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BAYESIAN ANISOTROPIC GAUSSIAN MODEL
FOR AUDIO SOURCE SEPARATION

Paul Magron, Tuomas Virtanen

Laboratory of Signal Processing, Tampere University of Technology, Finland

ABSTRACT

In audio source separation applications, it is common to model the
sources as circular-symmetric Gaussian random variables, which is
equivalent to assuming that the phase of each source is uniformly
distributed. In this paper, we introduce an anisotropic Gaussian
source model in which both the magnitude and phase parameters are
modeled as random variables. In such a model, it becomes possible
to promote a phase value that originates from a signal model and to
adjust the relative importance of this underlying model-based phase
constraint. We conduct Bayesian inference of the model through the
derivation of an expectation-maximization algorithm for estimating
the parameters. Experiments conducted on realistic music songs for
a monaural source separation task, in an scenario where the variance
parameters are assumed known, show that the proposed approach
outperforms state-of-the-art techniques.

Index Terms— Anisotropic Gaussian model, Bayesian infer-
ence, expectation-maximization, audio source separation

1. INTRODUCTION

The goal of audio source separation [1] is to extract underlying
sources that add up to form an observable audio mixture. To address
this issue, many techniques act on a time-frequency (TF) represen-
tation of the data, such as the short-term Fourier transform (STFT),
since the structure of audio signals is more prominent in that domain.

A popular approach to tackle this problem is to frame it in a
probabilistic framework, where the sources are modeled as random
variables [2]. Those variables’ parameters are further structured
by means of a model, such as nonnegative matrix factorization
(NMF) [3], kernel additive models [4] or deep neural networks
(DNNs) [5]. Most approaches consider circular-symmetric (or
isotropic) Gaussian distributions [3], which is equivalent to assum-
ing that the phase of each source is uniformly distributed. In such a
framework, the sources are typically estimated in a minimum mean
square error (MMSE) sense by means of a Wiener filter, which
assigns the phase of the original mixture to each extracted source.
However, even if this filter yields quite satisfactory sounding esti-
mates in practice [3, 6], it has been pointed out [7] that when sources
overlap in the TF domain, it is responsible for residual interference
and artifacts in the separated signals.

Indeed, even if the phase may globally appear as uniform [8], it
holds some underlying structure that can be exploited. For instance,
the model of mixtures of sinusoids leads to explicit constraints be-
tween the phases of adjacent TF bins [9]. Such an approach has
been exploited in speech enhancement [10], audio restoration [9]
and source separation [11, 12]. Drawing on those observations,
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we proposed in a preliminary work [13] to model the sources with
anisotropic Gaussian (AG) variables, i.e., where the phase is no
longer uniform. In such a model, one can promote a phase value
which is obtained by exploiting the sinusoidal model. MMSE esti-
mation results in an anistropic Wiener (AW) filter, which optimally
combines the mixture phase and the underlying phase model.

In this paper, we introduce an AG model that differs from [13]
in two ways. Firstly, we model the magnitudes as random variables
instead of deterministic parameters that were estimated beforehand
in [13]. This is a suitable choice when the magnitudes must be es-
timated along with the phases. Secondly, we model the phase lo-
cation parameter as a random variable with a Markov chain prior
structure, instead of unwrapping it over time frames in a determinis-
tic fashion [13]. This allows us to adjust the relative importance of
the underlying phase constraint. In such a model, it becomes pos-
sible to perform Bayesian inference of the parameters thanks to an
expectation-maximization (EM) algorithm. Experiments conducted
on a source separation task show that this approach outperforms
our preliminary AW technique [13] and the consistent Wiener fil-
ter [14], which reaches improved phase recovery by exploiting the
redundancy of the STFT instead of a model-based phase constraint.

This paper is organized as follows. Section 2 presents the AG
model. Section 3 introduces the EM procedure for estimating the
model parameters. Section 4 experimentally validates the potential
of this method for an audio source separation task. Finally, Section
5 draws some concluding remarks.

2. ANISOTROPIC GAUSSIAN MODEL

Let X ∈ CF×T be the STFT of a single-channel audio signal, where
F and T are the numbers of frequency channels and time frames. X
is the linear and instantaneous mixture of J sources Sj ∈ CF×T ,
such that for all TF bins ft,

xft =

J∑
j=1

sj,ft. (1)

Since all TF bins are treated similarly, we remove the indices ft
when appropriate for more clarity.

2.1. Anisotropic Gaussian sources

We assume that each source sj follows a complex normal distribu-
tion: sj ∼ N (mj ,Γj), where mj is the mean of sj and:

Γj =

(
γj cj
c̄j γj

)
(2)

is its covariance matrix, where γj and cj are the variance and relation
term of sj , and z̄ denotes the complex conjugate of z. Many previ-
ous studies model the sources as circular-symmetric (or isotropic)
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Fig. 1. Design of the AG model. We first model the magnitudes and
phases as Rayleigh and Von Mises random variables. The moments
in this model are then used to define the equivalent AG model.

variables [3, 14] (i.e., such that mj = cj = 0), which is equivalent
to assuming that the phase of each source is uniformly distributed.
Drawing on a preliminary work [13], we rather consider here that the
phases φj should be distributed around some favored value µj with
a concentration parameter κ ∈ [0,+∞[. We therefore model the
phases as Von Mises [15] random variables with location parameter
µj and concentration parameter κ.

In [13], we assumed that the magnitudes were deterministic pa-
rameters estimated beforehand. Here, we propose to model the mag-
nitudes rj as Rayleigh random variables (which corresponds to the
modulus of an isotropic complex normal distribution), with a disper-
sion parameter vj (which is an estimate of the source power). This
results in a Rayleigh + von Mises (RvM) model, which however is
not tractable (the density of the mixture does not admit a closed-form
expression). Therefore, following the methodology of [13], we com-
pute the moments in the RvM model which are then used to define
an equivalent Gaussian model, as illustrated in Fig. 1:

mj = λ
√
vje

iµj , γj = (1− λ2)vj , and cj = ρvje
i2µj , (3)

with:

λ =

√
π

2

I1(κ)

I0(κ)
and ρ =

I2(κ)

I0(κ)
− λ2, (4)

where In is the modified Bessel function of the first kind of order
n. In particular, if κ = 0, then λ = ρ = 0, and consequently
mj = cj = 0: the distributions become isotropic. Otherwise, it
holds a property of anisotropy, hence the name of the model. Finally,
x ∼ N (mx,Γx) with mx =

∑J
j=1mj and Γx =

∑J
j=1 Γj .

2.2. Phase model

We propose to incorporate a priori phase information on µj from a
sinusoidal model, which is widely used for representing audio sig-
nals [10, 11]. Each source in the time domain is modeled as a sum
of sinusoids. Assuming there is at most one sinusoid per frequency
channel, let us denote by νj,ft the normalized frequency in channel
f . It can be shown [9] that the phase µj follows the unwrapping
equation in the TF domain:

µj,ft ≈ µj,ft−1 + 2πlνj,ft, (5)

where l is the hop size of the STFT. As in [9], we estimate the fre-
quencies νj,ft by means of a quadratic interpolated FFT [16] on the
log-spectra of the sources at each time frame, in order to account for
slow variations of the frequencies.

We propose to enforce this property by means of a Markov chain
prior structure, as done in [17] to enforce the smoothness of the ac-
tivation matrix in an NMF model. We have, for each source:

p(µj) =

F−1∏
f=0

p(µj,f0)

T−1∏
t=1

p(µj,ft|µj,ft−1). (6)

We then propose the following choice, for t 6= 0:

µj,ft|µj,ft−1 ∼ VM(µj,ft−1 + 2πlνj,ft, τ), (7)

where VM denotes the Von Mises distribution. In this way, the
phase location parameter approximately follows the sinusoidal
model (5). The initial distribution in each frequency channel
p(µj,f0) is Jeffrey’s non-informative prior. Therefore:

log(p(µ))
c
= τ

∑
j,f,t

<
(
eiµj,fte−iµj,ft−1−2iπlνj,ft

)
, (8)

where c
= denotes equality up to an additive constant and< is the real

part.

3. BAYESIAN INFERENCE

We estimate the model parameters Θ = {{vj}j , {µj}j} in a max-
imum a posteriori sense, which consists in maximizing the log-
posterior distribution:

CMAP(Θ) = log p(X|Θ) + log p(Θ), (9)

where p(X|Θ) is the likelihood of the data and p(Θ) the priors on
the parameters. In this work, we only exploit some prior information
about the phase, therefore log p(Θ) is given by (8).

3.1. EM framework

Since the direct maximization of the criterion (9) is more involved
that in classical isotropic models [3], we propose to adopt an
EM [18] strategy which consists in maximizing a lower bound
of the log-posterior distribution, given by:

QMAP(Θ,Θ′) = QML(Θ,Θ′) + log p(Θ), (10)

where Θ′ contains the current set of estimated parameters and QML

is the conditional expectation of the complete-data log-likelihood:

QML(Θ,Θ′) =

∫
p(Z|X; Θ′) log p(X,Z; Θ)dZ, (11)

where Z denotes a set of latent (hidden) variables. Due to the mix-
ing constraint (1), we consider, as in [14, 19], a reduced set of J ′ =
J − 1 free variables Z = S = {sft}ft, where we note sft =
[s1,ft, ..., sJ′,ft]

T and where T denotes matrix transposition.
The EM algorithm consists in alternatively computing the func-

tionalQMAP given the current set of parameters Θ′ (E-step) and max-
imizing it with respect to Θ (M-step). This is proven [18] to increase
the value of the criterion (9).

3.2. E-step

Since all {sj,ft}J
′
j=1 are independent Gaussian variables, sft is a

Gaussian vector sft ∼ N (mft,Σz,ft) with mft = [m1,ft, ...,mJ′,ft]
T

and Σs,ft = diag([Γ1,ft, ...,ΓJ′,ft]) is a block-diagonal matrix.
It can be shown [20] that S|X follows a multivariate com-

plex normal distribution N (m′ft,Ξft). The posterior mean vector
m′ft = [m′1,ft, ...,m

′
J′,ft]

T is given by [13]:

m′j,ft = mj,ft + Γj,ftΓ
−1
x,ft(xft −mx,ft), (12)

where x =
(
x x̄

)T . The diagonal blocks in the posterior covari-
ance matrix Ξft provide the posterior covariance for each source:

Γ′j,ft = Γj,ft − Γj,ftΓ
−1
x,ftΓj,ft. (13)



Thanks to (12) and (13), we can compute the posterior mean, vari-
ance and relation term of the sources respectively denoted m′j , γ

′
j

and c′j . Due to the lack of space, we cannot detail here the full com-
putation of (11) (it will be provided in a future study): in a nutshell,
it consists in using the same algebra as in [21], which leads to:

QML(Θ,Θ′)
c
= −

J∑
j=1

∑
f,t

log(
√
|Γj,ft|)

+
1

|Γj,ft|
(
γj,ft(|m′j,ft −mj,ft|2 + γ′j,ft)

)
(14)

− 1

|Γj,ft|
(
<(c̄j,ft((m

′
j,ft −mj,ft)

2 + c′j,ft))
)
,

where |Γj,ft| is the determinant of Γj,ft.

3.3. M-step: variance parameters

Let us first estimate the variance parameters. Since QMAP is equal to
QML up to the log-prior on the phase, which does not depend on the
variance parameters, we have, from (10) and (14):

QMAP(Θ|Θ′) c
= −

J∑
j=1

∑
f,t

log(vj,ft) +
pj,ft
vj,ft

+
qj,ft√
vj,ft

, (15)

with:

p =
(1− λ2)

(
γ′ + |m′|2

)
− ρ<

(
e−2iµ(c′ +m′2)

)
(1− λ2)2 − ρ2 , (16)

and:

q =
2λ(ρ− 1 + λ2)

(1− λ2)2 − ρ2 <
(
e−iµm′

)
, (17)

where we removed the indices j, ft for brevity1. The derivative of
QMAP with respect to v is:

∇vQMAP(Θ|Θ′) = −1

v
+

p

v2
+

1

2

q

v
√
v
. (18)

Setting this derivative to 0 and multiplying by v2 leads to a second-
order polynomial equation in the variable

√
v. The only positive root

then provides us the update on v:

v =
1

16

(
q +

√
16p+ q

)2
. (19)

Remark: Here, the variance parameters vj are supposed to be un-
constrained. In more realistic applications, it becomes necessary to
constrain it by means of an appropriate fitting model (e.g., NMF [3]
or DNNs [5]) in order to yield good quality results.

3.4. M-step: phase parameters

Let us now derive the updates on the phase parameters. We rewrite
the functional (14) by removing the terms that do not depend on the
phase parameters, which leads to:

QML(Θ|Θ′) c
=

J∑
j=1

∑
f,t

<
(
αj,fte

−2iµj,ft + βj,fte
−iµj,ft

)
,

(20)

1Quite interestingly, in the isotropic case (i.e., when κ = 0), we see
from (4) that λ = ρ = 0, and therefore qj = 0 and pj = γ′j+ |m′j |2, which
is the posterior power of sj . Then, we recognize in (15) the Itakura-Saito
divergence between pj and vj , as in [3].

with:

αj,ft =
ρ

((1− λ2)2 − ρ2)vj,ft
(c′j,ft +m′2j,ft), (21)

and:

βj,ft =
2λ(1− λ2 − ρ)

((1− λ2)2 − ρ2)
√
vj,ft

m′j,ft. (22)

Therefore, adding the log-prior over the phase parameters (8) leads
to independently maximizing the following functionals:

gj,ft(µj,ft) = <
(
αj,fte

−2iµj,ft + β̃j,fte
−iµj,ft

)
, (23)

with respect to µj,ft, and where:

β̃j,ft = βj,ft + τ
(
eiµj,ft−1+2iπlνj,ft + eiµj,ft+1−2iπlνj,ft+1

)
.

(24)
Let us remove the indexes j, ft in what follows for more clarity.
It can be shown that maximizing g involves solving a fourth-order
polynomial in the variable eiµ. Tractable solutions exist, but they are
not straightforward to implement an it requires further operations to
determine which root maximizes g, leading to a quite computation-
ally intensive procedure. Instead, since we experimentally observed
that |α| << |β|, we propose to approximate (23) by:

g̃(µ) = <
(
β̃e−iµ

)
= |β̃| cos(µ− ∠β̃), (25)

which is easily maximized2 for µ = ∠β̃. Note that this update de-
pends on the values of the phase parameter in frames t−1 and t+1,
so it has to be applied sequentially over time frames (which is com-
mon when using Markov chain priors such as in [17]).

3.5. Full procedure

The full EM procedure is summarized in Algorithm 1. One final E-
step is performed after looping in order to estimate the sources with
the most up-to-date set of parameters. Note that if the initial variance
estimate is reliable enough, one can choose to only update the phase
parameters (i.e., one skips lines 14 and 16 in Algorithm 1).

4. EXPERIMENTAL RESULTS

In this section, we experimentally asses the potential of the proposed
model for a monaural audio source separation task.

4.1. Setup

We consider 100 music song excerpts from the DSD100 database,
a semi-professionally mixed set of music songs used for the SiSEC
2016 campaign [22]. Each excerpt is 10 seconds long and is made up
of J = 4 sources: bass, drum, vocals and other (which may
contain various instruments such as guitar, piano...). The database
consists of two subsets of 50 songs (learning and test sets).

The signals are sampled at Fs = 44100 Hz and the STFT is
computed with a 92 ms long Hann window and 75 % overlap.

In these experiments, we only inquire about the potential of
adding some phase information within a probabilistic model. There-
fore, the variance parameters vj are assumed known (they are equal
to the ground truth power spectrograms of sources) and are not up-
dated in Algorithm 1. The frequencies νj are computed as detailed

2Since this update no longer maximizes (23), but instead increases it, we
should actually refer to the procedure as a generalized EM algorithm.



Algorithm 1: EM algorithm for AG model estimation

1 Inputs: Mixture X ∈ CF×T ,
2 Phase parameters κ and τ ∈ R+,
3 Normalized frequencies ν ∈ RJ×F×T .
4 Initialization: compute λ and ρ with (4),
5 Compute m, γ and c with (3).
6 while stopping criterion not reached do
7 % E-step
8 (mx, γx, cx) =

∑J
j=1(mj , γj , cj),

9 Update m′ with (12),
10 Update γ′ and c′ with (13),
11 Update p with (16) and q with (17).
12 % M-step
13 Update v with (19),
14 Update β with (22).
15 for t = 1 to T − 2 do
16 ∀(j, f), update β̃j,ft with (24),
17 µj,ft = ∠β̃j,ft.
18 end
19 Update m, γ and c with (3).
20 end
21 (mx, γx, cx) =

∑J
j=1(mj , γj , cj),

22 Update m′ with (12),
23 Outputs: m′ ∈ CJ×F×T .
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Fig. 2. Influence of the phase parameters κ and τ on the source
separation quality (the SAR is not shown since it exhibits a similar
behavior to SDR).

in Section 2.2 and provided as inputs in Algorithm 1. The stopping
criterion for the algorithm is set to 40 iterations (performance is not
further improved beyond).

Source separation quality is measured with the signal-to-
distortion, signal-to-interference, and signal-to-artifact ratios (SDR,
SIR, and SAR) [23] expressed in dB, where only a rescaling (not a
refiltering) of the reference is allowed.

4.2. Impact of the phase parameters

As in [13], we first study the impact of the phase parameters κ and
τ on the separation quality. Let us consider the 50 songs from the
learning set and run the proposed procedure for various values of
those parameters. The averaged results are presented in Fig. 2.

Those results show that for non-null values of the phase param-
eters, the proposed approach can outperform a phase-unaware ap-
proach (for which κ = τ = 0) according to the SDR, SIR and SAR.
However, a compromise between those criteria must be reached: in-
deed, the best SIR and the best SDR/SAR are not obtained for the
same values of the phase parameters. This observation is reminis-
cent of some previous works, such as [12]: it is generally observed

Wiener CW AW Proposed
SDR 8.6 10.5 9.7 10.0
SIR 19.1 22.2 21.7 20.2
SAR 9.1 11.0 10.0 10.5
OPS 19.2 19.7 23.0 23.3
TPS 28.4 30.4 32.9 32.9
IPS 34.7 34.5 37.7 38.9
APS 30.6 31.0 34.8 34.1

Table 1. Average source separation performance.

that promoting the sinusoidal model-based phase constraint leads to
reducing interference between sources, but at the cost of some arti-
facts. Therefore, we choose the values κ = 5 and τ = 0.5 for the
next experiment, since it seems to be a good compromise in terms of
overall separation quality.

4.3. Comparison with other methods

As comparison references, we test Wiener filtering [3] and consistent
Wiener (CW) filtering [14]. We also test the AW filtering from our
previous work [13]. Note that Wiener filtering corresponds to our
approach in the isotropic case, i.e., when κ = 0 and therefore mj =
cj = 0. CW and AW depend on a parameter which either promotes
consistency or anisotropy, and which is learned as in Section 4.2.
The results averaged over the test dataset are presented in Table 1.

From the first three lines of Table 1, it can be seen that the
proposed method globally outperforms Wiener filtering, and also
performs better than AW in terms of SDR and SAR. However, it per-
forms worse than CW according to those three indicators. Nonethe-
less, an informal perceptual evaluation shows that our method may
yield better results in terms of perceptual quality (the interested
reader can listen at the sounds excerpts available at [24]). In par-
ticular, the bass track is neater when estimated with our method
compared to the others, and the drum track contains less artifacts.

Therefore, we also computed the PEASS score [25], which pro-
vides a novel set of criteria that is built upon a subjective evalua-
tion of source separation quality, and designed to better match per-
ception than the SDR, SIR and SAR. The resulting criteria are the
overall, target-related, interference-related and artifacts-related Per-
ceptual Scores (OPS, TPS, IPS and APS). The corresponding results
are presented in the four last lines of Table 1. According to those,
the proposed approach outperforms CW, and yields results similar to
or better than AW (except in terms of APS). These results are con-
sistent with our perceptual evaluation, and show the potential of the
proposed AG model for a phase-aware audio source separation task.

5. CONCLUSION

In this paper, we introduced a Bayesian framework to estimate latent
variables in mixtures of anisotropic Gaussian sources. Such a model
permits us to exploit some model-based prior information about the
phase, and outperforms our preliminary model [13] and the state-of-
the art consistent Wiener filtering [14]. Therefore, this is a novel step
towards a complete phase-aware separation system.

In future work, we will focus on the estimation of the variance
parameters vj , since they were assumed known in the evaluation of
this paper. In realistic scenarios, it becomes necessary to structure it
by means of a variance fitting model. Examples of such models are
DNNs, as already used in a multichannel framework with isotropic
Gaussian variables [5] or NMF which has shown promising results
for supervised separation tasks [26].
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