple one dimensional model.

4. Comparison with the low-dimensional model [22]

One of the simplest physical models which could be used to
describe the percussive drilling was proposed in [22] and it is
composed of a mass loaded by a force having static and harmonic
components, and a dry friction slider, as shown in Fig. 9. This
model has been extensively studied in the past [23,24] and some
key findings are briefly summarised below. Then a comparison
with the results described above is carried out.

The following non-dimensional variables and parameters were
used in the calculations:

Ω0 ¼
ffiffiffiffiffiffiffi
k1
m1

s
; ω¼ Ω

Ω0
; a¼ F0

Pr
; b¼ Fs

Pr
;

ξ¼ c1
2m1Ω0

; g¼ k
Pr
G

τ¼Ω0t; z1 ¼ xm
k1
Pr
; z2 ¼

dz1
dτ

;

z3 ¼ xt
k1
Pr
; z4 ¼ xb

k1
Pr
:

The same three regimes of operation exist in this low dimensional
model and they are described by the equations given below:

z′1 ¼ z2;

z′2 ¼ a cos ðωτþϕÞþb�P1P2ð1�P3Þð2ξz2þz3�z4Þ�P1P3;

z′3 ¼P1z2�ð1�P1Þðz3�z4Þ=ð2ξÞ;
z′8 ¼P1P2P3ððz7�z8�1Þ=ð2ξÞþz6Þ;
where P1 ¼Hðz3�z4Þ, P2 ¼Hð2ξz2þz3Þ, P3 ¼Hð2ξz2þz3�1Þ and
P4 ¼Hðz2Þ.

Typical bifurcation diagrams showing the dependence of the
average progression per period on the applied static force are
shown in Fig. 10(a). Here four different curves correspond to
different levels of the dynamic amplitude, a¼0.25, 0.35, 0.45 and
0.55 and all other parameters are specified in the caption of this
figure. As can be seen from the velocity bifurcation diagram shown
in Fig. 10(b) for a¼0.35, the response of the system is typically
chaotic for the low values of the static force and in general the
average progression per period is low in this region. The best
progression is achieved when the system response is periodic and
the frequency of the response is the same as the frequency of the
applied dynamic force. For the lower values of the dynamic
amplitudes, applying a higher static force will completely suppress
the progression resulting in zero penetration rate until the static
force becomes large enough to break the rock even with very little
contribution of the dynamic force (see for example curve for
a¼0.35).
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Fig. 8. (a) Average progression per period calculated over 500 periods vs. excitation frequency calculated for g¼ 0:1, ξ¼ 0:01, α2 ¼ 0:1, α3 ¼ 0:2, β2 ¼ 0:1, β3 ¼ 1:0, γ2 ¼ 1:0,
γ3 ¼ 50, φ¼ 0, b¼0.2. (b) Typical bifurcation diagram showing the dependence of the drill-bit velocity on the excitation frequency for a¼0.7 and the same parameters as in
part (a).

Fig. 9. Low dimensional model [22] used to describe the interactions between the
drill-bit and the rock.
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It is important to note here that the progression rates predicted
by this simple model in general are much higher than the rates
discussed in Section 3. This is not surprising as the mass of the
whole system described in the previous section is much higher
and the same level of the static force applied would not produce
the same progression speed for these two different systems.
However the general trend and the strategy of choosing the
optimal static force to achieve the best progression remain the
same for these two models – the static force has to be chosen to
ensure that the system response is periodic with the frequency of
the applied force and the value of the static force is smaller than
the amplitude of the applied dynamic excitation.

The dependence of the system response on the dynamic
amplitude is shown in Fig. 11 for a number of values of the static
force, b¼0.15, 0.20, 0.23 and 0.25. As can be seen from Fig. 11(a),
the progression rates are equal to zero for very low dynamic
amplitudes where the combined effects of static and dynamic
forces is not strong enough to break the rocks and move the
system forwards. As the dynamic amplitude increases, the average
progression per period also increases and again the optimal
drilling regimes are achieved when the system response is
periodic. Analysing the system responses and the corresponding
progression rates, we note that for the lower values of the static
force, the rates of penetration drop after the period doubling
bifurcation as observed for a� 0:5 and b¼0.2 in Fig. 11(b).

In general the low dimensional model predicts similar trends in
system behaviour as does the larger model introduced in Section 3.
Specifically it also forecasts zero progression rates for lower ampli-
tudes and significant improvements of the average progression rates
with increasing amplitude. The period-1 system response is again
observed as the most beneficial from the progression point of view
and any bifurcations to period-2 or chaotic responses should be

avoided during operation to maintain high drilling rates. It should be
noted that the period doubling bifurcations and the chaotic behaviour
at the higher amplitude values are observed for the low dimensional
model only. However despite the differences in the two model
predictions at the higher amplitude values, the strategy of choosing
the optimal amplitude remains the same in both cases.

Finally, the influence of the frequency of the applied force on
the system response is shown in Fig. 12. Here four curves are
presented for different values of the dynamic amplitude, a¼0.35,
0.40, 0.45 and 0.55, and constant value of the static force, b¼0.25.
As can be seen from part (b), for lower values of the dynamic
amplitudes, the chaotic response is observed for lower frequen-
cies. As the frequency increases, the periodic response is recorded
and the average progression per period is decreasing with the
increase of the frequency.

Comparing the results presented in Figs. 8 and 12, we note that
the low dimensional model predictions do not coincide with the
previous finding where the clear resonant frequency was identi-
fied for the considered frequency range for the specified sets of
system parameters. The progression rates are also much higher for
the lower dimensional model. However the similar results were
recorded at the higher frequencies where the progression rates
drop to zero according to both models. The significant differences
between two models at the lower frequencies could be explained
by two factors. Firstly, internal resonances and interplay between
the natural frequencies of the three masses model from Section 3
affect the global system response at different excitation frequen-
cies and in the result produce nonlinear resonance shown in
Section 3. Secondly, as was discussed above, the same static force
applied to the much heavier mass will produce smaller progres-
sion rates and hence it explains the differences in the level of the
average progression achieved.

Fig. 11. (a) Average progression per period calculated over 500 periods vs. dynamic amplitude a calculated for g¼ 0:1, ξ¼ 0:05, φ¼ 0, ω¼ 0:30. (b) Typical bifurcation
diagram showing the dependence of the drill-bit velocity on the dynamic amplitude for b¼0.2 and the same parameters as in part (a).

Fig. 10. (a) Average progression per period calculated over 600 periods vs. static force b calculated for g¼ 0:1, ξ¼ 0:05, φ¼ 0, ω¼ 0:35. (b) Typical bifurcation diagram
showing the dependence of the drill-bit velocity on the static force for a¼0.35 and the same parameters as in part (a).
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5. Conclusions

This paper presents the modelling of the vibro-impact drilling
system showing the results of the numerical analysis and comparison
between two models. The first one is a newly developed model of an
existing experimental rig (three masses model) and the second one is
a simplified low dimensional model [22] created to describe the
dynamic interaction between the drill-bit and the drilled formation.
Based on the analysis of the system responses, the optimal loading
parameters were identified and the influence of the additional
degrees-of-freedom on the loading optimisation strategy was
investigated.

Three main control parameters were considered, namely the
applied static force, and the amplitude and the frequency of the
applied dynamics force. According to both models the best
progression rates are achieved when the system response is
periodic and the frequency of the response is the same as the
frequency of the applied dynamic force (i.e. period-1 response is
observed), and the value of the static force is smaller than the
amplitude of the applied dynamic excitation. In both cases, zero
progression rates were obtained for lower values of the excitation
amplitudes and the average progression increased with the
increase in the dynamic amplitudes. Both models also predict zero
progression rates at the higher excitation frequencies.

According to the higher dimensional model simulations, the
optimal static force can be found for the chosen value of the
excitation amplitude and for small and medium amplitudes it can
be estimated as 40–45% of the amplitude value. The appropriate
choice of the excitation frequency is very important, and for the
higher dimensional model the optimal non-dimensional frequency
range of the drilling system is 0:3oωo0:5. Below the lower
boundary the system response is chaotic and above the upper
boundary progression rates decrease as the frequency increases.

Finally, it can be concluded that low dimensional model
provides good estimates of the optimal static force and the
amplitude of the dynamic force, and it could be used for the
operational control of the drilling system to adjust the loading
parameters while drilling through different formations. The choice
of the optimal frequency, however, should be made based on the
predictions of the more detailed model of the drilling system as
additional degrees of freedom significantly influence the structure
of the internal resonances and they should be taken into account.
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