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Abstract

Contagion Analysis in the Banking Sector

This paper analyses how an external adverse shock will impact the financial situa-

tions of banks and insurance companies and how it will diffuse among these compa-

nies. In particular we explain how to disentangle the direct and indirect (contagion)

effects of such a shock, how to exhibit the contagion network and how to detect the

”superspreaders”, i.e. the most important firms involved in the contagion process.

This method is applied to a network of 8 large European banks in order to analyze

whether the revealed interconnections within these banks differ depending on the

underlying measure of banks’ financial positions, namely their market capitalization,

the price of the CDS contract written on their default and their book value.

Keywords: Contagion, Systemic Risk, Default Dependence, Credit Default Swaps,

Canonical Correlation.

EFM Classification codes: 510, 520.
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1 Introduction

The new regulation on financial stability lists global systematically important finan-

cial institutions (G-SIFIs), which have to comply with specific regulatory require-

ments. One of the criteria for a bank to be identified as systematically important

is its interconnectedness. In this respect our paper studies how an external adverse

shock will impact the financial situations of the banks and insurance companies and

how it will diffuse among these companies. In particular we explain how to disen-

tangle the direct and indirect (contagion) effects of such a shock, how to exhibit

the contagion network and how to detect the most important firms involved in the

contagion process, that are the ”superspreaders”, especially the institutions, which

are ”too interconnected to fail”.

Such an analysis depends crucially on the way the financial situation of a bank or

an insurance company is measured. In the academic literature as well as in the

approaches used to implement Basel regulation, this financial situation is analyzed

in three alternative ways:

i) by considering the balance sheets of the firms and typically their (accounting)

equity value defined as the difference between their assets and their liabilities

in the firm’s book;

ii) by analyzing their market values when they are quoted on a stock exchange;

iii) by focusing on the information on their potential defaults by means of the prices

of their issued bonds, or of the associated Credit Default Swaps (CDS)4.

There exist links between these three approaches which have been first mentioned

by Merton [Merton (1974)]. Let us denote Vt = At − Lt the value of the firm

at date t, where At and Lt are the asset and liability components of the balance

4The bond and credit derivative markets are highly dependent, since there exists a relation
between the CDS spread and the spread of a bond, at least theoretically [see e.g. the analysis for
European Sovereign debts in Delatte et al. (2012)].
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sheet, respectively. Then, under standard regularity conditions, the firm’s market

capitalization (or market value) at date t is equal to:

Capt =
1

1 + rt
EQ

t

(
V +
t+1

)
=

1

1 + rt
EQ

t

[
(At+1 − Lt+1)+] , ∀t, (1.1)

and the price of the short-term digital CDS which protects the CDS’s holder from

a firm’s default over the next period of time is:

CDSt =
1

1 + rt
Qt (Vt+1 < 0) =

1

1 + rt
Qt (At+1 < Lt+1) ,∀t, (1.2)

where rt is the short term riskfree rate, Qt the risk-neutral distribution conditional

on the information available at date t, V + = max(V, 0), and EQ
t the expectation

with respect to Qt. Equation (1.1) corresponds to the Merton’s interpretation of a

stock as a European call written on the asset component with a strike equal to the

liability.

The capitalization, the book value of the firm and a CDS price are different notions as

are also their rates of change. Typically the stock return
Capt+1

Capt
−1 differs from Vt+1

Vt
−

1, and from CDSt+1

CDSt
− 1. To better understand these differences, let us assume a zero

riskfree rate rt = 0, a risk-neutral distribution equal to the historical distribution

and a value of the firm which can be decomposed as:

Vt+1 = µt + σtut+1,∀t, (1.3)

where the shocks ut+1 are independent standard normal variables ∀ t, µt, σt the

conditional mean and standard error, respectively. Then we get:

Vt+1

Vt
= [TBC], (1.4)

Capt+1

Capt

= [TBC], (1.5)

CDSt+1

CDSt

= [TBC], (1.6)

(1.7)
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where ψ(u) = uΦ(u) + ϕ(u), and ϕ,Φ are the probability and cumulative density

functions of the standard normal, respectively. This simplified example shows clearly

that the three notions capture the first and second-order conditional moments of the

underlying risks in the balance sheet in different ways. The CDS price depends on

the mean/standard error ratio only after a nonlinear transform, the capitalization on

mean and standard error in a more complicated way, while the ex-post observation

Vt+1 involves an additional stochastic shock ut+1.

The aim of our paper is to compare the analysis of contagion based on the rate

of changes on the value of the firm, on the capitalization and on the transformed

(or standardized) CDS price5 Φ−1(CDSt), respectively. In Section 2 we introduce a

linear dynamic model for a joint analysis of rates of changes for several firms. This

model allows both for common unobservable exogenous shocks and for contagion

phenomena. We study the second-order properties of such models. We develop

in Section 3 an approach to estimate the number of underlying factors and the

sensitivities of the financial situations of the firms to these factors. The approach

is applied to a set of banks and to the three alternative measures of their financial

situations. Section 4 describes different estimation methods of the parameters of

interest including the contagion matrix. We compare the structure of the estimated

contagion matrices according to the selected measures of financial situations. Section

5 concludes. Proofs and additional informations are gathered in Appendices.

2 Dynamic factor model with dynamic frailty and

contagion

2.1 The model

Let us consider n institutions, and stack the variables of interest [which can be

either the rate of change in the book value, in the market capitalization, or in the

standardized digital CDS prices of the credit institutions on period (t − 1, t)] in a

5To ensure a transformed CDS price in the same domain of variation as the capitalization.
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n-dimensional vector Yt. These variables satisfy the following dynamic factor model:
Yt = BFt + CYt−1 + ut,

Ft = ΦFt−1 + vt,

(2.1)

where the error terms ut, vt are zero-mean, serially independent, with second-order

moments :

V (ut) = Σ,V (vt) = Ω, Cov(ut, vt) = 0. (2.2)

Ft gives the values at date t of K unobservable factors, called dynamic frailties in the

credit risk literature [see Duffie, Eckner, Horel, Saita (2009)]. The second subsystem

of (2.1) and the noncorrelation condition (2.2) means that these factors (frailties)

have an exogenous dynamics. The first subsystem shows that the variables of interest

(either the rate of changes on the value of the firm, or on the capitalization, or on

the transformed CDS price) are dynamically dependent through the effects of the

common factors, measured by the (n,K) matrix of beta coefficients, and through

the effects of their lagged value, measured by the (n, n) contagion matrix C. For

expository purpose we have not introduced an intercept in the return (resp. changes

in standardized price) equation. Indeed, whenever the process (Yt) is stationary, this

intercept can be set to zero by considering the demeaned return (or demeaned change

in price) Yt − Ȳ .

We can find in the literature special cases of dynamic model (2.1), with either

common factor only, or contagion only. We review in Table A.1 in Appendix 1 this

literature distinguishing the model with factor only, either observed, or unobserved,

and the models with contagion only. We also mention if they are applied to balance

sheet data, stock data, bond data, or CDS data.

In this paper, we focus on the contagion matrix C for different indicators of in-

stitutions’ financial soundness (i.e. either its book value, its market value, or its

CDS standardized price). We prefer to let unobservable the factors Ft to prevent a

bad selection of observable factors from contaminating the estimation of matrix C.
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Moreover, model (2.1) considers jointly the return and exogenous factor dynamics.

This approach is particularly useful for the purpose of predictions, risk measures,

or stress-tests. Indeed, it takes into account the uncertainty on the future values of

the factors as well as the implied dependence between future returns (resp. changes

in standardized prices) due to the factors6.

As usual the latent factors are defined up to an invertible linear transformation.

Thus we introduce identification restrictions on the parameters.

Proposition 1 (Identification restrictions): Without loss of generality, we can

assume either IR1: Ω = Id, or IR2: B′B = Id, if B is with full column rank K.

Proof : The first identification restriction is obtained by the change of factor F →
QF with Q = Ω−1/2, where Ω−1/2 denotes the inverse of the square root of the

symmetric positive definite matrix Ω. The second identification restriction with

Q = (B′B)−1/2.

QED

The second-identification restriction IR 2 shows that what matters is not the matrix

B itself, but more the vector space spanned by BFt when Ft varies. The condition

B′B = Id means that the columns of B can be chosen as an orthonormal basis of

this vector space with dimension K.

Finally, a significant part of the literature on contagion considers that the returns

are uncorrelated with their own past and analyzes the structure of conditional het-

eroscedasticity. By model (2.1), we follow the opposite approach focusing on the

expression of expected returns and assuming conditional homoscedasticity. In par-

ticular, we expect B and C to be significant. The main reason for this significance is

the specificity of financial institutions. The asset component of their balance sheet

6The literature on factor models considers frequently observable factors, such as for instance
a market return, the inflation rate ... (see Table A.1 in Appendix 1). Observable factors are
often treated in a misleading way, when we are interested in prediction, risk measures, or stress-
tests. Theoretically, the prediction of these future values requires a dynamic model (as the second
subsystem of (2.1)), but very often in practice they are predicted by deterministic scenarios.
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can be seen as portfolios of basic assets. Loosely speaking we have:

At =
J∑

j=1

ajtpjt,

where j is the index of the basic asset, pjt its price, and ajt its quantity. If the

portfolio allocation is crystallized ajt = aj,∀t, and if the returns on the basic asset

are i.i.d, the return on
J∑

j=1

ajpj,t will also be close to i.i.d. But the role of a financial

institution is to update frequently its portfolio with observed prices, that is, the

allocations aj,t are functions of current and past prices. This allocation adjustment

will destroy the i.i.d. property of the changes in asset value, in particular their serial

independence, even if this property is satisfied on the basic assets.

2.2 State space representation

Model (2.1)-(2.2) is a Vector AutoRegressive (VAR) model with partial observability.

This model admits a state space representation. More precisely let us introduce the

state variable Zt = (Y ′t , F
′
t)
′. We have:

State equation:

Zt = ΨZt−1 + wt, (2.3)

where

Ψ =

(
C BΦ

0 Φ

)
, wt =

(
ut +Bvt

vt

)
, V wt =

(
Σ +BΩB′ BΩ

ΩB′ Ω

)
.

Measurement equation:

Yt = (Id, 0)Zt. (2.4)

Thus the linear Kalman filter can be used to compute recursively the linear predic-

tions of future values of Y , the filtered values of the unobservable factors as well as
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the values of a Gaussian pseudo-likelihood function [see e.g. Reinsel (1993), Section

, Gourieroux, Monfort (1997), Section ].

2.3 Second-order properties

By considering the VAR dynamic of state process (Zt), we can deduce its first and

second-order moments (see Appendix 2). In particular, the autocovariance of the

observable process depends on the lag in the way given in Proposition 2.

Proposition 2: The second-order properties of (Yt) are the following:

i) The autocovariance function ΓY (h) of the observable process Y is equal to:

ΓY (h) = Cov(Yt, Yt−h) = ChΓY (0) +DhCov(F, Y ), h ≥ 0,

where Dh =
h−1∑
k=0

(CkBΦh−k) = CDh−1 +BΦh.

ii) The unconditional covariance between the observable process Y and the frailty

Cov(Y, F ) is solution of:

Cov(Y, F ) = CCov(Y, F )Φ′ +BΦV (F )Φ′ +BΩ.

By Proposition 2.i), we get the standard component ChΓY (0) for a VAR dynamic for

the observable process (Yt) with autoregressive matrix C plus the term DhCov(F, Y )

due to the unobservable factor. Dh is a rather complicated function of h. Indeed,

the unobservability of F implies a V AR(∞) dynamic with an infinite autoregressive

lag, when process (Yt) is considered alone.

The unconditional covariance between Y and F is solution of a system of Riccati

equations, which in general has to be solved numerically. As seen below, the different

formulas are greatly simplified for a single factor model.
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2.4 The single factor model

Let us consider the case K = 1 and the model:


Yt = BFt + CYt−1 + ut,

Ft = ϕFt−1 + vt,

(2.5)

where

V (ut) = Σ, V (vt) = ω,Cov(ut, vt) = 0.

We get:

Ψh =

 Ch dh

0 ϕh


where

dh =
h−1∑
k=0

(Ckβϕh−k) = ϕh[
h−1∑
k=0

(C/ϕ)k]B.

We deduce:

dh = ϕh(Id− C/ϕ)−1(Id− Ch/ϕh)B. (2.6)

Then the expressions of the unconditional variances and covariance become:

V (F ) =
w

1− ϕ2
,

Cov(Y, F ) = (Id− ϕC)−1 w

1− ϕ2
β,

V (Y ) = ΓY (0) =
∞∑
h=0

Ch∆Ch′ .
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2.5 Comparing datasets with different frequencies

The indicators of banks’ financial soundness we aim at investigating may not nec-

essarily be available at the same frequency. In particular, indicators based on ac-

counting data are accessible at a lower frequency than the market based ones. To

facilitate the comparison with the analysis on market data, we can consider the daily

model (2.1) for the returns on book values. Due to the state space representation,

the model’s form remain unchanged at lower frequency:
Yt = DhFt + ChYt−h + ut,h,

Ft = ΦhFt−h + vt,h,

say, with h = 60 opening days at quarterly frequency.

3 Estimation of the number of factors and of their

effects

In a static factor model without contagion (C = 0) and no dynamic (ϕ = 0), the

number of factors, the factors and the beta coefficients are usually obtained by

applying a principal component analysis, based on the spectral decomposition of

the historical variance-covariance matrix of the observable variables.

We use a similar approach valid for model (2.1) with both contagion and factor

dynamics. The new approach allows for the estimation of the number of factors and

of the betas, but does not provide approximations of the factor themselves. This

approach is based on the notion of directions immunized to shocks on the factors.

As mentioned in Section 2.1, the possible effects of the factors on the vector of

returns (resp. changes in standardized price) belong to the space E(B) generated

by the columns of matrix B.
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Let us now consider an element γ of the space orthogonal to E(B). We get:

γ′Yt = γ′BFt + γ′CYt−1 + γ′ut = γ′CYt−1 + γ′ut.

These directions define portfolio allocations, which are immunized against the latent

common factors. By considering these directions, we also eliminate the effect on Yt

of lagged values of Y with a lag larger or equal to 2.

Let us now consider the linear regression of γ′Yt on both Yt−1, Yt−2:

γ′Yt = C1(γ)Yt−1 + C2(γ)Yt−2 + ũt, say. (3.1)

The theoretical regression coefficients are:

[C1(γ), C2(γ)] = Cov

[
γYt,

(
Yt−1

Yt−2

)][
V

(
Yt−1

Yt−2

)]−1

= γ [ΓY (1),ΓY (2)]

 ΓY (0) ΓY (1)

ΓY (1)′ ΓY (0)


−1

.

We deduce that:

C2(γ) ≡ γC2,

where C2 = [ΓY (1)− ΓY (2)ΓY (0)−1Γ′Y (1)][ΓY (0)− ΓY (1)ΓY (0)−1ΓY (1)′]−1,

by inverting by blocks.

The matrix C2 is a multivariate partial autocovariance of order 2 [see e.g. Ramsey

(1974)]. Let us now introduce the additional identification condition below.

Identification Restriction IR3: Rank C2 = K.

Then we get the following property.
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Proposition 3: Under the identification restriction IR3 the immunizing vectors

γ ∈ E(B)⊥ are the vectors of the kernel of C2.

Corollary 1: For any positive definite (n, n) matrix S, the matrix C2SC
′
2 admits

exactly n−K eigenvalues equal to zero. A basis of orthonormal eigenvectors of this

matrix is such that the eigenvectors associated with the non zero eigenvalues are

the column vectors of a B matrix , which satisfies BB′ = Id, and the eigenvectors

associated with the zero eigenvalues are immunizing vectors.

We deduce from Corollary 1 consistent estimation methods for the number of factors

K, a matrix B of beta coefficients and a basis of immunizing vectors. They follow

the steps below.

step 1 : Compute the estimated multivariate partial autocovariance of order 2 by

substituting in the expression of C2 the autocovariances by their sample coun-

terparts Ĉ2.

step 2 : Select a metric S and perform the spectral decomposition of Ĉ2SĈ
′
2, with

the eigenvalues written in a decreasing order.

step 3 : Estimate K by the first-order K̂ for which the eigenvalues of Ĉ2SĈ
′
2 are

non significant.

step 4 : Estimate B by considering the first K̂ orthonormal eigenvectors as columns

of B̂.

step 5 : Estimate a basis of immunizing vectors by considering the next n − K̂

orthonormal eigenvectors.

Such an approach is the analogue for Vector Autoregressive process of the analy-

sis of codependence directions introduced for Vector Moving Average processes by

Gourieroux, Peaucelle (1983), (1993)7.

There exist several possible choices of the metric S.

7See also Kugler, Schwendeuer (1992), Engle, Kozicki (1993), Vahid, Engle (1997).
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i) When:

S = Γ̂Y (0)− Γ̂Y (1)Γ̂Y (0)−1Γ̂Y (1)′,

we get:

Ĉ2SĈ
′
2 = [Γ̂Y (1)− Γ̂Y (2)Γ̂Y (0)−1Γ̂′Y (1)][Γ̂Y (0)− Γ̂Y (1)Γ̂Y (0)−1Γ̂Y (1)′]−1

[Γ̂Y (1)′ − Γ̂Y (1)Γ̂Y (0)−1Γ̂Y (2)′],

with a simple interpretation of the test statistics as a multivariate estimated partial

autocorrelation.

ii) It is also possible to choose S in order to get some optimality properties of some

test statistics based on Ĉ2SĈ
′
2, such as the sum of its eigenvalues ξ1 = Tr(Ĉ2SĈ

′
2),

or ξ3 = largest eigenvalue of Ĉ2SĈ
′
2 [see Gourieroux, Monfort, Renault (1999), for

a discussion].

When the identification restriction IR3 is not satisfied, the approach above can

be extended by increasing the lag in autoregression (3.1) defining the immunizing

directions. For a given lag p, we will estimate the partial autocovariance:

[C1(γ), C2(γ), . . . , Cp(γ)] = γ[ΓY (1), . . . ,ΓY (p)]

 ΓY (0) ΓY (1) ΓY (p− 1)
... ΓY (1)

ΓY (p− 1) . . . ΓY (0)


−1

and look for its kernel.

4 Estimation of the parameters for a given num-

ber of factors

The approach of Section 3 provides neither estimates of the contagion matrix C,

nor the factor dynamics characterized by Φ and Σ, nor filtered factors. We provide
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in this section estimation methods of all parameters, once the number of factors is

known.

4.1 Pseudo-maximum likelihood

As already noted in Section 2.2 the Gaussian pseudo-likelihood function is easy to

compute numerically by applying the linear Kalman filter to the state space repre-

sentation (2.3)-(2.4). It is also easy to compute numerically the pseudo-maximum

likelihood estimates by maximizing this function. To avoid identification problems,

this optimization has to be done under the identification restriction:

IR1: Ω = Id,

which is easier to take into account in the optimization problem than the second

identification restriction: BB′ = Id (IR2).

4.2 Asymptotic Least Squares

An alternative consistent estimation method can be based on the moment restric-

tions given in Proposition 2 i). Let us for instance consider the two first restrictions

written for h = 1, 2. We get:
ΓY (1) = CΓY (0) +BΦCov(F, Y ),

ΓY (2) = C2ΓY (0) + (CBΦ +BΦ2)Cov(F, Y ).

(4.1)

If Cov(F, Y ) is let free, we get 2n2 restrictions to find the parameters C,B,Φ, Cov(F, Y ),

that include n2 + nK + K2 + nK = (n + K)2 independent parameters. The order

condition for identification is satisfied if:

2n2 > (n+K)2 ⇐⇒ n2 − nK > K2 ⇐⇒ (n−K)2 > 2K2 ⇐⇒ n ≥ (1 +
√

2)K.

Under this order restriction we can apply an asymptotic least-squares approach to
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estimate C,B,Φ, and Θ = Cov(F, Y ). The ALS estimates are solutions of the

optimization problem:

min
C,B,Φ,Θ

Tr{[Γ̂Y (1)− CΓ̂Y (0)−BΘ][Γ̂Y (1)− CΓ̂Y (0)−BΘ]′}

+ Tr[Γ̂Y (2)− C2Γ̂Y (0)− (CB +BΦ)Θ][Γ̂Y (2)− C2Γ̂Y (0)− (CB +BΦ)Θ]′,

where Tr denotes the trace operator. The criterion above is written without weight-

ing for expository purpose and Θ plays the role of a nuisance parameter in the opti-

mization above. Indeed the parameters of interest are the autoregressive parameters

C,B,Φ. The last parameter Σ can then be deduced from the historical estimate of

V (Y ) by using the expression of V (Y ) given in Lemma 2 in Appendix 2.i).

4.3 Application to the financial system

In our application, we focus on 8 of the biggest financial institutions in the euro area,

namely: Banco Santander SA, BNP Paribas SA, Commerzbank AG, Crédit Agricole

SA, Deutsche Bank AG, Intesa San Paolo SPA, Société Générale SA, and Unicredit

SPA. Thus, Germany, France, Italy and Spain are represented in our sample, which

allows us to investigate both intra- and international contagion among banks in the

euro area.

We convert stock prices and equity values in order to make them comparable with

CDS prices, which are quoted in US Dollar. More precisely, we consider the variable

Yi,t either as:

• the rate of change in the market capitalization of institution i at time t, i.e.

Yi,t =
Capi,t−Capi,t−1

Capi,t−1
, where Capi,t stands for the market capitalization of insti-

tution i in USD at time t;

• the variation in the standardized CDS price for institution i at time t, i.e.

Yi,t = Φ−1 (CDSi,t)− Φ−1 (CDSi,t−1);

• the rate of change in the equity value of institution i at time t, i .e. Yi,t =
Equi,t−Equi,t−1

Equi,t−1
, where Equi,t stands for the book value of institution i in USD
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at time t. For this application, we define banks’ equity value as their Tier 1

capital8.

For each approach, the dependent variable Yt gathers the 8 individual variables Yi,t.

Data on institutions’ market capitalization and CDS come from Bloomberg, while

data on the banks’ equity value are obtained from Bankscope. Our sample starts in

January 2, 2007, and ends on December 20, 2012. In this section, the application

builds on quarterly data. An extension to daily data (which are available for CDS

prices and market capitalization) is presented in appendix.

4.3.1 Estimation of the number of factors

Figure 1 below presents the eigenvalues of the matrix Ĉ2SĈ
′
2 for the 3 datasets9
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Figure 1: Eigenvalues of the matrix Ĉ2SĈ
′
2 in decreasing order, for the 3 datasets,

normalized by the sum of all eigenvalues.

For all datasets, the decrease in the series of eigenvalues shows a clear break after

the first eigenvalue, which suggests a number of factor equal to one for all types

of data, even if the second eigenvalue is almost significant for the changes in book

values.

8”Common equity” would have been closer to the definition of market capitalization; however
we preferred to rely on Tier 1 due to data availability constraint.

9where S = Γ̂Y (0)− Γ̂Y (1)Γ̂Y (0)−1Γ̂Y (1)′ as in 3 i).
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4.3.2 Estimation of the parameters

We provide in Table 1 the results of the estimation of the contagion matrix C by

Gaussian pseudo-maximum likelihood for the 3 different datasets, setting the num-

ber of factors to K = 1.

We observe a total number of significant connections equal to 42 for the capitaliza-

tion, 54 for the CDS prices and 50 for the accounting data, to be compared with

64 possible connections. Thus this system of banks is highly interconnected. The

rather large number of connections on returns show that both the efficient market

hypothesis and the standard two funds theorem are not satisfied. As announced

before we have first to focus on the conditional mean before considering conditional

variance for financial institutions.

However the different banks do not play the same role. For instance, the return on

Commerzbank’s stocks does not depend on its lagged return nor the return of the

other banks once the effect of the common factor has been taken into account. On

the other hand, the Commerzbank has an effect on all the other banks. Another

extreme example is the Société Générale, which is affected by all the other banks

for the three different series, and aftects all the other banks, except Commerzbank,

for the changes in standardized CDS prices and book values.
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Santander BNPP Commerz CASA Deutsche Intesa SocGen Unicredit

Santander −0.569 −0.165 0.081 0.250 0.437 0.065 0.045 −0.111

−0.349 0.006 −0.091 −0.237 −0.111 0.643 −0.150 0.315

−0.042 0.336 0.110 −0.193 −0.160 0.300 0.113 0.642

BNPP 0.527 −0.166 0.381 0.146 −0.902 0.025 0.037 0.274

−0.329 0.142 −0.216 0.300 0.175 0.007 0.403 0.204

−0.172 0.168 0.234 −0.267 −0.211 0.251 0.391 0.510

Commerz 0.092 0.059 −0.046 0.004 0.050 0.051 0.018 −0.083

0.116 0.043 −0.053 0.191 0.155 −0.019 0.044 0.070

0.225 0.101 0.063 0.525 0.299 −0.012 −0.011 −0.185
CASA 0.213 0.302 −0.094 −0.308 −0.088 0.045 0.099 −0.119

0.543 −0.191 0.807 0.627 0.537 −0.870 0.283 −0.515
0.027 0.126 0.104 −0.326 0.115 0.101 0.098 0.004

Deutsche −0.088 0.008 0.633 −0.731 0.471 −0.280 −0.242 0.646

0.266 0.093 −0.551 −0.205 −0.033 0.297 −0.034 −0.150
0.337 −0.094 −0.183 0.190 0.158 0.179 0.179 0.299

Intesa 0.172 0.247 0.281 0.233 0.217 0.138 0.253 0.324

0.678 −0.107 0.682 0.513 0.075 −0.523 −0.467 −0.006

−0.116 −0.104 −0.088 −0.456 0.194 −0.215 −0.277 −0.497
SocGen −0.336 −0.245 −0.267 0.526 0.292 0.142 0.202 −0.195

−0.186 0.062 −0.103 −0.526 −0.412 0.636 −0.370 0.620

−0.303 −0.135 −0.299 0.454 −0.204 −0.365 −0.289 −0.118
Unicredit 0.109 0.199 −0.038 0.144 −0.139 0.105 0.069 −0.186

−0.410 0.134 −0.286 −0.273 0.036 0.277 0.558 −0.206
−0.024 −0.127 −0.227 0.191 0.386 0.056 0.213 −0.139

Table 1: Contagion matrix obtained from banks’ market capitalization [1st row in each cell],

CDS prices [2rd row] or accounting data [3rd row], at quarterly frequency. Parameters which

significantly differ from 0 (at a least 5%) are in bold.

The estimated latent factor, or dynamic frailty, is presented in Figure 2 for the three
datasets. The three dynamic frailties feature negative autocorrelation (see Table 2)
and share a certain degree of commonality, in particular between the market-based
frailties. This is formally emphasized in Table 3 and 4, which present the correlations
between the three frailties, as well as the factor loadings obtained from a principal
component analysis on the 3 factors. Table 4 in particular highlights the existence of
a common factor, which loads uniformly on the three frailties and explains about 80%
of their overall variation. The second factor distinguishes market-based indicators
from accounting-based one, whereas the last factor mainly discriminates the market
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capitalization frailty from the CDS one. However, we see on Figure 2 that the three
factor paths have rather different non-linear features. For instance, the rather large
volatilities observed for book values between 2008 and 2009, then after 2011 are
difficult to distinguish in the evolutions of factors for stock returns and CDS prices.

Capitalisation CDS Book Value

φ −0.223∗∗ −0.374∗∗ −0.650∗∗

(0.021) (0.015) (0.041)

Table 2: Autoregressive parameter for the frailty factor (∗ significant at 10%, ∗∗ significant at

5%)

Capitalization CDS Book Value

Capitalization 1 0.661 0.450

CDS 0.661 1 0.482

Book Value 0.450 0.482 1

Table 3: Correlation matrix of the dynamic frailty across datasets.

1st Factor Loading 2nd Factor Loading 3rd Factor Loading

Capitalization 0.597 −0.424 0.681

CDS 0.606 −0.318 −0.729

Book Value 0.525 0.848 0.067

Proportion of Variation 0.689 0.198 0.112

Table 4: Factor loadings from the Principal Component Analysis of the estimated frailties. The

last line reports the proportion of variation accounted by each factor.

As mentioned before, the factor are defined up to some multiplicative scalar. The

factors in Figure 2 have been constructed to be comparable in magnitude (same

mean and variance) but also for their interpretation in terms of risk. This is easily

seen on Table 6 which provides the factor loading: an increase in the factor value

implies a decrease in the stock returns, in CDS prices or book values, respectively.

As expected from financial theory the common factor affects all stock returns with

the largest influence on the Commerzbank. This compensates the absence of addi-

tional effect of the lagged return already discussed.

However the interpretation of the frailty as a common factor is no longer valid when

we consider the analysis based on either CDS price or book values, since in both
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cases only one beta is significant for BNPP and Commerzbank, respectively. The

interpretation of the significant beta is now different. If all betas were equal to 0,

the dynamic model would be a VAR(1) model, with short memory features. The

presence of significant beta introduces longer memory, and this longer memory is

channeled through a single bank (either Commerzbank or BNPP).
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Figure 2: Estimated dynamic frailties obtained from banks’ market capitalization

(top), CDS prices (middle), book values (bottom), at quarterly frequency.
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Santander BNPP Commerz CASA Deutsche Intesa SocGen Unicredit

Capitalization −0.1530∗∗ −0.216∗ −0.335∗∗ −0.216∗∗ −0.190∗∗ −0.160∗∗ −0.204∗∗ −0.208∗∗

(0.049) (0.116) (0.106) (0.075) (0.064) (0.071) (0.051) (0.071)

CDS −0.046 −0.043∗∗ −0.041 −0.052 −0.038 −0.027 −0.047 −0.023

(0.032) (0.022) (0.041) (0.035) (0.024) (0.075) (0.0786) (0.037)

Book Value −0.029 −0.065 −0.084∗ −0.091 −0.026 −0.042 −0.037 −0.028

(0.031) (0.044) (0.046) (0.090) (0.038) (0.051) (0.052) (0.031)

Table 6: Matrix of loadings to the frailty factor obtained from banks’ market capitalization,

CDS prices or accounting data (∗ significant at 10%, ∗∗ significant at 5%).

5 Concluding remarks

The aim of this paper is to explain how to disentangle the direct and indirect (con-

tagion) effects of the exogenous shocks on the financial situations of the banks or

insurance companies. For this purpose we have considered a linear dynamic model

with both common frailty and autoregressive feature, and introduce an appropriate

methodology to estimate the contagion matrix, the sensitivity of institutions to the

factors and to reconstitute the underlying factor paths.

Our method has been applied to a set of eight banks and different measures of

their financial position, measured by the change in their market capitalization, CDS

prices or book values, respectively. Even if we might expect similar results for the

three different measures, the analysis shows that the revealed interconnections are

significantly different, in particular between market and accounting data.

In practice, the European banking system contains much more than 8 banks and

the extension of the methodology will require methods for large scale factor models

based on sparse estimator or Lasso (see e.g. Barigozzi, Brownlees (2013) for such

an approach in a model without frailty).
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Appendix 1

Review of the literature

Authors data observ. unobserv. contagion linear

factor factor vs nonlinear

Diebold,

Nerlove (1989) XR X ARCH

King,

Wadhwani (1990) I X L

Forbes,

Rigobon (2002) I Xs Xs L

Dungey,

Martin (2003) S Xs Xs L

Dungey et al.

(2005) S X Xs L

Brownlees,

Engle(2012) S X ARCH

Billio et al.

(2012) X

Darolles, Gagliardini, NL (Poisson model with

Gourieroux (2012) HF X X stochastic intensity)

Barigozzi,

Brownlees (2013) S X X L

Data: BS (balance sheet), S (stock), I (Market indexes), XR (exchange rates), B

(bond), CDS, HF (hedge fund).

Linear VS Nonlinear model: L (linear model), ARCH (ARCH model), NL (nonlinear

model different from ARCH).

Cross (X): Yes, no cross: No
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Contagion: indexed by s, when contagion arises at the same date, that is simulta-

neously.

Unobserved factor: indexed by s for the state factor.
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Appendix 2

Second-order properties

By considering the VaR dynamic of process (Zt), we get:
E(Zt) = 0,

V (Zt) = ΓZ(0) = V (w) + ΨV (w)Ψ′ + . . .+ ΨhV (w)Ψh′ + . . . ,

Cov(Zt, Zt−h) = ΓZ(h) = ΨhΓZ(0), h ≥ 0.

These expressions can be used to derive the second-order properties of the observable

process (Yt).

Lemma 1: We have:

Ψh =

 Ch Dh

0 Φh

 ,

where Dh = CDh−1 +BΦh, h ≥ 1, D0 = 0, or equivalently Dh =
h−1∑
k=0

(CkBΦh−k).

Proof: Since:

Ψh = ΨΨh−1 =

(
C BΦ

0 Φ

)(
Ch−1 Dh−1

0 Φh−1

)
,

we deduce Dh = CDh−1 +BΦh.

QED

Lemma 2: We have:

V (Z) =

 V (Y ) Cov(Y, F )

Cov(F, Y ) V (F )

 ,
where:
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V (F ) = ΦV (F )Φ′ + Ω =
∞∑
h=0

ΦhΩΦh′ ,

Cov(Y, F ) = CCov(Y, F )Φ′ +BΦV (F )Φ′ +BΩ,

V (Y ) =
∞∑
h=0

Ch∆Ch′ ,

with

∆ = BΦCov(F, Y )C ′ + CCov(Y, F )Φ′B′ +BΦV (F )Φ′B′ + Σ +BΩB′.

Proof: We have:

ΓZ(0) = ΨΓZ(0)Ψ′ + V w

=

(
C BΦ

0 Φ

)(
V (Y ) Cov(Y, F )

Cov(F, Y ) V (F )

)(
C ′ 0

Φ′B′ Φ′

)

+

 Σ +BΩB′ BΩ

ΩB′ Ω

 .

By identification we deduce the recursive system:

V (F ) = ΦV (F )Φ′ + Ω,

Cov(Y, F ) = CCov(Y, F )Φ′ +BΦV (F )Φ′ +BΩ,

V (Y ) = CV (Y )C ′ +BΦCov(F, Y )C ′ + CCov(Y, F )Φ′B′

+ BΦV (F )Φ′B′ + Σ +BΩB′

QED
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These lemmas are used to deduce equations satisfied by the autocovariance function

of the observable process (Yt). Indeed we have:

Cov(Zt, Zt−h) = ΨhΓZ(0) =

 Ch Dh

0 Φh


 V (Y ) Cov(Y, F )

Cov(F, Y ) V (F )

 .

By considering the first block diagonal element of this product, we get the recursion

in Proposition 2.
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Appendix 3

Application to daily data

In this appendix, we extend the analysis conducted in Section 4.3 to daily data,

building on banks’ market capitalization and CDS prices which are available at daily

frequency. For this application, we use the same dataset as in Section 4.3: data come

from Bloomberg, our sample starts in January 2, 2007 and ends in December 20,

2012.

Santander BNPP Commerz CASA Deutsche Intesa SocGen Unicredit

Santander 0, 024 −0, 008 −0, 082 0, 037 −0, 007 0,128∗∗ 0, 021 0, 050

(0, 054) (0, 064) (0, 098) (0, 072) (0, 057) (0,056) (0, 067) (0, 070)

BNPP −0, 022 0, 004 −0, 120 −0, 021 0, 029 −0, 088 −0, 098 −0, 053

(0, 066) (0, 060) (0, 092) (0, 065) (0, 057) (0, 059) (0, 063) (0, 066)

CASA −0, 006 0, 014 0, 007 0, 015 −0, 003 −0, 011 0, 014 0, 000

(0, 035) (0, 040) (0, 051) (0, 045) (0, 041) (0, 037) (0, 047) (0, 045)

Commerz 0, 010 0, 012 0, 012 −0, 041 −0, 005 0, 004 0, 006 0, 064

(0, 054) (0, 062) (0, 094) (0, 060) (0, 054) (0, 061) (0, 063) (0, 067)

Deustche −0, 006 −0, 021 0, 011 0, 049 0, 039 0, 003 0,130∗∗ 0, 028

(0, 048) (0, 058) (0, 077) (0, 058) (0, 049) (0, 054) (0,048) (0, 057)

Intesa 0, 042 0, 019 0,406∗∗ 0, 086 0,168∗∗ −0, 019 0, 058 −0, 012

(0, 057) (0, 059) (0,059) (0, 067) (0,053) (0, 055) (0, 063) (0, 065)

SocGen −0, 054 −0, 027 −0, 058 −0, 014 −0,131∗∗ −0, 018 −0, 031 −0, 049

(0, 057) (0, 053) (0, 071) (0, 058) (0,043) (0, 053) (0, 055) (0, 058)

Unicredit 0, 043 0, 058 −0, 045 0, 005 0, 005 0, 054 0, 053 0, 024

(0, 044) (0, 054) (0, 056) (0, 056) (0, 044) (0, 049) (0, 057) (0, 050)

Table 7: Contagion matrix obtained from market capitalization (∗∗ significant at 5%), at daily

frequency.
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Santander BNPP Commerz CASA Deutsche Intesa SocGen Unicredit

Santander 0, 062 0, 033 0, 034 0, 061 0, 043 0,145∗∗ 0, 033 0, 073

(0, 066) (0, 064) (0, 059) (0, 066) (0, 057) (0,073) (0, 064) (0, 075)

BNPP −0, 042 −0, 069 0, 017 −0, 006 0, 009 −0, 049 0, 023 −0, 008

(0, 083) (0, 080) (0, 077) (0, 078) (0, 070) (0, 091) (0, 081) (0, 091)

Commerz −0, 038 0, 003 0, 057 0, 029 0, 013 −0, 024 0, 086 −0, 022)

(0, 087) (0, 080) (0, 073) (0, 081) (0, 071) (0, 090) (0, 085) (0, 094)

CASA 0, 016 0, 082 0, 042 −0, 023 0, 001 0, 019 0,129∗ 0, 019

(0, 075) (0, 076) (0, 063) (0, 071) (0, 069) (0, 082) (0,071) (0, 080)

Deutsche −0, 010 0, 029 −0, 049 −0, 028 −0, 010 −0, 069 −0,132∗ −0, 059

(0, 074) (0, 066) (0, 068) (0, 070) (0, 062) (0, 080) (0,074) (0, 080)

Intesa 0, 085 0, 021 0, 003 0, 071 0, 025 −0, 138 0, 050 0, 095

(0, 116) (0, 099) (0, 095) (0, 104) (0, 089) (0, 125) (0, 107) (0, 129)

SocGen 0, 039) 0, 037) 0, 026) 0, 118) 0, 076) 0, 097) −0, 017) 0, 042

(0, 088) (0, 076) (0, 075) (0, 080) (0, 072) (0, 092) (0, 078) (0, 090)

Unicredit −0, 019) −0, 031) 0, 013) −0, 080) −0, 021) 0, 155) −0, 025) 0, 024

(0, 104) (0, 095) (0, 089) (0, 093) (0, 082) (0, 114) (0, 094) (0, 115)

Table 8: Contagion matrix obtained from CDS prices (∗ significant at 10%, ∗∗ significant at

5%), at daily frequency.

As expected, we get a smaller number of interconnections, that is a total of 5 for

market capitalization and 3 for the CDS prices. These small numbers of connections

can provide much larger numbers when the frequency of the observations diminishes,

due to the effect of time aggregation on the contagion matrix discussed in Section

2.5, that is the transformation C → Ch = C60.

Capitalisation CDS

φ −0.013 0.138

(0.215) (0.381)

Table 9: Autoregressive parameter for the frailty factor

Capitalization CDS

Capitalization 1 0.61

CDS 0.61 1

Table 10: Correlation matrix of the dynamic frailty across datasets.
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1st Factor Loading 2nd Factor Loading

Capitalization 0.707 −0.707

CDS 0.707 0.707

Proportion of Variance 0.81 0.19

Table 11: Factor loadings .
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Figure 3: Estimated dynamic frailties obtained from banks’ market capitalization

(top), CDS prices (bottom), at daily frequency.

Santander BNPP Commerz CASA Deutsche Intesa SocGen Unicredit

Capitalization −2.525∗∗ −3.102∗∗ −3.541∗∗ −3.290∗∗ −3.065∗∗ −2.949∗∗ −3.349∗∗ −3.419∗∗

(0.062) (0.059) (0.111) (0.064) (0.055) (0.053) (0.059) (0.072)

CDS −1.567∗∗ −1.379∗∗ −1.330∗∗ −1.427∗∗ −1.256∗∗ −1.672∗∗ −1.472∗∗ −1.728∗∗

(0.030) (0.147) (0.318) (0.190) (0.256) (0.450) (0.204) (0.298)

Table 12: Loadings to the frailty factor (∗ significant at 10%, ∗∗ significant at 5%)

At the daily level, we get rally common factors for the wo cases. As in the case of the

quarterly analysis these factors show a significantly different dynamic. In particular
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the factor for the capitalization features more important periods of high volatility

both for the magnitude of the volatility and the length of the period, especially

during the 2008 financial crisis.


