Structure and Stability of the One-Dimensional Mapper

Mathieu Carriere 1 Steve Y. Oudot 1
1 DATASHAPE - Understanding the Shape of Data
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : Given a continuous function f : X → R and a cover I of its image by intervals, the Mapper is the nerve of a refinement of the pullback cover f −1 (I). Despite its success in applications, little is known about the structure and stability of this construction from a theoretical point of view. As a pixelized version of the Reeb graph of f , it is expected to capture a subset of its features (branches, holes), depending on how the interval cover is positioned with respect to the critical values of the function. Its stability should also depend on this positioning. We propose a theoretical framework that relates the structure of the Mapper to the one of the Reeb graph, making it possible to predict which features will be present and which will be absent in the Mapper given the function and the cover, and for each feature, to quantify its degree of (instability y. Using this framework, we can derive guarantees on the structure of the Mapper, on its stability, and on its convergence to the Reeb graph as the granularity of the cover I goes to zero.
Type de document :
Article dans une revue
Foundations of Computational Mathematics, Springer Verlag, 2017, pp.1-64. 〈10.1007/s10208-017-9370-z〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger
Contributeur : Mathieu Carriere <>
Soumis le : lundi 13 novembre 2017 - 09:44:54
Dernière modification le : samedi 27 janvier 2018 - 01:32:01
Document(s) archivé(s) le : mercredi 14 février 2018 - 12:20:28


Fichiers produits par l'(les) auteur(s)



Mathieu Carriere, Steve Y. Oudot. Structure and Stability of the One-Dimensional Mapper. Foundations of Computational Mathematics, Springer Verlag, 2017, pp.1-64. 〈10.1007/s10208-017-9370-z〉. 〈hal-01633101〉



Consultations de la notice


Téléchargements de fichiers