. Tetraethylammonium-chloride, 3 (all products from Sigma unless specified) This solution 370 was supplemented with 10 µL of filtered endotoxin-free buffer TE (Qiagen), then centrifuged 371 twice to pull down potential debris (10000 rpm, 15 min, 4°C) and used to fill 5-6 M? 372 borosilicate patch pipettes. Electroporation was performed in 2 mL of pre-warmed, 37°C / 5% 373 CO 2 ) HEPES-based artificial cerebrospinal fluid (ACSF) containing (in mM): 130 NaCl

. Kcl, CaCl 2 , 1.5 MgCl 2 , 10 HEPES, 10 D-glucose. Plasmid transfer was allowed by the 375 delivery of 50 µs-width square-pulses at 100 Hz (1 s duration; -14 V current amplitude)

. Wide-field-fluorescence-microscopy and . Setup, Single SWCNT photoluminescence imaging was 391 performed with an inverted microscope equipped with an electron-multiplying CCD camera 392 (Princeton Instruments ProEm) and a 1.45 NA 60x objective in a wide-field geometry. The 393 excitation source consisted of a tunable Ti:Sa laser emitting at a wavelength of 845 nm to 394 preferentially excite (6,5) SWCNTs at the resonance of the dark K-momentum exciton 5 . The 395 excitation intensity was kept at 10 kW/cm 2 with circularly polarized light. A dichroic mirror 396 (FF875-Di01, Semrock) and a long-pass emission filter (ET900LP, Chroma) were used in order 397 to illuminate and detect the SWCNT emitted fluorescence. Images of SWCNTs were recorded at 398 40 or 50 frames per second (typically 20,000 frames, Dichroic : FF495-Di03 and emission : FF01-520/35) and DAPI, pp.488-490

E. Evolve and . Camera, Photometrics), setting the EM gain at 600

. Nir-spectrometer and . Setup, Emission spectra of single SWCNTs were collected using a 412 cryogenically cooled 1D InGaAs detector (OMA V, Roper Scientific) placed at the output of a 413 150 mm spectrometer. A Chameleon (Coherent) pumped with a Ti:Sapphire laser (spectral range 414 of 530-700 nm) and a Ti:Sa laser (spectral range of 700 to 850 nm) were used to generate a two- 415 dimensional photoluminescence excitation/emission map of the PL-PEG SWCNT solution

Z. Liu, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature Nanotechnology, vol.47, issue.1, pp.47-52, 2007.
DOI : 10.1038/nnano.2006.170

Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, Toward the suppression of cellular toxicity from single-walled carbon nanotubes, Biomater. Sci., vol.114, issue.2, pp.230-244, 2016.
DOI : 10.1021/cr400341h

URL : https://hal.archives-ouvertes.fr/hal-01390062

L. Stoppini, P. A. Buchs, and D. Muller, A simple method for organotypic cultures of nervous tissue, Journal of Neuroscience Methods, vol.37, issue.2, pp.173-182, 1991.
DOI : 10.1016/0165-0270(91)90128-M

K. Haas, W. C. Sin, A. Javaherian, Z. Li, and H. Cline, Single-Cell Electroporationfor Gene Transfer In Vivo, Neuron, vol.29, issue.3, pp.583-591, 2001.
DOI : 10.1016/S0896-6273(01)00235-5

URL : https://doi.org/10.1016/s0896-6273(01)00235-5

S. M. Santos, All-optical trion generation in single-walled carbon nanotubes. Phys, p.552
DOI : 10.1103/physrevlett.107.187401

URL : https://hal.archives-ouvertes.fr/hal-00617981

A. G. Godin, B. Lounis, and L. Cognet, Super-resolution Microscopy Approaches for Live Cell Imaging, Biophysical Journal, vol.107, issue.8, pp.1777-1784, 2014.
DOI : 10.1016/j.bpj.2014.08.028

URL : https://hal.archives-ouvertes.fr/hal-01080729

L. Oudjedi, A. N. Parra-vasquez, A. G. Godin, L. Cognet, and B. Lounis, Metrological 556 Investigation of the (6,5) Carbon Nanotube Absorption Cross Section, J. Phys. Chem

E. Meijering, Design and validation of a tool for neurite tracing and analysis in 559 fluorescence microscopy images, Cytometry A, vol.58, pp.167-176, 2004.

Y. Han, Brownian Motion of an Ellipsoid, Science, vol.314, issue.5799, pp.626-630, 2006.
DOI : 10.1126/science.1130146

N. Fakhri, F. C. Mackintosh, B. Lounis, L. Cognet, and M. Pasquali, Brownian Motion of Stiff Filaments in a Crowded Environment, Science, vol.130, issue.8, pp.1804-1807, 2010.
DOI : 10.1021/ja0777234

URL : https://hal.archives-ouvertes.fr/hal-00635202

G. J. Schutz, H. Schindler, and T. Schmidt, Single-molecule microscopy on model membranes reveals anomalous diffusion, Biophysical Journal, vol.73, issue.2, pp.1073-1080, 1997.
DOI : 10.1016/S0006-3495(97)78139-6

C. Tardin, L. Cognet, C. Bats, B. Lounis, and D. Choquet, Direct imaging of lateral movements of AMPA receptors inside synapses, The EMBO Journal, vol.22, issue.18, pp.4656-4665, 2003.
DOI : 10.1093/emboj/cdg463

URL : https://hal.archives-ouvertes.fr/hal-00143981

A. Kusumi, Y. Sako, and M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells, Biophysical Journal, vol.65, issue.5, pp.2021-2040, 1993.
DOI : 10.1016/S0006-3495(93)81253-0

Y. Han, A. Alsayed, M. Nobili, and A. G. Yodh, Quasi-two-dimensional diffusion of 571 single ellipsoids: aspect ratio and confinement effects
DOI : 10.1103/physreve.80.011403