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Large System Analysis of Base Station
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Luca Sanguinetti, Senior Member, IEEE, Romain Couillet, Senior Member, IEEE, and Merouane Debbah, Fellow,
IEEE

Abstract—This work focuses on a large-scale multi-cell multi-
user MIMO system in which L base stations (BSs) of N antennas
each communicate with K single-antenna user equipments. We
consider the design of the linear precoder that minimizes the
total power consumption while ensuring target user rates. Three
configurations with different degrees of cooperation among BSs
are considered: the coordinated beamforming scheme (only
channel state information is shared among BSs), the coordinated
multipoint MIMO processing technology or network MIMO
(channel state and data cooperation), and a single cell beam-
forming scheme (only local channel state information is used
for beamforming while channel state cooperation is needed for
power allocation). The analysis is conducted assuming that N
and K grow large with a non trivial ratio K/N and imperfect
channel state information (modeled by the generic Gauss-Markov
formulation form) is available at the BSs. Tools of random
matrix theory are used to compute, in explicit form, deterministic
approximations for: (i) the parameters of the optimal precoder;
(ii) the powers needed to ensure target rates; and (iii) the total
transmit power. These results are instrumental to get further
insight into the structure of the optimal precoders and also to
reduce the implementation complexity in large-scale networks.
Numerical results are used to validate the asymptotic analysis
in the finite system regime and to make comparisons among the
different configurations.

I. INTRODUCTION

The road forward for satisfying the increasing number of
users and high rate expectations in 5G systems is very high
spatial utilization. Among the different technologies in this
context, massive MIMO is considered as one of the most
promising [1]-[4]. Under the assumption of uncorrelated chan-
nels, if the number of base station (BS) antennas N goes to
infinity and the number of user equipment terminals (UE) K is
maintained fixed, the performance of massive MIMO systems
becomes limited only by the so-called pilot contamination and
simple matched filter and maximum ratio transmission with
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no cooperation among cells can entirely eliminate the uplink
and downlink multicell interference. However, the maximum
number of antennas at each BS is limited in practice. In such
a case, interference-aware precoder designs with cooperation
among cells should be applied for optimal handling of the
remaining intercell interference.

Coordinated multi-cell resource allocation is generally for-
mulated as an optimization problem in which a desired net-
work utility is maximized subject to some quality-of-service
requirements. In this work, we focus on the problem of
designing the optimal linear precoder in multi-cell networks
for minimizing the total transmit power while ensuring a set
of target user rates [5], [6]. This problem has received great
attention in the last years [7] and is gaining renewed interest
nowadays due to the emerging research area of green multi
cellular networks [8]. We specifically consider the downlink
of a multi-cell multi-user MIMO system in which L BSs
equipped with N antennas each communicate with K single-
antenna UEs. Within this setting, several configurations with
different degrees of cooperation can be envisioned [9]. In this
work, the following three are considered: (i) the coordinated
beamforming (CoBF) scheme in [10] in which each BS sends
data to its own users only but channel state information
(CSI) is shared between the L BSs so that each BS can
exploit its excess number of spatial dimensions to mitigate the
interference generated in other cells; this has the advantage
of not having to distribute all users’ data to all BSs; (i)
the fully cooperative scheme, widely known in the literature
as coordinated multipoint MIMO (CoMP) or also network
MIMO [9], in which the BSs share the CSI of the UEs
as well as their data through backhaul links'; and (iii) a
single cell beamforming (ScBF) scheme in which each BS
computes the beamformer only on the basis of the CSI of
its own UEs while the power allocation requires the BSs to
share CSI so that the rate constraints can be jointly satisfied.
In all the above scenarios, under the assumption of perfect
CSI, the optimal linear precoder is known to be a function
of some Lagrange multipliers, the computation of which can
be performed using convex optimization tools or solving a
fixed-point problem [7]. Although numerically feasible, both
approaches do not provide any insight into the structure of
the optimal precoder. Moreover, the computation must be
performed for any new realization of propagation channels,
which is too computationally cumbersome when the network
size becomes large (as envisioned in 5G networks).

Although CoMP might refer to a more general setting in the 3GPP
standard, in this work the term is used to refer to network MIMO.



To overcome these issues, we follow the same approach as
in other works for single- or multi-cell networks [11]-[16]
and resort to the asymptotic regime where N and K grow
large with a non trivial ratio K/N. The design and analysis
of the considered networks is performed under the assumption
of imperfect CSI (modeled by the generic Gauss-Markov
formulation form) for the UEs. Unlike most previous works
[13], [16], the asymptotically optimal values of the Lagrange
multipliers are computed using recent results from random
matrix theory [17], which provide us with a much simpler
means to overcome the technical difficulties arising with the
application of standard random matrix theory tools. These re-
sults are then exploited to compute explicit expressions for the
asymptotic signal-to-interference-plus-noise ratios (SINRs),
which are eventually used to obtain the asymptotic powers
needed to ensure target rates as well as the asymptotic total
transmit power. As shall be seen, all the aforementioned
deterministic approximations are found to depend only on
the long-term channel attenuations of the UEs, the relative
strength of interference among BSs, the target rates and the
quality of the channel estimates. As a notable outcome of
this work, the above analysis provides a unified framework
that can be used to compare the considered networks under
different settings and to eventually get insights on how the
different parameters affect their performance. Moreover, in the
same spirit of [18], [19], the provided results can be used to
derive optimal distributed algorithms that rely only on the ex-
change, among nearby BSs, of long-term fading components.
Numerical results are used to show that the asymptotic analysis
well approximate the network performance in the finite system
regime.

The main literature related to this work is represented by
[12]-[16], [20]. Specifically, a single-cell setting is consid-
ered in [12], [20] while a CoBF network is investigated in
[13]. Unlike [13], we provide closed-form expressions for the
Lagrange multipliers, which are instrumental to also compute
closed-form expressions for SINRs and transmit powers. In
[15], the authors focus on the sum rate of a CoMP under
the assumption of regularized zero-forcing precoding. In [16],
the authors provide an asymptotic analysis of all considered
network configurations but for the simplest case in which
only two cells are present and CSI is perfect. The analysis
is also conducted under the restrictive assumption that the
channels among all UEs within a given cell and the interfering
BS can be modelled as ~ CN(0,ely) with e controling
the interference level between neighbor cells. Moreover, the
same rate is imposed to all UEs. We importantly show in
the present article that, within our framework, there is no
substantial additional difficulty in treating the more general
setting of interest here which, unlike [16], considers multiple
cells, different rate constraints, imperfect CSI and models the
interference between neighbor cells according to the large
scale fading coefficients.

The remainder of this paper is organized as follows. Next
section describes the signal model and revisits the optimal
linear precoder for the different network configurations. Sec-
tion III deals with the large system analysis. In Section IV,
numerical results are used to validate the theoretical analysis

and to make comparisons among the different beamforming
schemes. Finally, the major conclusions and implications are
drawn in Section V. All the technical proofs are presented in
the Appendices.

Notation: The following notation is used throughout the
paper. Scalars are denoted by lower case letters whereas bold-
face lower (upper) case letters are used for vectors (matrices).
The superscripts 7 and  denote transpose and conjugate
transpose. We denote by Iy the identity matrix of order N
and call Oy and 1y the N —dimensional all-zero and all-
one vectors, respectively. A random vector x ~ CA (m, C)
is complex Gaussian distributed with mean m and covariance
matrix C. The notation tr(A) stands of the trace of matrix
A whereas A = diag{x1,...,zn} denotes a diagonal matrix
of order N. We use []; to denote the (i, k)th element of
the enclosed matrix and ® to indicate the Kronecker product.
We denote a,, < b, the equivalence relation a,, — b, — 0 as
n — oo for two infinite sequences a,, and b,,.

II. SYSTEM MODEL

Consider the downlink of a multi-cell multi-user MIMO
system composed of L cells, the BS of each cell comprising
N antennas to communicate with K single-antenna UEs. As
mentioned previously, we consider three different configura-
tions with different degrees of cooperation: 7) the coordinated
beamforming scheme in [10]; ¢¢) the coordinated multipoint
processing (or network MIMO) [9]; and iii) a single cell
beamforming scheme. In all these scenarios, we are interested
in minimizing the total transmit power Pr while satisfying rate
constraints at the UEs. Under the assumption of perfect CSI at
the BSs, this problem can be solved using different approaches
based for example on second order conic programming and
standard decomposition techniques [7]. Next, we consider a
finite size system and review the optimal precoder structure
for the aforementioned schemes. In doing so, we assume that
the feasibility conditions are satisfied [5]-[7], [13].

A. Coordinated Beamforming

In the CoBF setting, each UE is attached to a specific
serving BS while receiving interfering data from other BSs.
As such, we shall use a double index notation to refer to each
UE e.g., “user k in cell j”. Under this convention, let us thus
define hy;, € CY as the channel from BS [ to UE k in cell 7,
given by hy;i = /dijr Wi where wij, € CV is the small-
scale fading channel assumed to be Gaussian with zero mean
and unit covariance, i.e., ~ CN'(0x,In), and d;j; accounts
for the corresponding large scale channel fading or path loss
(from BS [ to UE k in cell j). Denoting by g, € CV the
precoding vector intended to UE £ in cell j, its received signal
can be written as

K
yik = W ginsin + Z il g5
i=1,ik
L
+ Z hgkglisli + njg 1)

I=1,1#£j i=1



with s;; € C being the signal intended to user ¢ in cell [,
assumed independent across (I,%) pairs, of zero mean and
unit variance, and nj; ~ CA'(0,0?). Under the assumption of
target UE rates {r;i; V7, k}, the power minimization problem
for CoBF can be formulated as:

L K
SO ehie )

min
[ e et
W g2
s.t. | i | > i, Vi, k
Z | hil, gil*+ Z Zlhzgkgzzlzwz
i=1,i# 1=1,I#ji=
where «;, = 27 — 1 denote the corresponding SINR

constraints. Upon existence [7], the unique solution of (2) is
K A5
g = N vl with v7, = (Zl 1 im M thZhjlz

Iy) 'h hjji Vj, k where {\}; /N'} are the Lagrange multipliers
associated to the SINR constraints and are obtained as the
unique fixed point solution of the following set of equations

[SH7:
. (L+1/75) "

)‘jk - —1
]]k (lzzl Z )\lthll jli + NIN) hjjk

ka Jk

Vi k. (3)

The optimal power values {pj,} are such that the SINR
constraints in (2) are all satisfied with equality. This amounts
to computing the unique solution of the following set of
equations [7]:

1 p]k |h]]kvjk|2 Z pﬂ 7779 JZ
vk NOIVEIE S N vl
2
hgk"l*i

- +0?=0 Yk @

Observe also that the Lagrange multipliers {\}, /N} and
vectors {v7,} may be thought of as the solution to the
following dual UL power minimization problem [16]:

L K s
min ZZ#’%? (5)

Ak [vichy]?

Z Yik V]vk

VJI?,'c >
(1,1)#3,k)

with {v;;} being the receive beamforming vectors.

Allh]llhjlz + NIN Vik

B. Coordinated Multipoint Processing

In the CoMP (or network MIMO) setting, each UE is jointly
served by all BSs. In other words, there exists no cell-user
association and thus the UEs can be indexed as k from 1 to
KL. Let us then denote hy = [hf, ..., hi |7 with hj, €
CY the channel from BS j to user k given by h;), = \/@wjk
where wj;, € CNE is the small-scale fading and d;;, accounts
for the path loss (from BS j to UE k). Denoting by g € CN

the joint precoding vector for UE £k, its received signal can be
written as

KL
yk = hylgrsy, + Z hilgis; + (6)

i=1,i#k
with s; € C being the signal intended to user ¢, independent
across 7, of zero mean and unit variance, and ny ~ CN (0, 02).

In the above setting, the power minimization problem takes the
form:

KL
. H
min k 7
{gr) kz::lg’“ 5
hH 2
s.t. I | kgk' >y Vk
> |higil? + o2
i=1,i#k

where v, = 2" — 1 with r; the rate constraint of UE
k. The solution to (7) is g} B ka with vy

NL H

(KL 2 hh 4 1y,) 'hy where {\*/(NL)} are such

that [5]-[7]:

-1

KL -1
hH <§_jl Ath;h + NLINL) hy

As before, the optimal {p}} are computed such that the SINR
constraints in (7) are satisfied with equality [7]. Then, we
obtain

* 12
NL - lvr]

1 pe [bEVEP

+02=0 Yk (9
W NL|lvi|?

i=1,i#k
As for CoBF, {\;/(NL)} and {v}} can be obtained as the
solution to the following dual UL problem [16]:

KL A
. k 2
min —0 10
vihy 22 NI 1o

Aklvi hy[?

s.t.
V}:I <;€ /\Zhlhfl +NLINL> Vi

> v k.

C. Single Cell Beamforming

Inspired by a single cell beamforming scheme (see for
example [12]), we also consider the following power mini-
mization problem:

min nggak ()
jk
b g ?
s.t. | ”’“gml > ik Vk.
Z |h]]kgﬂ|2 + Z Z |hl7kgl1|2 + 02

=1,7 I=1,l#7 i=
Upon existence, the solution to (11) is given by g, =

K >\]1 1
(Zz 1 hJJZth + IN) hjjk

Pik _Vik
N Ve

: * —
with Vip =



where the scalars {/\;‘k /N} are such that [5]-[7]:

N 14+ 1/7vk -1 .
Ajk _ ( / J ) — V],k

K
!, <§_jl A3hyht NIN) h,

12)

The powers {pj,} are computed such that the SINR con-
straints in (4) are all satisfied [7]. As for CoBF, this requires
CSI to be exchanged among BSs. This makes the consid-
ered ScBF scheme different from a ‘“classical” single cell
processing technique in which each BS does not exchange
any information with the other BSs.> The reason why it is
referred to as a single cell scheme is due to the fact that,
unlike CoBF, the computation of the beamforming vectors
Vi = (Zszl %hjjihgi + IN)flhjjk of cell j does not
require knowledge of the fast fading channels {h;;;; VI # j,i}
from all UEs in the other cells to cell j. More details on this
will be given in Section III-C.

Similar to CoBF and CoMP, {)\}; /N} and {v}, } may be
thought of as the solution to the following dual UL power
minimization problem for cell j:

45
: Jjk 2
min =0 13)
{vim A} ,; N K
Xik|[vE hp |2
st. - gk Vit > Y Vk
Vﬁ Z /\”h”lhgz—f'NIN Vik

i=1,i#k

with {v;,} being the receive beamforming vectors and 0%, =
L K H 2 2
2ot 2oiet Nl Vil 4+ o

ITII. LARGE SYSTEM ANALYSIS

Let A* and p* denote for the three settings above the
vectors collecting the Lagrange multipliers and power values,
respectively. As shown previously, the precoding vectors are
parameterized by A* and p*, where A* needs to be eval-
vated by solving a set of fixed-point equations. This is a
computationally demanding task when N and K are large
since the matrix inversion operation in (3), (8) or (12) must
be computed several times, with complexity proportional to
N2KL or (NL)?K L. Besides, from a practical standpoint, a
close inspection of the SINR constraints in (4) and (9) reveals
that the evaluation of p* requires knowledge of all channels
{hy,} and {h;}, thus implying some channel exchange proce-
dure within the network at the rate of the fast fading channel
evolution. This makes the implementation of all the above
solutions a difficult task, especially when N, K become large.
Finally, computing A* as the fixed point of (3), (8) or (12)
does not provide any insight into the optimal structure of A*
and p*. To overcome these issues, we exploit the statistical
distribution for h;;;, and h; and the large values of N, K to
compute deterministic approximations of A* and p* [21]. For

2This case is considered for example in [16] in which the SINR constraint
is achieved by all UEs through an iterative procedure based on the bisection
method. However, such a procedure can only be applied when the same SINR
constraint is imposed to all UEs, which is not the case of the considered
network.

technical purposes, we assume the following grow rate of the
system dimensions:

Assumption 1. As N — oo, 0 < liminfy_o K/N <
limsupy_, o K/N < 0.

A known problem with the asymptotic analysis is that the
target rates are not guaranteed to be achieved when N is
finite and relatively small (e.g., [14]). This is because the
approximation errors translate into fluctuations of the resulting
SINR values. However, these errors vanish rapidly when N
takes large yet finite values as it is envisioned for massive
MIMO systems [2].

We further assume that only imperfect CSI is available at the
BSs. Since the optimal linear precoder for the aforementioned
network configurations is not known when only imperfect
CSI is available, we overcome this issue by simply replacing
the true channels with their estimates (which is an accurate
procedure for good CSI quality).

A. Coordinated Beamforming

Let ﬁljk be an estimate of h;;;, and assume, similar to [11]
(among many others), that this can be modeled by the generic
Gauss-Markov formulation:

by = /i (\/1 = T Wik + szqujk) = /dijizik (14)

where q;j; ~ CN(0,Iy) accounts for the channel estimation

errors independent of wy;, and zj, = (/1 — lejkW[j]g +
Tijkdijk- The parameter 75, € [0, 1] reflects the accuracy or
quality of the channel estimate, i.e., 775, = 0 for perfect CSI
and 7;;; = 1 for a channel estimate completely independent
of the genuine channel. Replacing {hj;;} by {hj;} into (3)
yields
* (1 + 1/’7'16)71 .
/\jk:A PR AJ T Vi, k. (15)
hi, <l; Zl Ahjhll + N IN> hjji

As mentioned earlier, the implicit formulation for )\;k prevents
any insightful analysis of the system performance. By a large
dimensional analysis, exploiting recent tools from random
matrix theory (see notably [17]), we shall subsequently show
that /\;k gets asymptotically close to an explicit deterministic
quantity as N and K grow large as for Assumption 1, and
that this quantity provides clear insight on the behavior of the
precoder and the system as a whole.

For technical reasons, the following reasonable assumption
is imposed on the system settings.

Assumption 2. The {dix} and {vjx}
lim sup max{d;;x} < oo and lim sup max{vy;x} < co.

satisfy

A main technical result then lies in the following theorem:

Theorem 1. Let Assumptions 1 and 2 hold. Then,
* ~(CoBF) .
maxg |/\j;C — Ak | = 0 almost surely with

~(CoBF) _ 1 vk

A = (16)
i n; djjk



where {n;} is the unique positive solution to the following set
of equations

]lw L
2 : 2 : T dm _ Mdyy
]h nj

lll 11+ ld” m

—1

+ 1) vi o (7)

or, equivalently,

L K djii n;

1 Yiig
SRR S g 7
NiIa 1+71dﬁl "

Vj. (18)

Proof: The main difficulty lies in the implicit definition
of the A%.’s in (15). A first step consists in heuristically

discarding the implicit structure to retrieve the expression
~(CoBF) . .. .
for Ay in explicit form. To proceed with an accurate

proof, in Appendix A we follow similar steps as in [17] (in a

completely different context though), by controlling the ratio
(COBF

/ Nk ]

Some 1mportant insights can be readily extracted from

Theorem 1. To begin with, observe that the computation of

{)\(COBF)} in (16) for cell j requires only the knowledge
of the SINR constraints {7;;;Vl, 7} and the average channel
attenuations {d;;;;Vl,7} from all UEs to BS j. Differently
from the fast fading channels {hj;;} required in (15), the
latter can be accurately estimated as they change slowly with
time (relative to the small-scale fading). Also, the Lagrange
multiplier A; is known to act as a user priority parameter
that implicitly determines how much interference a specific

UE £ in cell j may mduce to the other UEs [7]. From (16), it

turns out that /\gk is proportional to v;; and inversely

proportional to dj;; such that higher priority is given to
UEs that require high performance or have weak propagation
conditions. Moreover, observe that (18) can be equivalently
rewritten as:

L K o ]h nj
ldlh ! .
=< % LI i (19)
PIs
where ¢; is defined as

A 1 & ;i
21— — L 20
N T @0

From the above equation, it follows that 7; in cell j is such
that 7; < ¢; and also it depends not only on its own cell
requirements {v;x} through g; but also on all the other cells
through the ratios {v; Zi; Z—;} and might be thought of as a
cell priority parameter: higher priority is given to cell j if 7;
is small. In particular, dj;; /dy;; describes the relative strength
of the interference received at UE ¢ in cell [ from BS j; for
a given set of {7;;} it is almost one for cell edge UEs of
neighboring cells, while it is almost zero when cell [ is very
distant from BS j. In other words, higher priority is given
to those cells that create high interference, as it should. To
get further insights on this, please refer to the simple two-cell
two-user network case study considered in Section III-E.

If a completely symmetric scenario is considered, i.e.,
djli/dlli = dlji/djji and Yii = Vi Vj,l, the coefficients {’I]j}
are all equal to a given 7, which can be computed in explicit

form as stated in the following corollary (similar results were
obtained in [16] for a two-cell only network):

Corollary 1. If a completely symmetric scenario is considered,
then Yj n; = n with

]lw

n—l——zz %dl“m.

=1 i= 11+"de”

2y

Proof: The proof follows directly from Theorem 1 using

djii = diji and ;= y; V3, 1. [

An explicit form for {n;} can also be obtained in the high
SINR regime as stated below:

If Vi v
n with n

Corollary 2.
1y iy, — o0 75
that 1 — KL/N > 0.

Proof: The proof follows directly from (17) or (18) of
Theorem 1 observing that for given sets of {d;;} and {dy;}

grows large, then Vj
1 — KL/N provided

” djti g
dlh n
djti nj

+71i
We now Vprdé)lé:eglol to computing the asymptotic powers
]3 (CoB F)} satisfying the SINR constraints in the large-(N, K)
regime when imperfect CSI is available. To this end, we
first compute the asymptotic values of the SINRs under the

assumption that the transmit powers {p;} are held fixed at a

Sx

the ratio — 1 as Vi, ¢ y; — oo. [ |

constant value and that g, is replaced with g, = /% H:’:]* : I
J
such that
Pik Ih]’iﬁjklz
SINR,; A 22)
! f: p hH‘kA* |2 i Z thkAl* i 2
JT Ji Je _|_ 1 gk trd _|_ o}
imtiehy v ’ 1=1,i#j i=1 A
-1
—~ >\‘k‘ ~ ~ ~
where V7, = (Zlel Zfil #hﬂihﬁi + IN) hj;,. We

then have the following result:

Lemma 1. Under Assumptions 1 and 2, max; |SINR ;i —

SINR COBF)|—>O almost surely with

L K ('le djii nj )
1 Qs
(CoBF) b N lX:l 2:1 (1"1")’1 ”JZZIZ”J )2
o 2 =l1= td n
SINR = pjkdjjk (1 - Tjjk) —(CoBF) 211 1
Ijk + o
(23)
CoBF) .
where ng = Zlel Bijk (% Zfil pli) with
1 2 1q 1 dijk 1 2
A — Tk |1 = (L +%kg
Bijx = dijk 5 . (24)
1  dijk m
+ ’ng ik i

Proof: Substituting /\gk for )\;k, the result follows
as shown in Appendix B. [ ]
For notational convenience, let us now denote by b =

[b1,...,br]T the vector with entries

1 & .

b & Tt (25)

N = dﬂz(l — ’7'2)

JJ



The main result of this section unfolds from the previous
lemma and provides the transmit power dedicated to each
user and the minimal total transmit power to meet the SINR
constraints.

Theorem 2. Let T' € CL*L be diagonal with entries

2
L ]lw n;
1 (7 s )
), 21— Zz—d” " e
—1 i= gli Mg
lil =1 (1+71du 771)
and F € CY*L such that
A 1 Yk Bljk
(27
Zdﬂﬂk _]_]k)
where i, is defined in (24). If and only if

limsupy |[T7'F|| < 1, then under Assumptions 1 and
2, the powers {p;i} required to meet the SINR constraints in
the asymptotic regime are obtained as:

—(CoBF
3 B Py P 4 o2
_(CoBF) _ Vik =1 (28)
ik B 2 K ( i ﬁ)2
djjk (1 - Tjjk) -y )
N : djti m5 )2
I=1i=1 (1+’Y“ i TI_L)
where F(COBF) [P§COBF) P(COBF)] Q(I‘—F)_lb

collects the total transmit power of each BS with b defined as
in (25). Moreover, the asymptotic total transmit power is given
by

—(CoBF)

PT (COBF)

=1TP 21T (T —F) 'b. (29)

Proof: The proof is given in Appendix C and basi-
cally proceeds as follows. The transmit powers are set to

ensure that the SINR constraints are reached exactly in the

asymptotic regime, that is such that SINR (CoBE) " _ Yk

(with SINR (CoBF) defined in (23)). It then suffices to solve

the implicit equation SINR (CoBF)

{ (COBF

= 7k in the unknowns
}. This equation turns out to unwrap as an explicit

equation for the {p; kOBF)} which are then readily obtained
as in the theorem statement The asymptotic approximation of
the total transmit power easily follows taklng into account that

the transmit power of BS j is given by — ~ Zk ) COBF) _

Djx -
Pj(COBF). m

A close inspection of Theorem 2 reveals that the compu-
tation of {ﬁ(.gOBF)} only requires knowledge of the system
parameters {7;;} and {7;;;} and the large scale channel fading
components {d;;i}. The latter change slowly in time com-
pared to small-scale fading components and can be accurately
estimated and possibly exchanged among coupled BSs with a
reasonable effort. This is in sharp contrast to the finite system
regime wherein the evaluation of {p%,} through (4) requires
some channel exchange procedure within the network at the
rate of the fast fading channel evolution.

From [22, Corollary 3], we have that limsupg ||[T~'F|| <
1 if none of the column sums of I'"'F exceed unity and at
least one 1s less than unity. This amounts to checking that
Zl LT ] < 1 VI or, equivalently, (since T is diagonal)

S [Fly, < [T,

Vj with the strict inequality holdlng for

at least one j. Therefore it follows that if Vj € {1,..., L}
L K
1 VikPk
N == dyr(1—775,) —
L dj1i mj
1 (,7 vdui m )
EEDS a0)

2
(1+7Zdﬁl Zj)
with the strict inequality holding for at least one j, then
limsupy |[T7'F|| < 1. Assume now that the quality of the
channel estimates is the same for all UEs, i.e., 7, = 7; VI, K,
then from the above discussion and using (24) (after simple
calculus) the maximum level of imperfect CSI in cell j is
found to be:

Lemma 2. Assume 75, = 7; Vi, k. Then, for any given
set of {vjx},{d;jx} and {di;i} a feasible asymptotic power

allocation exists in the CoBF case if 7; < Tj(fn(;EF) with

—1/2

(COBF)
Jj,max

= - . 3D

(i)

To confirm the asymptotic optimality of the power alloca-
tion provided by Theorem 2, we now provide the following
corollary that proves that the uplink-downlink duality holds
true also in the asymptotic regime when perfect knowledge of
the channel is available:

Corollary 3. Under Assumptions 1, 2 and 4, if perfect
knowledge of the channel is available, i.e., 75, = 0 VI, j,k,
then the duality gap between (2) and (5) is zero.

Proof: The proof is sketched in Appendix D. [ ]

B. Coordinated Multipoint Processing

With a slight abuse of notation, let hj; € CNZ be the
estimate of the channel from BS j to user k£ given by
hjk = \/_(\/1 —TkWJk + qum) \/_kzjk where
qjx ~ CN(O0, IN) and z;;, = /1 —

T¢W K + Tkqk. Then,
we may write hy, = [h],,....h7 |7 as

hy, = ©,/ ( 1 — 72wy, + rqu) -0,z (32
with @, € CNEXNL being defined as O =
diag{diy,...,drr} ® Iy and qi = [qlk,...,qu]T and
wy = [wl,,...,wL,]T. Replacing hk with hy, in (32) yields

1+1 B
KL . . N
kH (2:1 )\;‘hihfl + NLINL> h;
Vk € {1,2,..., KL}. Similar to the previous network config-

uration, we shall require here the following technical setting.

Assumption 3. The {d;x} and {v} satisfy
lim sup max; r djr. < 0o and lim sup maxy, v < oo.



Our first result in this setting is as follows:

Theorem 3. Under Assumptions 1 and 3, maxk|)\; —

)\,(CCOMP | = 0 almost surely with
X]iCoMP) L’)/]g (34)
+ Z Ikt

where {;} is the unique positive solution to the following set
of equations:

KL d 5 -1

li i

W = <NL g_ Tz 14_71_—1—1) vi. (35
LY

Proof: The proof is given in Appendix E and proceeds

as that of Theorem 1. ]

Unlike (16), in the CoMP configuration the Lagrange mul-

tiplier of UE k is found to be inversely proportional to a
weighted priority parameter given by

L L
=7 > dinpu
=1

which basically takes into account the effort of each cell for
jointly serving user k — see Section III E for an illustrative
example. Replacing g with g, = /4% HA*II’ the SINR of

user k takes the form

(36)

Pk \thVizlz
L YR
SINR, = —— Vil 37)
pi [hiv7[?
Y. N e T
i=1,i#£k ¢
where v} = (ZzKLl ]i\th hH—i—INL) ﬁk. To proceed
further, we call €}, = [€},..., €% ,]T the vector obtained

! c; where ¢}, € CKL is such that

( Zdhdlkm> (38)

as 6; = (IKL —J)

(iEe)

and J € CKLXKL has entries given by [J], , =
Our main results are then as follows:

[C;c]i =

[<],

NL(A+7)?

Lemma 3. Under Assumptions 1 and 3, maxy |[SINR; —

SINR, COMP)| — 0 almost surely with

(CoMP) _ e 1-1f

ko e, T(COMP) g

SINR,, (39

—(CoMP) A 1-77]

A 1-(1+v)%] ;1 KL, _ ¢
where 1, = (1+7)? (w7 ity pi j) and
€ =[é,....é ]t = (kL — )" ¢ where ¢ € CKL has
L
elements [c]; = + > diipi.
Proof: See Appendix F. ]

Theorem 4. Let Z € CEKLXKL po such that
1= 72 [1— (1 +7)
(147:)?

1 v €
VAR ik
[ ]’“ NL1-—172 f

K3

Hl>

(40)

If and only if limsupy ||Z|| < 1, then under Assumptions 1
and 3, the powers {py} required to meet the SINR constraints
in the asymptotic regime are obtained as:

172 [1- 1+ )]

_(CoMP) _ Tk € a 2
= - k 41
< TTomd (e
where Q = [Q1,09,...,Qx1]T is computed as 2
0?(Ixr —Z) 'z and z € CEL with 2, = =T ZfiLl iy Sk

Moreover; the asymptotic total transmit power is

—(CoMP) 1 XL ( )
P o CoMP
T ~NL ;p

(42)

Proof: The proof follows from Lemma 3 using the same
arguments for proving Theorem 2. [ ]
As done before for both CoBF, we observe that if

2
| kL . 1— 72 [1—(14—%—)
NL k= 12 (1 + %)2
and less than unity for at least one k, then limsup ||Z]| < 1.

Therefore, we have that:

<1

(43)

1—7'1

Lemma 4. For any given set of {v;} and {d;;}, a feasible
power allocation exists for CoMP if T; < 7 CoMP) \ith

i,max
KL ~1/2

Vi NI 2:: “ih
5?(14-%')

(COMP)
i,max

1+ (44)

KL

2

Corollary 4. Under Assumptions 1 and 3, if perfect knowledge
of the channel is available, i.e., T, = 0 Vk, then the duality
gap between (7) and (10) is zero.

o .\,|¥

L
NL

Proof: Despite being much more involved, the proof
basically unfolds from the same arguments used for proving
Corollary 2. [ ]

C. Single Cell Beamforming
Replacing hy;;, with flljk into (12) yields:
(1+1/9) "

-1
ggk (Z )\ 77lh]]1 + NIN) hjjk

e = Vi, k. (45)

Vji
i=1 1+'YJ1

Assumption 4. The {~;.} satisfy limsupy + Ly K
1.

When the Lagrange multipliers are computed as above, we
have that:

Theorem 5. Let Assumptions 1, 2 and 4 hold. Then,

max;i [\, — X;iCBF)| — 0 almost surely with
~(ScBF) 1 Vik
o) = Z ik (46)
7 S5 djjk

where ¢; is given by (20).



Proof: The proof is an easy extension of [12, Theorem

1] derived for a single cell network. ]
As expected, the computation of {/\JiCBF} for cell j

requires only knowledge of the SINR constraints and average
channel attenuations of its own UEs, i.e., {v;x;Vk} and
{dj;;Vk}. Replacing X5 in (45) with Xp " in (46), we
then have the following result.

Lemma 5. Under Assumptions 1, 2 and 4, maxy, |SINRjk—
(Sc¢BF)

SINPL],C | =0 almost surely with
¢ Dikdjjk (1 —T»Q»k)
SINR, "L < -~ Z i ) J —(JSJcBF) -
(1+ 'sz Ijk + 02
(47)

(SCBF) A
where 1

Zl 1 Ok ( Zfilpli) accounts for the

interference with

1—7 —(1+; )2 .,
ALk a0 i JJ)E1[+ij)2 2] j=1
dijk J

(48)

Proof: The proof is the same as for Lemma 1, the main
difference lying in the fact that v} in (22) is now independent
from hy;;, as shown in Section II-C. [ |

Theorem 6. Let A € CEXL pe a diagonal matrix with
elements

A 1 & 'YQ'k
A =1-%) ———= 49)
7 N k=1 (1 +7jk)2
and U € CY*L such that its (j,1)th element is
A 1 Vik QX
(50)
Zdﬂﬂk _]_]k)
where oy, is  defined in (48). If and only if
limsupg [|[ATYU|| < 1, then under Assumptions 1, 2
and 4, the powers {p;i} required to meet the SINR

constraints in the asymptotic regime are:

Z Oélng(SCBF) + 02

_(SeBF) _ Yik

| _ 51)
Jk 9 2 (
.. _ 2, 2,
g (1=72,) 1-1 z e
where PP — (pSPE) | PUBINT _ oA _U)1p

collects the total transmit power of each BS. Moreover, the
asymptotic total transmit power is

P;SCBF) 1TF(SCBF) — 5217 (A . U)_l b. (52)
Proof: The proof is similar to that of Theorem 2. ]

As seen, the computation of {X;iCBF)} and {ﬁgiCBF)} re-

quires the BSs to exchange almost the same system parameters
of CoBF. Then, one might argue that ScBF has no potential
advantage with respect to CoBF. The advantage comes from
the observation that, unlike CoBF, the implementation of ScBF
does not require knowledge of {h;;;; VI # j, i} at each cell j.
Although it is true that this information could be potentially

acquired at cell j, operating with a time-division duplex
protocol, simply by reception of the pilot signals transmitted
by all UEs, from a practical standpoint, this task would require
a proper allocation of pilot sequences to avoid the so-called
pilot contamination effect. In short, compared to CoBF, ScBF
allows to simplify the channel estimation task.

As done for CoBF and COMP we use [22, Corol-
VikQijk _
lary 3] to state that if N E =1 E k=1 m S 1

~ Ly i, 1+%k)2 Vj e {1,...,L} or, equivalently,

N ) Jk—i— Z dijk | <
k=1 Jjik dijn I=1,1#j
1 & on
1- =S 5 wie{1,....,L} (53
N 2 T VAR b (53)

with the strict inequality holding for at least one j, then
limsupg ||A~'U| < 1. Imposing 75,5 = 7; Vk and using
(53), from the above condition it follows that (after simple
calculus):

Lemma 6. Assume that 75, = 7; Vk. Then, for any given
set of {vjr}, {d;jx} and {di;}, a feasible power allocation
exists in the ScBF if 7; < 75 with

j,max

ik .
(ScBF) _ k=1 1=1,l#j 54
e = — (54)
Y o
1 N kgl 1+7k

and ¥j € {1,...,L}.

If we assume that ;3 = «y; Vk, then from (53) the maximum
value of «; in cell j as a function of the other system
parameters is obtained as follows:

Lemma 7. Assume ;. = v; Vk. Then, for any given set
of {7jjr}, {djjx} and {dijr}, a feasible asymptotic power
allocation exists for SCBF if v; < 7¥j max With

Aj+ 5 -1 A;
max = ——N 1 1+4——7F—r0 55
;. 24, +4 /14 yp - (55)

ik Zz 1,045 dl]’c

)
17'k

JJk+d

and Aj = Zk 1

The asymptotic optimality of the power allocation of The-
orem 6 is confirmed as follows:

Corollary 5. Under Assumptions 1, 2 and 4, if perfect
knowledge of the channel is available, i.e., 15, = 0 VI, j,k,
then the duality gap between (11) and (13) is zero, i.e.,

(ScBF) (ScBF)
NZklg _NZkl ik ?k'
Proof: The proof is sketched in Appendix G. [ ]

D. A simple case study

We now consider a simple case study that allows to easily
confirm some of the insights observed above (and to get
further ones). In particular, we consider a two-cell network,
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Fig. 1. Graphical representation of a simple two-cell network with one UE
per cell such that di11 = d211 = d221 = d and d121 = ad with a < 1.

i.e., L = 2, wherein a single UE is active in each cell K =1
with v11 = 722 = 7. We assume also for simplicity that
the network exhibits some symmetry (as shown in Fig. 1).
In particular, we assume that UE in cell 1 is positioned at the
same distance from BS 1 and 2 such that di11 = d211 = d
whereas UE in cell 2 is such that doo; = d and d197 = ad with
d being the resulting path loss and oz < 1. With ScBF, we have

ot )\ngBF) _ /\SCBF) _ 1'y withg =¢ = ¢ = 1_Nm
In the CoBF case, it turns out that A{{"" = ara and
)\g?oBF) — 7]1_2% with (from (18))
1 5 ~ 1~
i, 1 56
m N<1+7 §+7) CNEe
L[ v v -
=1-=|—+ NI,
2 N<1+'7 %-FV) N%-i—’? >

where we have defined n = n2/7;. Since a < 1, it easily
follows (by contradiction) that ; must be larger than 7y such
that A\;1 < A21. As intuitively expected, higher priority is given
to cell 2 since it creates higher interference than cell 1 due to
the shorter relative strength. As for the CoMP, it turns out that
€1 =d/2 (u1 + pe) and €3 = d/2 (ap1 + p2) from which one
gets A\ = 1+#2% and \y = mg Since @ < 1, then
Ay > Aj. Therefore higher priority is given to user 2, as it
should since BS 1 is located further away from user 2. If a
symmetric network is considered such that for example oo = 1,
then it turns out that 73 = 2 = n withn =1 — N% and
that €1 = 5 = d/2 (,Ltl + 'LLQ)

From Lemma 6, the maximum value of imperfect CSI in
the ScBF configuration is found to be:

1/2
1- 1 ( + 1)
ScBF 1+
e = — (58)
T N1+
1 1 ( 0l _|_ 1/2
ScBF TN\ T+ O‘)
o) = — (59)
N 14~

from which, since o < 1, it follows that (as it shou(lg 2% )due

to the higher interference experienced by cell 1) 71, * <
éf,‘l:ﬁf). Moreover, from Lemma 2 we obtain
~1/2
(©oBF) _ |1 2y 60)
1,max

-1/2
1
Co N7 (1 + CY)

2(,m£<F): 1 + = n\2, v (61)

1o (o alba)+a

N 14+~ N (1+'Y£ )2
with l(ifﬁF) < Q(iiff) as it follows from standard analysis
taking into account that 7 < 1 and o < 1. Finally, the values
of fcré)a]\f ) and Tz(cr;ii({ ) can be obtained from Lemma 4.

The lack of explicit expressions for {¢;} and {€, , } does not
allow an easy comparison between the two values. However,

numerical results can be used to confirm the intuition that
(CoMP) (CoMP)

1,max 2, max

E. On the limiting case N — oo and K/N — 0

We now look at the limiting case in which N — oo and
K/N — 0. The following results are easily obtained from the
asymptotic analysis above:

Corollary 6. If N — oo with K/N — 0, then ¥%, = hyy
and

2
_(CoBF) o Vik
D = —_— (62)
7 1= 72 djji
Also, we have that P(COBF) — 0 such that
—(CoBF)
NP 63
P ) DA RS

=1 i=1

Proof: The proof follows from Theorems 1 and 2 ob-

serving that if N — oo such that /N — 0, then n; — 1,

—(COBF) K )\(COBF)
Ajk = Yik/djjk Zl 1 i thlhjlz — 0.
Also, [I'];; — 1 and [F];; — 0 Vy,l [

Corollary 7. If N — oo with K/N — 0, then Vi = hy, and

2
_(CoMP) O

)

k

% — . (64)
1—7 L
P LS d,
=1
Also, we have that P;COMP) — 0 with
—(CoMP) LL 52 Vi
NP => =7 (65)

k=1

ok > dig
=1

Proof: The proof follows from Theorems 3 and 4. If

N — oo and K/N — 0, then 1y — 1, €, — + 30 dy,
~(CoMP) _ A<coMP) o
)‘k k/( Zl 1dlk) and Z hihi — 0.

Also, Qf — 0 since z;, — 0. [ |

Corollary 8. If N — oo with K/N — 0, then ScBF boils
down to CoBF.

The above corollaries state that, if N grows unbounded,
the precoder for power minimization reduces to the maximum
ratio transmit (MRT) scheme for all network configurations.
Moreover, it turns out that the power required by all schemes
to meet the constraints {~;;; V!, i} (or, equivalently, {~x;Vk}
for CoMP) vanishes inversely proportional to 1/N. Moreover,
the following result holds true:



Lemma 8. If L > 2, N — oo and K is kept fixed, then

—(CoMP) —(CoBF) —(ScBF)

NP, < NPy = NP} (66)

Proof: Extending to CoMP the double index no-
tation used for CoBF, (65) becomes N ﬁ(TCOMP) =
ZzL:1 Zfil %ﬁ from which the result follows

Wi 2aj=1 %jli

since Zle dji; > dy; when L > 2. [ ]

The above result states that the total power consumption
decreases faster for CoMP than for CoBF or ScBF, meaning
that a fully-cooperative system provides potential advantages
for power saving. Also, ScBF performs as CoBF when the
number N of antennas grows very large. Consider for example
a system in which v;;; = v and 7;; = 7 VI, ¢ and, thus, v, = v
and 7, = 7 Vk. Assume also that d;; = d Vj,1,4. In these
circumstances, as N grows we obtain

2

—(CoBF) _  —=(ScBF) _ o’ 5
NPy P = NPET — k1T )
2
—(CoMP) o z
NP - K72 (68)

from which it follows that a power saving of 10log L dB
is achieved with CoMP in this particular setting. This can
be potentially used to reduce the number of antennas by a
factor L. The above results are only apparently in contrast to
those in [23] wherein it is shown that a CoBF system provides
considerable performance improvement (under a wide range of
utility functions) as compared to CoMP. Indeed, the results of
[23] are obtained under the assumption that the same number
of spatial degrees of freedom per UE is provided by each
network configuration. This would amount to assuming that
each BS in the CoBF and ScBF settings is equipped with
N L antennas instead of /N. Under this assumption, our results
corroborate those in [23]. However, this would require to
increase the number of antennas per BS by a factor L for
CoBF and ScBF.

IV. NUMERICAL RESULTS

Monte-Carlo (MC) simulations are now used to validate the
above asymptotic analysis for a network with finite size. The
results are obtained for 1000 different channel realizations and
UE distributions. We consider a multi-cell network composed
of L square cells distributed in a square region of side length
500 m. Following [12], the path loss function dj;;, is obtained
as dijr, = 2Lz(1+ Hxljk||"“/T"“)_1 where x;;;, € R? is the
position of user k in cell j with respect to BS [, k > 2
is the path loss exponent, T > 0 is some cut-off parameter
and Lz is a constant that regulates the attenuation at distance
z. We assume that kK = 3.5 and Lz = —86.5 dB [12].
Similarly, we have that dj; = 2Lz (1 + ||xjk||ﬁ/§5)*1 with
x;i being the position of UE k with respect to BS j. The
transmission bandwidth is W = 10 MHz and the total noise
power Wo? is —104 dBm. Unless otherwise specified, in the
subsequent simulations we assume that the same data rate must
be guaranteed to each UE. Moreover, we assume that K = §,
N = 32 and impose the same quality of channel estimate for
each UE, i.e., 7y; = 7 Vi, 1.
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Fig. 2. Average transmit power in Watt vs. target rate when L =4, K =8
and N = 32.
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Fig. 3. Average transmit power in Watt vs. target rate when L = 16, K = 8
and N = 32.

Fig. 2 illustrates the average transmit power in Watt vs.
target rate in bps/Hz/UE when L = 4. Markers are obtained
using the asymptotic analysis whereas the error bars indicate
the standard deviation of the MC results. Clearly, 72 = 0
corresponds to the perfect CSI case. As expected, the higher
power consumption is required by ScBF due to the lack of
cooperation among BSs. Compared to CoMP, a slight increase
of power is required by CoBF. As seen, the approximation lies
roughly within one standard deviation of the MC simulations
and thus we may conclude that the large system analysis is
accurate even for networks of finite size.

We now investigate the performance of the different
schemes when the network becomes denser. To this end, Fig.
3 plots the average transmit power in Watt vs. target rate when
L = 16 such that the total number of UEs in the network is
KL = 128. Similar conclusions as for Fig. 2 can be drawn
with the only difference that the average transmit power for
target rates up to 2.5 bps/Hz/UE is smaller for all schemes
due to the shorter distances of UEs from their serving BSs. A
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Fig. 4. Average transmit power in Watt vs. 72 when L = 4, K = 8 N = 32
and r = 2 [bps/Hz/UE].
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Fig. 5. Average transmit power in Watt vs. 72 when L = 16, K = 8, N =
32 and r = 2 [bps/Hz/UE].

larger gap between CoBF and CoMP is observed compared
to the results of Fig. 2. This means that full cooperation
is beneficial as the network becomes denser. This is true
especially when imperfect CSI is available and high target
rates must be ensured as it can be deducted by the rapid
increase of the transmit power for CoBF when 72 = 0.1 and
r > 3. Moreover, it can be seen that ScBF cannot support
target rates beyond 3.5 and 3 [bps/Hz/UE] for 72 = 0 and
72 = 0.1, respectively.

Figs. 4 and 5 plot the average transmit power in Watt
vs. accuracy of CSI when the target rate for all UEs is 2
bps/Hz/UE. As expected, the average transmit power increases
as 7 becomes larger and the CoMP technology provides more
robustness to imperfect CSI compared to CoBF and ScBF.
This holds true also for larger values of target rates.

Fig. 6 plots the average transmit power in Watt vs. N when
K = 8 and L = 16. The label I-CSI refers to the imperfect
CSI case. The values of {77;;Vl,i} and {r;Vl,i} are ran-
domly taken in the intervals [0.01,0.1] and [1, 3] bps/Hz/UE,
respectively. As expected, the average transmit power of all
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Fig. 6. Average transmit power in Watt vs. N when L = 16, K = 8 and
the rates are randomly taken in the interval [1, 3].

schemes decreases as [NV grows large but, for a given N, CoMP
requires much less power compared to CoBF and ScBF. The
latter perform almost the same as N is large enough.

V. CONCLUSIONS

In this work, we analyzed the structure of the optimal
linear precoder for minimizing the total transmit power when
different degrees of cooperation among BSs are considered:
single cell processing, coordinated beamforming and coordi-
nated multi-point processing. Stating and proving new results
from large-scale random matrix theory allowed us to give con-
cise approximations of the Lagrange multipliers, the powers
needed to ensure target rates and the total transmit power.
Such approximations turned out to depend only on the long-
term channel attenuations of the UEs, the relative strength of
interference among BSs, the target rates and the quality of
the channel estimates. Numerical results indicated that these
approximations are very accurate even for small system dimen-
sions. Applied to practical networks, such results may lead to
important insights into the system behavior, especially with
respect to target rates, CSI quality and induced interference.
Moreover, they can be used to simulate the network behavior
without to carry out extensive Monte-Carlo simulations. It
is worth observing that the asymptotic analysis provided in
this article could potentially be extended to more advanced
channel models to account for example for the correlation
among BS antennas [11] and/or for the presence of line of
sight components [24], [25]. All this is left for future work.

APPENDIX A
PROOF OF THEOREM 1

Let us first provide some intuition on the main result. To
this end, apply the matrix inversion lemma [26] to rewrite (15)
as follows

-1

hjjk. (69)

- 1~ 1 ~ -
gk (L)#(i k)



Assume erroneously for a moment that the scalars {\};} are
given and independent from the channel vectors {ﬁjlz} Then,
using classical random matrix theory results such as those in
[11, Lemmas 4 and 5] yields

d,,k 1 L K R N —1
= %tf <N 0D Ahuhll + IN) NG

=1 i=1

ik
N

Using [11, Theorem 1] we have that

-1
nhjhl 4 IN> =5 (7D
where the coefficients {773*} are solutions of the following

system of equations
-1
+ 1) . (72)

From the above discussion, we may then expect the terms A7,

to be all close to A}, = = m for N, K large enough. ThlS
n; djj

statement is made rigorous in the following. To this end, let
us define

L K
)\lzdﬂll

= <N 22 T + Ndjin’

=1 1i=1

~(CoBF)
A 1
ik ik
Cjk = — = 5 (73)
! /\jk djjkn; )\;k
where the coefficients {7;} are such that:
L K (CoBF) -1
A djii
Z o B 4
~(CoBF)
N ST 1+ djiin;

From (69), using (73) one gets
-1

1 i
N Z Cl d]lz JliZ 711 +IN Zjjk (75)
(1,)#(5,k)

1 Z2H

VjkCik
3 N Zjjk

Ajkdjjk

where the superscript (C°MP) is omitted for simplicity. As-
sume that {c;,} are well defined, positive and such that
0<cn<c <~ <axg <cop < <o <o <
- < cp1 < cr2 < -+ < cpk. Then, using monotonicity
arguments, from (75) it follows that for j = L and k = K we

have
'YL_K 1 < 1

H
— — B
Ao AL~ N LLE

v (cnk)zrrk. (76)

with Bk(CLK) = % Z(M)#(LK) )\lidjlizjlizﬁi + crxln.
Assume now that ¢ i is infinitely often larger than 1+ ¢ with
¢ > 0 some positive value [17]. Let us restrict ourselves to
such a subsequence. From (76), using monotonicity arguments
we obtain

1 _
nfﬁ < kB U+ Ozene. (T)
Applying [11, Theorem 1] one gets
1 _
NZgLKBkl(l'f'é)zLLK XGL(K) (78)
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with e;(¢) being the unique positive solution to

-1
1 )\l’L jli
H=|= ¢ +14£) . (79
) <N;;1+/\lz _]lz (f) ) ( )
From (78) recalling (77) yields limg_,oinfer(f) >
ZLK

v dLLK Using the fact that e, (0) = nz, and that ey, (¢) is
a Jécreasmg function of /, it can be proved [17] that for any
¢ >0 limg_,oosuper(f) < zi’; 7.~ This however goes
against the former condition and creates a contradiction on the
initial hypothesis that ¢y x > 1+ ¢ infinitely often. Therefore,
we must admit that cpx < 1 + £ for all large values of K.
Reverting all inequalities and using similar arguments yields
cr1 > 1 — /¢ for all large values of K. Putting all these results
together yields 1 — ¢ < cp1 <cpo < -+ <cpg <1+¢ from
which we may write maxy—12,... k |cLr — 1| < £ for all large
values of K [17]. Taking a countable sequence of ¢ going to
zero, we eventually obtain maxg—12,. . x |cLr — 1] — 0 from

which using (73) and assuming that lim g, o sup d’YLLka < 00
(CoBF)

it follows that maxy—; 2 .. K |)\Lk /\L,C
B L i Foll th teps for j =
Lk s ar=. Fo owing the same steps for j =

1,2,...,L — 1 completes the proof.

| — 0 with

APPENDIX B
PROOF OF LEMMA 1

To begin with, rewrite the numerator of the SINR in (22)
as follows

-2
* 11.H
Djk ‘hnkvﬂc —» ‘NhJJkA by (80)
2~ ik N
N ||ij|| + hﬁkAQh ik
with f& = ( ZéL 125; Xlihjlihﬁi + In)~! where we

have replaced /\ (GoBE) _ le- for notational simplicity. Ap-

plying the matrlx inversion lemma first [26] and then using
(14) we have that the numerator in the right-hand-side of the
above equation takes the form:

- JJkA hnk = % fjkhgkA[ ]hﬂk

N 14 —AjkhmA[ "y
Nriachll AT q

1+ & Ash AVFR,

81)

-1

where A; = (% SEYE Xliﬁjlii'\lﬁi + IN) and

-1

Z Xliﬁjliﬂﬁi +1In
(1,8)#(4,k)

According to [11, Lemmas 4 and 5] and the results
of Appendlx A as well as Theorem 1 1t follows that

k
1h§§kAﬂ Thy = digeny. 23eh, AR = ) and

+ hﬁkA IM ¢ = 0. Therefore, we have that

sy 1
AVM = = (82)

gik i

~ T d
Nh”kAjhjjk = 1— 727k1+

(83)



We proceed to computing the deterministic approximation of
+ hJ 7 kA h;;; in the denominator of the right-hand-side of
(80) Observe that applying the matrix inversion lemma [26]
and using [11, Lemma 4] together with the results of Theorem

1 (such that v;, = Ajrd;;,n;) one obtain
djjktr(ﬁf)
(A +70)?

with Ltr(A2) = L2 tr(A;" — 2Iy)~"|.—o [2. Theorem 4].
Using similar arguments as those of Appendix A, we have that

1~ o
ATy = (84)

1 “ -1
b (Aj 1 ZIN) = (%) (85)
. Tii z 1
with 7;(z) = ( Zz 1 Z 1+L Ld”;zlmn(]gz‘)' +1- Z) . By
Ydy m(2)
differentiating along z, we get e
1 L K ( djii )2 né(z)
7’ d 7 z
() =n=) | 522D w) | (86)

l:l i=1

1i M5 (2)
(1 i diz UZ(Z))
from which setting z = 0 and using simple calculus one obtain
(omitting the functional dependence from z = 0)

A U
n = ’ 87)
: L (o e 12)”
_ 1 Z Z “dii m
N st (1 ”TLJ)
dii m
Therefore, %tr(@f) = 1 such that NthA hjj, =
dukm

G LR Putting this result together with (83) we have that:

pik M5 Vi®
N [[VEIP

2
(e )
(1 4 Jl’L nj )2
VG, my
We now deal with the intracell interference term in the
denominator of (22), which can be rewritten as

S

=1 1i=1

pirdijr (1 =755

Z sz j]kV;z|2 _
i NVl
1 ~ G~ -~
NhgkA (NH“’“]PBJ’“]HW]H) Ajhjj. (88)
Sk A =~ =~ =~
with ngk] = [hjjla-A~-ahjj(kq),hjj(kﬂ),-'-hij] €
NxK-1 [7k] A : Pj1 Pik—1)
C and P; = dlag{%\\éj-l\\z"” T T
Pj(k+1) Dj

ye 25— }. In order to eliminate the depen-
IR TR

dence between hﬂk and AJ, rewrite (88) as

thA <NHBW]PMHM )thjjk
NhﬁkA[’k] (NH[Jk]P[Jk]HDk] >gjhjjk+

n (& - AE?”“)(%I&W pit ﬁg?”“]H) Ahy. (89)
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Using the resolvent identity Aj - f&gjk] = —Kj(Aj_l —
NGERYNA :
A; )Aj [26] and observing that

o1 AW _ Ak H H

A - A = W(Cohﬂkhm + 105k

+02hjjkqgk + cQijkhﬁk) (90)

: 1 _ 2 _ .2 — ]
with ¢g = 1 Tk C1 = Tk and co = Tk, /1 — Hk,from

(89) one gets

NhnkA (NH[W]P[W]H[J’C] );&jhjjk
1

1 1
NhJJkB hjj, — )\JkCONhJJkA hyji NhJJkB b —
1 ~ 1
= Ajkea A qujkthjjk
| . 1. o~
- )\jkc2ﬁhgkqujjk Nhﬁkthjjk On

where we have defined B = A“k]( L H[Jk]P[Jk]HW] )AJ.

1 -
Usmgﬁ [11, Lemma 7] we obtain that Nhgng hj; =<
u (I4+Xjkciu) 1 (1+>\chlu) 1
1+>\Jku ? NhJJkA hﬂﬂk T 1 u hggkAJqJJk -
7)\chzu 7Xjkczuu

T and qujkthjj]g = where we have

defined, for notational convenience,

_ ik (ALK
= Ly (AUH) +o(1)

1+Xjku

92)

o= ik (NPE;;@]Hg_gk]A&m]zngk]H) roll). ©3)

N

Using the above results, (91) can be approximated as
LuE A (LUHpUHELINT Y A . =
N Akt \ N S i5aik =

w (14 Ajprsw) 3 1-72

El Ik ! (94)
1+ Ajru

jh—— "5 Ul

(1+Njpu)”

or, equivalently, after simple calculus

1 ~1s G~ H Y\ ~

H ikl p [ik] £y [i¥] -

thAj (NH; Pl D )Ajhjjk =
L =75 [1 - (1 +Xjku)2}

— o' 95)
(1+ )\jk’u)z

Notice that u in (92) is such that u =< djTj’“nj (as it follows
from Theorem 1) while the deterministic approximation of u’
is computed as follows. Observe that

1 (1 Gk ~ 02 e
L <NPE-J’”HE‘-”“]HAU’“VHW> -

N
Lo BRA b WA B (96)
EY: Dji
N i=1,i#j ~ hﬁkAthk

from which using [11, Lemmas 4, 5 and 6] one gets
1hH A[Jk] h”z 1 K

3 2o
i=1

pi JJje ~
Z JTITH A2
i=1,i#j hnkA hm

o7)



Plugging the above result into (93) produces u' =

djjn(+ Z pji)- Therefore, recalling (46) we have that

1 ~
LA, ( fUHplH UM )Ajhjjk g
1—7'ij [1 (1—|—%;C }

We are left with computing the deterministic equlvalent of the
intercell interference generated to user £ in cell j by all other
UEs in cell [ VI # j:

Z plz

. S 0A
with H; = [hll17 ..
diag{ —2L— ...
WHVUH
above one gets

djjk

Vil 1, (1)~
|lik* Hl = NhgkAl <NH1P1HF) Aihyj (99)
a

EllK] € CN*KE and P;

}. Mimicking the same steps of

T xlv LKII2

1 ~ A 1a o ap) ~
NhfjkAl (NHlPlH{{) Ajhy =
1— Tl2jk [1 — (1 +Xjku)2}

(1+ Xjpu)”

where we have that v = lejktr(AW]) + o(1) and v’ =
~ AN[51]2 -~

lejktr(%PlHlHAyk] H,) + o(1). Observe now that u =

dijm and u' =< lej’“ Zfil py;. Putting these results together

and recalling (16) we eventually obtain

u' (100)

1 ~ ~ —~
Nh“,cAl <NHlPleI) Ay <

) 2

1— 77 [1 — (1+7jk—jj_j_ig—;) } |

diji — ~ 2 pi |- (0D
(1 + Yk m) i=1

Putting all the above results together completes the proof.

APPENDIX C
PROOF OF THEOREM 2

From (23), omitting the superscript (C°BF) it follows that
the power P, such that SINR ;. = v, is obtained as:

B Gk
.2
Tjjk)

with 7/ given by (87). Plugging the above result into P; =

(Lix +0?) (102)

% Y ket D1, and observing that Tjk = Zle ﬁljkﬁl it follows
that the values { P; } must satisfy the following set of equations

14

where b; and [F|;; are given by (25) and (27). Rewriting the
above set of equations in matrix form yields (T' — F) P = 02b
with I diagonal and given by (26). Using [22, Theorem 2.1],
a necessary and sufficient condition for a solution P>0to
exist is that the spectral radius of I'"'F is smaller than 1. The
asymptotic approximation of the total transmit power easily
follows taklng 1nt0 account that the transmit power of BS j is
given by + ~ Zk 1 Pji = P This completes the proof.

APPENDIX D
PROOF OF COROLLARY 3
. .. —(CoBF)
We begin by rewriting (I' — F)P
A_l (F _ F) F(COBF)
with [A];; = m and a € CF with ¢; =
Then, we have that

o%b as

= o%a where A € (CLXL is d1agonal
(CoBF)

N Zz 1)\lz

T a1 (CoBF 1 & —(CoBF) 4
1A' (C-F)P ZZ)\“ o2
l:l i=1

(104)

Observe now that the jth entry of the row vector
1"A~1 (T — F) is equal to unity Vj:

[1TA-1 (T - F)} -

J

(a)ﬁ_ii d]lz nj 1
n; N ;; “dui m (1+ djus m)z
gy, m
L K 1i 1M
IS ot B
" Nl 1 =1 1+’ledzllni

where (a) follows from (24) — (27). The expression in (b) is
obtained taking into account (87) whereas (c¢) follows from
(18). Plugging the above result into (104) yields the statement

of the corollary since the transmit power of BS j is given by
p(CoBF) _ Z CoBF)
7 - N k=1P ik
APPENDIX E
PROOF OF THEOREM 3

As done for proving Theorem 1. Assume erroneously for
a moment that {\’} are given and independent from {hl}
Then, applying [11 Theorem 1] to (33) we conjecture that

the ratio 7, = g = 2 Al* is equal to unity with €,

being the solution of the followmg set of equations:

Z i =

0; i
= (NL Z € 1::')/

tr (©,T) (105)

with T =

matrix inversion lemma and (32) one gets

+ Inz)~!. From (33), using the

1 1/2H
- — e
YTk = NL k

1 ; -1 _
(ﬁ > r@iﬂzizlﬂ@i/w + INL) ©,’z X (106)

where the superscript (C°MP) is omitted for simplicity. As-
sume that 0 < r) <7y < --- < rgp and that gy, is infinitely



often larger than 1 + /. Let us restrict ourselves to such a
subsequence. From (106), replacing r; with 77 and using
monotonicity arguments we obtain

H

YL < NLZ%LG%E B, (00} 2, k1 (107)

with
1 _
Bil(l) = 7 > 2022270 4 (14 0Ly,
£k

Applying [11, Theorem 1] yields

1

NLZKL@”2 B, (0O} 2, Mk = prr(f)  (108)

with pgr(¢) being the unique positive solution to pg(¢) =
7 tr (©,T(¢)) with
KL XlG)l

1 —1
NL;1+/\ipi(£) 1+4 NL)

() = (
The proof proceeds as in Appendix A. Omitting the details,
we eventually obtain that 1 — ¢ < rxp < 1 + ¢ from
which we may write max |rxy, — 1| < £ for all large values
of KL [17]. Taking a countable sequence of ¢ going to

zero yields max|rgr — 1| — 0 from which using rx; =
AL

and assuming limgy ,ooSUpyxL < 00 we obtain

—Akz| = 0 with Agp = ZEL. Following the
same steps for k =1,..., KL — 1 yields the desired result.

'YKL

APPENDIX F
PROOF OF LEMMA 3

We begin by computing the deterministic equivalent of
the interference term of (37). This will be instrumental to
obtain the deterministic equivalent of the useful signal power.
We start rewrmng the denominator of SINRj in (37) as

Zfiﬁ#kpz‘ﬁix‘l = & hHA( 1 H[k]P[k]H[k]H)Ahk

wih & — (s SERREE + Lyl AW 2
[ﬁl,.. flk 1,flk+1,...,f1}(] S (CNX(K*D and P[k] é
Pk—1 Pk+1 PK
diag{ e iR Tl W e
Then, mlmlckmg the derivations for CoBF, we have that
1 ~ ~ o H D\
—hHA — HHMPHHMK" ) An, <
NL <NL ¥
— \2
1—7,3 [1— (1+/\ku) ] )
— u (109)
(1+)\ku)
where u = rtr(©,AM) + o(1) and W =
Ltr(< PWMH TN O, AMHM") 4+ (1) with

N (g SEL b 4+ Ty,)~!. Observe that
u =< € (as it follows from Theorem 3) whereas the
deterministic egulvalent of u' is obtained as follows. Rewrite
1 (s 1 P[k]H[k]A[k]@kA[k]H[k] ) as

(110)

15

Then, observe that

- hHA Ah ~
Nth A©,AD; = — . ar
1+ gt (@A)
To compute ~rtr(@;A@,A), we may write

Lir(@A0A) = L 2u(©;(A ! - 20;) )|z

Observe now that [11, Theorem 1]

Ly (@i (A - z@k)‘l> = einl2)

7t (©;Ty(z)) and

(112)

where €;;(z) is given by e;(z) =
Ty (z) is computed as

KL - -1
1 PN C

T = — —_— +1 — 20 . (113

k(2) <NL1;1+)\nenk(z) NL — % k) (113)

By differentiating along z, we have €, (2) = zrtr (©;T)(2))
where T (z) = oTi(2)

=== s given by Ti.(z) =
KL Xie :
T1u(2)(§1 Lot ﬁ + ©)Tk(2). Setting z = 0
yields

1

= <7t (O:T}(0)

(114)

where

T}, (0) ®k> T. (115)

/
(NL; n nk

In writing the above result, we have taken into account that
T = Tx(0), enr(0) = §£tr (©,Tx(0)) = §rtr (©,T) =
€, and v, = A\,€,. Plugging (115) into (114) and neglecting

the functional dependence from z = 0, €}, = [€}4, - - -, €51l T
is found as the unique solution of:
1 1 e 0,
€, = —=tr | ©,T "7]“ +0O, | T
"NL < <NL (1 +n)2
1
= —tr(0,TO,T
N ¢T)
KL <2
1 Aene 1
— %—t 0,TO,T 116

Observing that w7tr(©,TO,T) = %(Zle didipp?) we

may rewrite the above system of equations in compact form

as €, = (Ixr -t c,, with ¢; and J being defined in

the text (see (38)). On the basis of above results, using
L Atr(©;A) < 7;, we eventually obtain that

!
! RHA®,AR, = ik

; — . 117)
NL (1+%)°
Following similar arguments of above yields
1 ~pyaon €
—hTA%h; =< i (118)
NL (1+7)°



with € = [¢;,...,ex )7 = (Ixkz —J) "' ¢ where ¢ € CKE
L

has elements [c]; = + > dy;pf. Putting the results in (117)

3

=1
and (118) together, we have that

KL 1 THA KL
1 —~ —~ ep—— 7 7
N i=1,i#k Nthf{A2h NL i=1,i#k (

The deterministic equivalent of the numerator of the SINR in
(37) is now easily obtained as

1 hH k|2

ki

: 1 WHS, — 1 WHA2R o
since —h = 1 TkH_W and NLhkAhk =
€k
(14k)?"
APPENDIX G

PROOF OF COROLLARY 5

To begin with, we use (46) and (48) to rewrite (51) as
follows

D =2
ajkPj +07,

Pk = AikSi —— 2 (121)
- N &= ()7
where 7%, = Y| .. dijx P +0? and the superscript (S¢5F)

has been omitted for simplicity. Plugging the above expression
into P; = % ZkK:lﬁjk and solving with respect to P; one
obtain
2
1— LS8
P N 21:1 (45:)*
S

K

E JkO‘JJk

(122)

2 ik
k=1

Replacing «;;, with its expression in (48) and recalling (46),
it follows that (after simple calculus)

'sz K
N Zz_l (T7;0)7 1 -
Nigoiip = 1.
S N ;:1 jkQjjk

(123)
Plugging the above result into (122) completes the proof.
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