S. Jbabdi, S. N. Sotiropoulos, S. N. Haber, D. C. Van-essen, and T. Behrens, Measuring macroscopic brain connections in vivo, Nature Neuroscience, vol.21, issue.11, pp.1546-1555, 2015.
DOI : 10.1002/mrm.22924

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience, vol.8, issue.3, pp.186-198, 2009.
DOI : 10.1371/journal.pone.0002051

URL : http://www.nature.com/nrn/journal/v10/n4/pdf/nrn2618.pdf

G. Deco and M. L. Kringelbach, Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders, Neuron, vol.84, issue.5, pp.892-905, 2014.
DOI : 10.1016/j.neuron.2014.08.034

URL : https://doi.org/10.1016/j.neuron.2014.08.034

R. C. Craddock, Imaging human connectomes at the macroscale, Nature Methods, vol.2, issue.6, pp.524-539, 2013.
DOI : 10.1016/j.brs.2009.03.005

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096321/pdf

C. Thomas, Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited, Proc. Natl Acad. Sci. USA 111, pp.16574-16579, 2014.
DOI : 10.1006/jmrb.1996.0167

URL : http://www.pnas.org/content/111/46/16574.full.pdf

C. Reveley, Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography, Proc. Natl. Acad
DOI : 10.1016/j.neuroimage.2013.05.077

S. Jbabdi and H. Johansen-berg, Tractography: where do we go from here? Brain Connect, pp.169-183, 2011.
DOI : 10.1089/brain.2011.0033

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677805/pdf

D. K. Jones, with diffusion MRI, Imaging in Medicine, vol.2, issue.3, pp.341-355, 2010.
DOI : 10.2217/iim.10.21

S. Pujol, The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery, Journal of Neuroimaging, vol.45, issue.6, pp.875-882, 2015.
DOI : 10.1016/j.neuroimage.2008.10.060

URL : https://hal.archives-ouvertes.fr/inserm-01185878

G. C. Feigl, Magnetic Resonance Imaging Diffusion Tensor Tractography: Evaluation of Anatomic Accuracy of Different Fiber Tracking Software Packages, World Neurosurgery, vol.81, issue.1, pp.144-150, 2014.
DOI : 10.1016/j.wneu.2013.01.004

J. Martino, Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain, Journal of Anatomy, vol.108, issue.4, pp.531-541, 2011.
DOI : 10.3171/JNS/2008/108/4/0775

X. Wang, Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain, Brain Structure and Function, vol.48, issue.1, pp.2075-2092, 2015.
DOI : 10.1016/j.cortex.2011.03.004

S. Wakana, Reproducibility of quantitative tractography methods applied to cerebral white matter, NeuroImage, vol.36, issue.3, pp.630-644, 2007.
DOI : 10.1016/j.neuroimage.2007.02.049

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2350213/pdf

F. Pestilli, J. D. Yeatman, A. Rokem, K. N. Kay, and B. A. Wandell, Evaluation and statistical inference for human connectomes, Nature Methods, vol.12, issue.10, pp.1058-1063, 2014.
DOI : 10.1006/jmrb.1996.0086

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180802/pdf

P. F. Neher, M. Descoteaux, J. Houde, B. Stieltjes, and K. H. Maier-hein, Strengths and weaknesses of state of the art fiber tractography pipelines ??? A comprehensive in-vivo and phantom evaluation study using Tractometer, Medical Image Analysis, vol.26, issue.1, pp.287-305, 2015.
DOI : 10.1016/j.media.2015.10.011

A. Daducci, A. Dal-palù, A. Lemkaddem, and J. Thiran, COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography, IEEE Transactions on Medical Imaging, vol.34, issue.1, pp.246-257, 2015.
DOI : 10.1109/TMI.2014.2352414

URL : https://infoscience.epfl.ch/record/200934/files/main.pdf

T. B. Dyrby, Validation of in vitro probabilistic tractography, NeuroImage, vol.37, issue.4, pp.1267-1277, 2007.
DOI : 10.1016/j.neuroimage.2007.06.022

J. S. Campbell, K. Siddiqi, V. V. Rymar, A. F. Sadikot, and G. B. Pike, Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques, NeuroImage, vol.27, issue.4, pp.725-736, 2005.
DOI : 10.1016/j.neuroimage.2005.05.014

J. Dauguet, Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain, NeuroImage, vol.37, issue.2, pp.530-538, 2007.
DOI : 10.1016/j.neuroimage.2007.04.067

J. D. Schmahmann, Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography, Brain, vol.130, issue.3, pp.630-653, 2007.
DOI : 10.1093/brain/awl359

A. K. Seehaus, Histological Validation of DW-MRI Tractography in Human Postmortem Tissue, Cerebral Cortex, vol.23, issue.2, pp.442-450, 2013.
DOI : 10.1093/cercor/bhs036

T. R. Knösche, A. Anwander, M. Liptrot, and T. B. Dyrby, Validation of tractography: Comparison with manganese tracing, Human Brain Mapping, vol.52, issue.Pt 1, pp.4116-4134, 2015.
DOI : 10.1002/mrm.20279

C. J. Donahue, Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey, The Journal of Neuroscience, vol.36, issue.25, pp.6758-6770, 2016.
DOI : 10.1523/JNEUROSCI.0493-16.2016

M. Bach, K. H. Maier-heinne-fritzsche-), B. Stieltjes, and F. B. Laun, Investigation of resolution effects using a specialized diffusion tensor phantom, Magnetic Resonance in Medicine, vol.50, issue.6 pt 1, pp.1108-1116, 2013.
DOI : 10.1002/mrm.10609

E. Fieremans, The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging, Physics in Medicine and Biology, vol.53, issue.19, pp.5405-5421, 2008.
DOI : 10.1088/0031-9155/53/19/009

P. Fillard, Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom, NeuroImage, vol.56, issue.1, pp.220-234, 2011.
DOI : 10.1016/j.neuroimage.2011.01.032

URL : https://hal.archives-ouvertes.fr/inria-00559191

K. H. Maier-heinne-fritzsche-), F. B. Laun, H. Meinzer, and B. Stieltjes, Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging?, Neuroimage, vol.51, pp.242-251, 2010.

A. Moussavi-biugui, B. Stieltjes, K. Fritzsche, W. Semmler, and F. B. Laun, Novel spherical phantoms for Q-ball imaging under in vivo conditions, Magnetic Resonance in Medicine, vol.79, issue.1, pp.190-194, 2011.
DOI : 10.1103/RevModPhys.79.1077

URL : http://onlinelibrary.wiley.com/doi/10.1002/mrm.22602/pdf

C. Poupon, New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models, Magnetic Resonance in Medicine, vol.52, issue.6, pp.1276-1283, 2008.
DOI : 10.1007/11505730_7

P. Pullens, A. Roebroeck, and R. Goebel, Ground truth hardware phantoms for validation of diffusion-weighted MRI applications, Journal of Magnetic Resonance Imaging, vol.230, issue.2, pp.482-488, 2010.
DOI : 10.1002/jmri.21665

T. G. Close, A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms, NeuroImage, vol.47, issue.4, pp.1288-1300, 2009.
DOI : 10.1016/j.neuroimage.2009.03.077

A. Leemans, J. Sijbers, M. Verhoye, A. Van-der-linden, and D. Van-dyck, Mathematical framework for simulating diffusion tensor MR neural fiber bundles, Magnetic Resonance in Medicine, vol.42, issue.4, pp.944-953, 2005.
DOI : 10.1148/radiology.217.3.r00nv43897

URL : http://onlinelibrary.wiley.com/doi/10.1002/mrm.20418/pdf

P. F. Neher, F. B. Laun, B. Stieltjes, and K. H. Maier-hein, Fiberfox: Facilitating the creation of realistic white matter software phantoms, Magnetic Resonance in Medicine, vol.22, issue.5, pp.1460-1470, 2014.
DOI : 10.1002/ima.22005

D. Perrone, D-BRAIN: Anatomically Accurate Simulated Diffusion MRI Brain Data, PLOS ONE, vol.73, issue.4, p.149778, 2016.
DOI : 10.1371/journal.pone.0149778.t001

URL : https://doi.org/10.1371/journal.pone.0149778

J. Mangin, J. Regis, and V. Frouin, Shape bottlenecks and conservative flow systems, Proceedings of the 1996 Workshop on Mathematical Methods in Biomedical Image Analysis, pp.131-138, 1996.
DOI : 10.1109/mmbia.1996.534084

P. Guevara, Robust clustering of massive tractography datasets, NeuroImage, vol.54, issue.3, pp.1975-1993, 2011.
DOI : 10.1016/j.neuroimage.2010.10.028

P. J. Basser, Fiber-tractography via diffusion tensor MRI, Proc. International Society for Magnetic Resonance in Medicine 1226, 1998.

M. A. Cote, Tractometer: Towards validation of tractography pipelines, Medical Image Analysis, vol.17, issue.7, pp.844-857, 2013.
DOI : 10.1016/j.media.2013.03.009

M. F. Glasser, The Human Connectome Project's neuroimaging approach, Nature Neuroscience, vol.27, issue.9, pp.1175-1187, 2016.
DOI : 10.1002/jmri.21049

B. Stieltjes, R. M. Brunner, K. H. Maier-heinne-fritzsche-), and F. Laun, Diffusion Tensor Imaging: Introduction and Atlas, 2013.
DOI : 10.1007/978-3-642-20456-2

M. Catani, M. T. Schotten, and . De, Atlas of Human Brain Connections
DOI : 10.1093/med/9780199541164.001.0001

M. Catani, A novel frontal pathway underlies verbal fluency in primary progressive aphasia, Brain, vol.136, issue.8, pp.2619-2628, 2013.
DOI : 10.1093/brain/awt163

URL : https://academic.oup.com/brain/article-pdf/136/8/2619/13796837/awt163.pdf

M. T. De-schotten, A lateralized brain network for visuospatial attention, Nature Neuroscience, vol.127, issue.10, pp.1245-1246, 2011.
DOI : 10.1080/00335558008248231

URL : https://hal.archives-ouvertes.fr/hal-00680170

S. J. Forkel, The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography, Cortex, vol.56, pp.73-84, 2014.
DOI : 10.1016/j.cortex.2012.09.005

URL : https://hal.archives-ouvertes.fr/inserm-00790571

N. Makris, Human middle longitudinal fascicle: variations in patterns of anatomical connections, Brain Structure and Function, vol.5, issue.1, pp.951-968, 2013.
DOI : 10.3389/fnsys.2011.00001

R. B. Mars, The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study, Brain Structure and Function, vol.125, issue.Suppl 1, pp.4059-4071, 2015.
DOI : 10.1016/j.bandl.2012.04.010

A. Meola, A. Comert, F. Yeh, L. Stefaneanu, and J. C. Fernandez-miranda, The controversial existence of the human superior fronto-occipital fasciculus: Connectome-based tractographic study with microdissection validation, Human Brain Mapping, vol.518, issue.12, pp.4964-4971, 2015.
DOI : 10.1002/cne.22420

|. Doi, 10.1038/s41467-017-01285-x ARTICLE, NATURE COMMUNICATIONS NATURE COMMUNICATIONS |, vol.8
URL : https://hal.archives-ouvertes.fr/in2p3-00652853

J. D. Yeatman, The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements, Proc. Natl Acad. Sci. USA 111, pp.5214-5223, 2014.
DOI : 10.1016/j.neuroimage.2011.03.041

K. H. Maier-hein, Tractography challenge ISMRM 2015 high-resolution data. Zenodo https, p.579933, 2017.

L. Larsen, L. D. Griffin, D. Graessel, O. W. Witte, and H. Axer, Polarized light imaging of white matter architecture, Microscopy Research and Technique, vol.23, issue.10, pp.851-863, 2007.
DOI : 10.1177/23.1.1090645

R. E. Smith, J. Tournier, F. Calamante, and A. Connelly, The effects of SIFT on the reproducibility and biological accuracy of the structural connectome, NeuroImage, vol.104, pp.253-265, 2015.
DOI : 10.1016/j.neuroimage.2014.10.004

P. F. Neher, MITK global tractography, Medical Imaging 2012: Image Processing, 2012.
DOI : 10.1117/12.911215

J. Mangin, Toward global tractography, NeuroImage, vol.80, pp.290-296, 2013.
DOI : 10.1016/j.neuroimage.2013.04.009

URL : https://hal.archives-ouvertes.fr/hal-00856326

S. Jbabdi, M. W. Woolrich, J. L. Andersson, and T. E. Behrens, A Bayesian framework for global tractography, NeuroImage, vol.37, issue.1, pp.116-129, 2007.
DOI : 10.1016/j.neuroimage.2007.04.039

D. Christiaens, Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model, NeuroImage, vol.123, pp.89-101, 2015.
DOI : 10.1016/j.neuroimage.2015.08.008

M. Reisert, V. G. Kiselev, B. Dihtal, E. Kellner, and D. S. Novikov, MesoFT: Unifying Diffusion Modelling and Fiber Tracking, Med. Image Comput. Comput. Assist. Interv, vol.17, pp.201-208, 2014.
DOI : 10.1007/978-3-319-10443-0_26

G. Girard, R. Fick, M. Descoteaux, R. Deriche, and D. Wassermann, AxTract: Microstructure-Driven Tractography Based on the Ensemble Average Propagator, Inf. Process. Med. Imaging Proc. Conf, vol.24, pp.675-686, 2015.
DOI : 10.1007/978-3-319-19992-4_53

URL : https://hal.archives-ouvertes.fr/hal-01152267

A. Daducci, A. Dal-palú, M. Descoteaux, and J. Thiran, Microstructure Informed Tractography: Pitfalls and Open Challenges, Frontiers in Neuroscience, vol.61, issue.232, p.247, 2016.
DOI : 10.1016/j.neuroimage.2012.03.072

URL : https://www.frontiersin.org/articles/10.3389/fnins.2016.00247/pdf

P. F. Neher, M. Götz, T. Norajitra, C. Weber, and K. H. Maier-hein, A Machine Learning Based Approach to Fiber Tractography Using Classifier Voting, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.45-52, 2015.
DOI : 10.1002/ima.22005

P. F. Neher, M. Côté, J. Houde, M. Descoteaux, and K. H. Maier-hein, Fiber tractography using machine learning, NeuroImage, vol.158, pp.417-429, 2017.
DOI : 10.1016/j.neuroimage.2017.07.028

F. Dell-'acqua, I. Bodi, D. Slater, M. Catani, and M. Modo, MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum, Cerebellum, vol.12, pp.923-931, 2013.

I. Zemmoura, FIBRASCAN: A novel method for 3D white matter tract reconstruction in MR space from cadaveric dissection, NeuroImage, vol.103, pp.106-118, 2014.
DOI : 10.1016/j.neuroimage.2014.09.016

URL : https://hal.archives-ouvertes.fr/hal-01164888

D. Benedictis and A. , New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography, Human Brain Mapping, vol.52, issue.12, pp.4718-4735, 2016.
DOI : 10.1016/j.neuroimage.2010.05.049

URL : https://hal.archives-ouvertes.fr/hal-01382512

J. Hau, Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation, Brain Structure and Function, vol.37, issue.946???953, pp.1645-1662, 2016.
DOI : 10.1038/npp.2011.279

URL : https://hal.archives-ouvertes.fr/hal-01382592

V. J. Wedeen, The Geometric Structure of the Brain Fiber Pathways, Science, vol.44, issue.4, pp.1628-1634, 2012.
DOI : 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O

V. L. Galinsky and L. R. Frank, The Lamellar Structure of the Brain Fiber Pathways, Neural Computation, vol.337, issue.1605, pp.2533-2556, 2016.
DOI : 10.1073/pnas.0901530106

O. Sporns, Contributions and challenges for network models in cognitive neuroscience, Nature Neuroscience, vol.57, issue.5, pp.652-660, 2014.
DOI : 10.1016/j.neuroimage.2011.04.010

M. Reisert, Global fiber reconstruction becomes practical, NeuroImage, vol.54, issue.2, pp.955-962, 2011.
DOI : 10.1016/j.neuroimage.2010.09.016

J. Andersson, A comprehensive Gaussian process framework for correcting distortions and movements in diffusion images, Proceedings of International Society of Magnetic Resonance in Medicine 2426, 2012.

J. L. Andersson, S. Skare, and J. Ashburner, How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging, NeuroImage, vol.20, issue.2, pp.870-888, 2003.
DOI : 10.1016/S1053-8119(03)00336-7

B. Fischl and . Freesurfer, FreeSurfer, NeuroImage, vol.62, issue.2, pp.774-781, 2012.
DOI : 10.1016/j.neuroimage.2012.01.021

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/pdf

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, S. M. Smith et al., FSL, NeuroImage, vol.62, issue.2, pp.782-790, 2012.
DOI : 10.1016/j.neuroimage.2011.09.015

URL : https://hal.archives-ouvertes.fr/inserm-01570626

M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images, NeuroImage, vol.17, issue.2, pp.825-841, 2002.
DOI : 10.1006/nimg.2002.1132

K. H. Maier-heinne-fritzsche-), MITK diffusion imaging, Methods Inf. Med, vol.51, pp.441-448, 2012.

E. Panagiotaki, Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison, NeuroImage, vol.59, issue.3, pp.2241-2254, 2012.
DOI : 10.1016/j.neuroimage.2011.09.081

E. Garyfallidis, O. Ocegueda, D. Wassermann, and M. Descoteaux, Robust and efficient linear registration of white-matter fascicles in the space of streamlines, NeuroImage, vol.117, pp.124-140, 2015.
DOI : 10.1016/j.neuroimage.2015.05.016

URL : https://hal.archives-ouvertes.fr/hal-01153043

E. Garyfallidis, M. Brett, M. M. Correia, G. B. Williams, and I. Nimmo-smith, QuickBundles, a Method for Tractography Simplification, Frontiers in Neuroscience, vol.6, p.175, 2012.
DOI : 10.3389/fnins.2012.00175

URL : http://journal.frontiersin.org/article/10.3389/fnins.2012.00175/pdf

E. Garyfallidis, Dipy, a library for the analysis of diffusion MRI data, Frontiers in Neuroinformatics, vol.29, issue.22, p.8, 2014.
DOI : 10.1109/TMI.2010.2045126

P. Jannin, Validation of medical image processing in image-guided therapy, IEEE Transactions on Medical Imaging, vol.21, issue.12, pp.1445-1449, 2002.
DOI : 10.1109/TMI.2002.806568

URL : https://hal.archives-ouvertes.fr/inserm-00331766

K. H. Author, M. , M. D. , and J. H. , performed the data analysis and wrote the paper with input from all authorsS. designed the phantom. P.F.N. and J.-C.H. supported the data analysis and J.-C.H. handled the Tractometer scoring and evaluation metrics proposed. M.-A.C. and E.G. developed the clustering and bundle recognition algorithm for the relaxed scoring system, D. coordinated the tractography challenge at the International Society for Magnetic Resonance in Medicine (ISMRM) 2015 Diffusion Study Group meeting

Q. Sherbrooke and C. Qc, 6 IMT?Institute for Advanced Studies 14 PROVIDI Lab The Netherlands, Sherbrooke Connectivity Imaging Lab (SCIL) M5S 1A8. 9 Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023 Zhejiang, China. 10 United Imaging Healthcare Co., Shanghai, 201807, China. 11 Shanghai Advanced Research Institute The Netherlands. 17 Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM) H4J 1C5. 20 Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR) 22 Institute for Learning & Brain Sciences and Department of Speech & Hearing Sciences 5C1. 24 Synaptive Medical Inc., MaRS Discovery District, 101 College Street Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne Switzerland. 26 Biomedical Image Technologies (BIT), pp.25-1015, 1151.

N. Heidelberg, . Communications, and . Doi, x ARTICLE, Radiology & Nuclear Medicine Clinic NATURE COMMUNICATIONS |, vol.69120, issue.8