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Finite strain analysis of nonuniform deformation inside shear bands
in sands
O. Chupin1, A. L. Rechenmacher2,*,† and S. Abedi2

1Université Nantes-Angers-Le Mans, Laboratoire Central des Ponts et Chausses, Nantes, France
2Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA
A methodology has been developed to extend the incremental (Eulerian) Digital Image Correlation (DIC) 
technique to enable a Lagrangian-based large-strain analysis framework to examine the nature of strain and 
kinematic nonuniformity within shear bands in sands. Plane strain compression tests are performed on dense 
sands in an apparatus that promotes unconstrained persistent shear band formation. DIC is used to capture 
incremental, grain-scale displacements in and around shear bands. The performance of the developed 
accumulation algorithm is validated by comparing accumulated displacements with two sources of 
reference measurements. A comparison between large and infinitesimal rotation is performed, 
demonstrating the nature of straining within shear bands in sands and the necessity of using a finite 
strain formulation to characterize ensuing behavior. Volumetric strain variation along the shear band is 
analyzed throughout macroscopic postpeak deformation. During softening, volumetric activity within the 
shear band is purely dilative. During the global critical state, the shear band material is seen on the average 
to deform at zero volumetric strain; however, locally, the sand is seen to exhibit significant nonzero 
volumetric strain, putting into question the current definition of critical state. At the softening-critical state 
transition, a spatially periodic pattern of alternating contraction and dilation along the shear band is 
evidenced, and a preliminary evaluation indicates that the periodicity appears to be a physical phenomenon 
dictated only in part by median grain size. 

KEYWORDS: shear band; sand; length scale; granular material; Digital ImageCorrelation (DIC); critical state
1. INTRODUCTION

The globally observed geomechanical response phenomena of postpeak softening and dilation in
dense sands go hand-in-hand with shear band formation. In an elemental specimen, once a single
persistent shear band has fully formed (in the absence of boundary interference), the shear band
material is the only active material involved in significant deformation [1,2]. Recognizing then that the
shear band material entirely controls global postpeak response, it is necessary to understand the
underlying nature of granular material behavior within the shear band to fully and accurately
characterize the softening and critical state material responses.

Numerous experimental and numerical research works have lead to a variety of discoveries about
the underlying local micro-, and mesoscale processes within shear bands that govern postpeak
response in sands. For instance, grain rotation has been found to play a significant role in manifesting
shear band response (e.g. [3–6]). Several experimental works (e.g. [7–10]) have highlighted that the
shear band material undergoes significantly higher volumetric dilation locally than that reflected
*Correspondence to: A.L. Rechenmacher, Civil and Environmental Engineering, University of Southern California, Los
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through global response. Similar results have been found numerically [6]. Oda and Kazama [11] found
experimental evidence on the presence of large void spaces within shear bands, which were
hypothesized to be formed from the buckling of column-like structures, or force chains, within the
shear band [5]. Additional research has provided evidence of simultaneous local dilation and
contraction occurring along shear bands during the critical state [5,10,12,13].

It is commonly accepted that the buckling of force chains forms the primary mesoscale mechanism
leading to macroscopic softening within shear bands (e.g. [13–17]). In turn, recent attention has been
drawn to the recognition that shear band deformation is largely nonaffine, and this nonaffinity arises
not only from buckling force chains but also from microbands [16] and vortex structures [16,18,19].
Walsh et al. [20] demonstrate the importance of considering mesoscale particle-group interactions in
generating realistic macroscopic granular response by including particle-group interactions; more
realistic models of shear banding, strain softening, and dilation were obtained, i.e. considering that
binary interactions between particles is not enough to produce realistic behavior. Further, the
implementation and refinement of models that incorporate microscale or mesoscale rotations (e.g.
higher gradient models) require an accurate characterization of the microscale and mesoscale
kinematics occurring in the shear band. Thus, understanding the precise nature of these mesoscale
kinematic features will play a key role in advancing understanding of the physical phenomena
responsible for strain localization, softening, and macroscopic stress evolution in sands, as well as the
understanding of jamming and flow in dense granular materials in general.

While the research findings mentioned above have considerably advanced our understanding of the
underlying nature of shear band deformation, less attention has been paid to the possibility of a
spatially patterned or systematic nature to the nonaffine kinematics observed within shear bands. The
technique of Digital Image Correlation (DIC), which enables nondestructive local displacement
evaluation through gray-level pixel mapping, has proven a valuable tool for experimental study of
local displacement behavior in granular materials, such as sand. While DIC use in granular materials
has largely focused on macroscopic shear band properties, such as thickness, inclination, and
patterning (e.g. [21–23]), few recent works have focused on kinematic behavior internal to the shear
band. Lesniewska and Wood [24] found “microbands” of alternating dilation and contraction, which
seemed to evidence a regular spacing, along a macroscopic shear zone formed in glass beads.
Rechenmacher [25] and Rechenmacher et al. [13] calculated various kinematic quantities along shear
bands from DIC displacement fields in sands undergoing plane strain compression. Their results
revealed a distinct seemingly spatial periodic pattern in the kinematics along the length of the shear
band at the softening-critical state transition. This pattern was argued to mark a collective coordinated
multiforce chain collapse event, offering one of the first glimpses of the evolution of active force chain
activity in a real granular material.

In the work by Rechenmacher [25] described above, DIC analyses were performed at more than
fairly large strain increments, which can compromise DIC precision. Chupin and Rechenmacher [26]
and Rechenmacher et al. [13] circumvented this problem by utilizing a methodology developed to
accumulate consecutive small-strain DIC analyses to derive large strain behavior. Here, we disclose
the details of this methodology, to support both previous findings, as well as the findings presented
here, which focus on the assessment of local volumetric strain evolution, spatial nonuniformity, and
patterning within shear bands. Further, the accumulation of incremental DIC analyses has recently
been accommodated in some commercial DIC codes that emphasize the interest and relevance of
methods to handle this problem. Such a procedure holds tremendous promise toward the further study
of mesoscale kinematics in shear bands, for example, this methodology has recently enabled the
discovery that the kinematic patterns seen by Rechenmacher et al. [13] are related to the presence of
vortex structures along the shear band [19]. The spatial periodicity in kinematic activity and the size,
shape, spacing and evolution of associated vortices likely relate to an underlying length scale
governing granular material deformation. The DIC method and our associated accumulation algorithm
have the potential to play an important role in pursuing improved understanding of how such
mesoscale deformational and kinematic processes control granular material behavior.

Herein, we describe in detail our methodology developed to accumulate incremental (Eulerian) DIC
displacement data to enable Lagrangian-based large-strain analysis of local kinematics and strain
associated with shear banding in dense sands. The resulting finite strain measures are then used to
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evaluate volumetric strain nonuniformity and ensuing spatial and temporal patterning of volumetric
strain variations, within shear bands in sands. The paper is organized as follows: We first describe the
plane strain apparatus, testing methods, and DIC technique for quantifying local grain-scale
displacements. We then describe the approach to accumulating incremental DIC results to obtain
quantitative displacement behavior over finite strain increments. Lagrangian strain measures and
kinematic quantities are then defined. The performance of the accumulation algorithm is validated by
comparing accumulated displacements with two sources of reference measurements. The nature of
shear band straining is exemplified through a comparison between large and infinitesimal rotation.
Volumetric strain along the shear band is analyzed throughout macroscopic postpeak deformation,
highlighting the spatial nonuniformity of shear band kinematics. Local volumetric strains are
integrated and averaged over the shear band region to enable comparison with global behavior.
Finally, the periodicity of observed kinematic fluctuations at the softening-critical state transition is
analyzed to provide preliminary insight toward an internal material length scale.
2. EXPERIMENTAL METHODS

Prismatic-shaped (14 by 4 by 8cm) sand specimens are subjected to plane strain compression
(Figure 1). Glass-lined acrylic plates enforce the zero-strain conditions and allow imaging of in-plane
deformations. The glass wall-sand membrane interface is lubricated with translucent silicon oil to
minimize frictional loss. The specimen base rests on a low-friction linear bearing “sled,” which
provides the kinematic freedom for translation and offset required for unconstrained formation of a
single persistent shear band. Specimens are sealed within a translucent latex membrane. The
configuration shown in Figure 1 is mounted within a 41-cm diameter, 3.175-cm-thick acrylic confining
cell that is filled with 10 cSt. pure silicon fluid to provide the medium for confining pressure (in plane
horizontal stress) application. This apparatus also has been described in previous works, where the
reader is referred for more information (e.g. [2,13,21]).

Two different subrounded to subangular sands are represented in the results presented here. The
first, called “Masonry-Coarse” (MC) sand, is a sieved uniform mixture of masonry and construction
sands: D50=0.84mm, Cu=1.2, and Cc=1.1. Results are also presented for uniform sieved Delaware
Beach (DB) sand: D50=0.40mm, Cu=1.3, and Cc=1.1. These sands were mixed and/or chosen to
create a varied grain coloring to reflect gray-level variation in the digital images, which is a
requirement for use of the DIC technique as described below. Specimens were prepared by allowing
Figure 1. Concept drawing depicting key features of the plane strain testing apparatus.
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dry sand to free-fall through a rainer of a slightly smaller footprint as the specimen. Multiple openings
in the rainer, followed by a coarse mesh, helped distribute the sand uniformly across the specimen
cross section. Specimen relative densities typically ranged between approximately 75 and 100%, and
consolidated mean normal effective stresses were kept correspondingly low, 110 to 200 kPa, to
promote dilative response and shear band formation. Specimens were saturated and sheared under
drained strain-controlled compression.

Throughout shearing, digital images were collected at regular intervals, typically every 0.10 to 0.2%
global axial strain. Note that the radius of curvature of the acrylic confining cell is locally relatively
large, so image distortion across the 4-cm specimen width has been found to be negligible [27].
3. DIGITAL IMAGE CORRELATION

The DIC method derives displacements by mapping subsets of pixels at many points across the
specimen surface (e.g. [28,29]). The result is a very fine and nearly temporally continuous (based on rate
of image capture) representation of grain-scale surface motion. Here, we offer only a brief overview of
the DICmethod, so the reader is referred to the above references for more in-depth coverage of the topic.
The software VIC-2D, by Correlated Solutions, Inc., was used to execute the DIC measurements.

A typical 8-bit digital image represents a two-dimensional array of gray-level values, which are integers
ranging from 0 (pure black) to 255 (pure white). For an object whose surface is varied in terms of coloring,
pixel gray-level values will vary spatially. Between consecutive images depicting a deformation process,
local displacement are obtained by mathematically mapping gray-level patterns within small subsets of
pixels. Here, the Normalized Sum Square Difference (NSSD) coefficient is utilized as the minimization
measure in the subset mapping process. The output of DIC are the displacements of the subset centers, and
by overlapping subsets, an intense spatial array of local displacement data is obtained.

Two different experimental grade digital cameras were used to collect the images: a 4-Megapixel
Q-Imaging PMI 4201 camera and a 5-Megapixel Point Grey Grasshopper camera. Note that camera
sensors must be of “experimental grade” (zero or very low defect), as a given feature, or “speckle,”
as it translates from pixel to pixel, whichmust yield a consistent gray-level for accurate DIC-basedmapping.
Typically, image scales were around 17 pixels/mm (or 0.06mm/pixels), such that a 0.4-mm-diameter sand
grain occupies about 7 pixels across. Having an image feature, here, a sand grain occupies
multiple pixels is known as “oversampling” and is needed for subpixel displacement measurement
accuracy (e.g. [30]). Subpixel displacement measurement is further enabled by interpolating pixel
gray-level values between pixels to create a smooth representation of gray-level variation. Cubic
b-spline interpolations were used here.

The accommodation of surface straining is essential for accurate DIC mapping. In the case of sands,
slight relative movement among the sand grains (over small deformation increments) manifests such
straining. Subset straining typically is accommodated in DIC by including an assumed form of subset
deformation shape functions in the mapping minimization measure. For example, if x represents the
initial position of some point within a subset, and x′ represents the corresponding deformed position of
the same point, then for first-order subset straining [31], we have

x′
� �

i
¼ xð Þi þ uð Þi þ

@ ui xð Þf g
@x j

dx j; (1)

where u is the vector displacement field, i, j=1, 2 (for 2D), and @ui/@ xj are the displacement gradients
of the subset. Thus, minimization of the NSSD coefficient, and thus accurate displacement
measurement, depends not only on displacement, u, but also on the strain the subset is assumed to
undergo. Herein, image increments of 0.1 to 0.2% axial strain, which represent about 2 to 4% gross
shear strain across a shear band, proved adequate to accurately accommodate the assumption of first-order
subset deformation. While the subset shape functions can provide a measure of local straining, it is more
accurate to calculate local strains directly from the displacement field (e.g. [32,33]). We note that other
recent implementations of DIC for granular material analysis [24,34] seem to not have explicitly
accommodated the possibility of subset deformation in the DICmatching algorithms. Not accommodating
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subset straining is a potentially significant omission: if the material is undergoing strain, undermatched
subset shape functions can lead to systematic errors [35].

Subset sizes should be large enough to reflect a unique gray-level variation but small enough to allow
capturing of strain nonuniformity within the material. The latter was the overriding consideration here. A
systematic trial was performed, and for subset sizes smaller than about 10 times the median grain
diameter, D50 (or, about the thickness of the shear band), spatial variations in displacement and strain
along the shear band were consistently detected, independent of subset size. Subsets that were larger than
about 10 times D50, on the other hand, tended to average out kinematical behavioral fluctuations, giving
the impression of more uniform deformation. Thus, to ensure precise detection and characterization of
shear band spatial behavioral nonuniformities, subset sizes were routinely kept smaller than 10 times
D50. Subset center-to-center spacing was scaled to achieve displacement data point spacing on the order
of median grain diameter. DIC measurement accuracy has been found to be about +/� 0.009mm.

Figure 2 shows contours of displacement norm obtained from a typical DIC analysis conducted
between two images representing a 0.6% axial strain increment after a shear band had fully formed
(note that while such relatively large strain increment leads to displacement measurement inaccuracies
amidst the assumption of first-order subset deformation, it is used here to qualitatively illustrate the
nature of the macroscopic deformation field). The material above the shear band is seen to be
translating vertically downward with the applied axial load, the material below the shear band
translates laterally with the base “sled,” and nonzero displacement gradients are seen only within the
shear band. The DIC analysis reflected in Figure 2 comprised about 10,000 displacement data points
over the entire analysis area and about 600 data points within the shear band.
4. DISPLACEMENTS AND KINEMATICS IN A LAGRANGIAN FRAME

As described above, the DIC method enables very accurate computation of local incremental
displacements across an object’s surface between digital images taken at two different instances in
time during a deformation process. Previous research [13] has indicated that force chains collapse over
Figure 2. Typical DIC-measured displacement field (referenced to base sled) after full shear band formation.
Scaled displacement vectors are shown at selected locations indicating the general direction of motion.
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larger strain increments that are afforded by our DIC analyses increments here. The task then is to
devise a means to accurately accumulate successive DIC results to enable characterization of
large-deformation, local shear band displacements, and ensuing strain and kinematic behaviors that
serve as signatures of force chain collapse. Because several commercial DIC codes have now
incorporated accumulation methodologies, descriptions of procedures underlying such methodologies are
of interest. Here, we first describe the approach developed to accumulate successive DIC results. We then
describe the strain and kinematic measures that will be used to characterize behavior over finite
deformation increments.

Figure 3 conceptually depicts the accumulation process for two consecutive deformation
increments. Figure 3a shows image i of an arbitrary object (here represented with a checkerboard
pattern for ease in visualization) at some initial deformation state. The black dots represent
locations of subset centers, xi

sp, spaced on a regular grid. Here, the superscript “sp” emphasizes a
spatial (Eulerian) reference frame. Note that the sizes of the subsets (not shown) are typically
much larger than the grid-point spacing. The “triangles” in Figure 3a represent the deformed
positions, xi+1, of the subset centers obtained from a DIC analysis of images i to i+1 (only upper-left four
data points are shown for clarity):

xiþ1 ¼ xspi þ Δuspi!iþ1; (2)

where Δuspi!iþ1 represents the DIC-measured displacements of xi
sp between images i to i+1.

Figure 3b shows the deformed state of the same object in Figure 3a as captured by image i+1.
Note that the deformations are intentionally shown to be large for visualization purposes only.
Our goal here is to track the positions of the “triangles,” xi+1, as they move in the subsequent
deformation increment, from image i +1 to i +2. We first use DIC to measure incremental
displacements, Δuspiþ1!iþ2, of spatial grid points, xi+1

sp, the positions of which may or may not be
the same as in previous DIC increments (for demonstration purposes, the grid of subset centers in
Figure 3b is shifted slightly, in image coordinate space, from that in Figure 3a). Then, to track
the fate of the triangles, we must interpolate the DIC result, Δuspiþ1!iþ2, at the correct locations,
points xi+1. We employ the cubic spline interpolation method here. While the nature of the
displacement field between subset centers is not known a priori, we suspect it is likely nonlinear
within a shear band, even for small strain increments. Note that the accumulation approach used
by Gonzales and Knauss [36] for application to a bonded continuous solid utilized a linear
interpolation.
Figure 3. Process of accumulating successive DIC results: a) image i, representing an arbitrary initial state
of a checkerboard-colored object; and b) image i+1, representing a subsequent deformation state. The origin
of the “global” or image coordinate system, anchored to the fixed camera, is indicated at the upper left of
each image. Solid dots represent the regular grid of subset centers (the subsets themselves are not shown).
Triangles in (a) represent deformed positions, x, of subsets centers for the deformation increment i to i+1.
The same triangles are shown in (b); we wish to track their displacement for the increment i+1 to i+2, based

on DIC-measured displacements of the subset grids, xi+1
sp.
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In general, if the grid points in Figure 3a represent material points, X, whose displacements we wish
to track through n DIC increments, then the accumulated Lagrangian displacement field, un, is given as

un ¼ u1 þ
Xn
k¼2

Δuk; (3)

where Δuk represent the interpolated incremental displacements of the material coordinates during the
kth DIC analysis increment. Note that no interpolation is required for u1 because the displacements of
X are analyzed directly.

The deformation gradient over the accumulated n increments can be determined directly by

Fn ¼ Iþ @un
@X

; (4)

where the accumulated displacement un is differentiated with respect to the Lagrangian grid, X. The
deformation gradient could also be determined from the deformation gradient increments, as in
Gonzales and Knauss [35]. Consider two DIC analyses performed on two consecutive sets of images,
(I0, I1) and (I1, I2). The accumulated displacement over the two increments, u2, is a function of Δu0!1

and Δu1!2, which respectively depend on x0, the initial material coordinates, and x1, the material
coordinates after Δu0!1. Then, the deformation gradient after these n=2 increments is

F2 ¼ Iþ @u2
@x0

¼ Iþ @ Δu1!2 þ Δu0!1ð Þ
@x0

: (5)

Taking into account the chain rule in the calculation of @Δu1!2/@x0,

@Δu1!2

@x0
¼ @Δu1!2

@x1
� @x1
@x0

; (6)

Equation 5 becomes

F2 ¼ Iþ @Δu1!2

@x1
� Iþ @Δu0!1

@x0

� �
þ @Δu0!1

@x0
¼ Iþ @Δu1!2

@x1

� �
� Iþ @Δu0!1

@x0

� �
; (7)

which is reduced to

F2 ¼ ΔF1!2�ΔF0!1; (8)

where ΔFi! i+1is the incremental deformation gradient from image i to i+1:

ΔFi!iþ1 ¼ Iþ @ui!iþ1

@xi
: (9)

The generalization of Eqn 8 for n image increments is

Fn ¼
Yn
k¼1

ΔFk: (10)

Note, however, that the incremental deformation gradients, ΔFk, must be computed with respect to
the current material coordinates, x, which are not on a regular grid. Alternatively, ΔFk can be
computed with respect to xsp, but then, it must be interpolated properly at x before running the product
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in Eqn 10. For convenience, Eqn 4 was used here, as no additional interpolation is required. Derivatives in
the present paper are obtained by central differences, which are second-order accurate in space.

We utilize several kinematic quantities, derived from the deformation gradient to characterize
mesoscale activity within shear bands. Macrorotations that correspond to rigid body rotations can be
obtained from the polar decomposition of F (here, we refer to the accumulated F, but the subscript is
dropped for convenience). F is decomposed in terms of an orthogonal rotation tensor R and a
symmetric stretch tensor, U, in the material configuration:

U ¼
X3
a¼1

laNa�Na; (11)

in which N1, N2, and N3 are the eigenvectors of the right Cauchy-Green tensor, C=FT �F, and l1
2, l2

2,
and l3

2 are the corresponding eigenvalues (e.g. [37]). Note that, for plane strain, l3=0. Then, R=F�U-1,
and the subsequent rotation Ω is calculated from

R ¼
cosΩ sinΩ 0
� sinΩ cosΩ 0

0 0 1

2
4

3
5: (12)

Area changes at the surface of the specimen are also computed. Because out-of-plane translation of
sand grains from the imaging surface is only occasionally observed, we assume that the area changes
on the surface are reflective of volume change. Thus, local volume change is characterized from

dVn ¼ JndVo; (13)

where dVo represents the infinitesimal material volume at the beginning of the accumulated increment,
dVn the volume after the accumulation of n DIC increments, and Jn=det (Fn).

The scalar quantities Ω and J, derived from finite strain accumulations, will be used below to
characterize kinematic activity within shear bands. For convenience, we will translate our data
interpretation to the shear band basis, with axes x* and y* running parallel and perpendicular to the
shear band, respectively. To obtain the inclination of the shear band, we utilize the velocity gradient,
L ¼ @v x; tð Þ=@x. Assuming that only points within the shear band are subject to significant nonzero
velocity gradient (see Figure 2), we apply a small threshold on jLj to isolate points considered to be
part of the shear band, and then, shear band inclination is obtained by a least squares linear fit to those
points. We emphasize that the kinematic quantities reported here are derived from the calculation of
the relative movements between adjacent subset centers (spaced on the order of a sand grain) and are
not reflective of the kinematic behavior of the DIC subsets or individual sand grains.
5. ACCURACY OF ACCUMULATED DEFORMATIONS

To assess the accuracy of our accumulation approach, we accumulate displacements in the uniformly
translating regions above and below the shear band (Figure 2) and compare with corresponding
displacements measured from linear variable differential transformer (LVDT) transducers located
inside the confining cell. First, vertical translation of the top platen is compared with vertical
displacements of the top row data of the DIC analysis data, adjacent to the top platen; second,
horizontal movements of the linear bearing “sled” are compared with the bottom row of DIC data, just
above the sled. As subset straining is zero in these regions, DIC analyses can also be performed quite
accurately over large deformation increments. Thus, “direct” DIC measurements were used as an
additional check against the accumulated results.

A test on dense Delaware Beach (DB) sand was used for comparison. Global response data for this
test are shown in Figure 4. The data points on the shear stress, q, versus axial strain curve indicate
locations where relevant images were collected. Corresponding image numbers are noted next to a few
8



Figure 4. Global shear stress and volumetric strain response of a dense DB sand during a drained plane
strain compression test.
of the points for reference. The axial strain increment, Δea, between each consecutive image was
around 0.14 to 0.15%. We start with deformation analyses between images 46–47 and successively
consider larger and larger strain increments, e.g. 46–48, 46–49, etc., up to 46–52, which represents a
maximum axial strain increment of 0.87% (larger strain increments are not of interest, as will be
discussed below). Figure 5 shows the corresponding displacement measurements as a function of axial
strain increment. For both the horizontal (Figure 5a) and vertical (Figure 5b) displacements, the
accumulated deformations are determined in accordance with the other measurement sources with
nearly negligible difference for increments at least up to Δea � 0.75%. At Δea=0.87%, and the
accumulated results begin to differ, albeit only slightly, while it is not shown here that increments up
to Δea=1.14% were analyzed with little additional error. Herein, accumulated increments were
typically around 0.6% axial strain.
6. VALIDATION OF LARGE STRAIN MEASURES

To gage the nature of straining within shear bands and to emphasize the need for a large strain
formulation, we compare the rigid rotation, Ω, computed from the rotation tensor R (Eqn. 12) to its
infinitesimal equivalent, o, for a variety of accumulated strain increments. The same DB sand test as
above is again used for this comparison (Figure 4). The comparison between Ω and o is conducted for
three different axial strain increments, 0.15%, 0.59%, and 1.27%, represented respectively by the
Figure 5. Comparison among accumulated DIC, direct DIC, and LVDT-measured displacements for (a)
horizontal translations adjacent to the bottom “sled,” (b) vertical translations adjacent to the top platen.
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image increments 46–47, 46–50 and 46–55 (note that force chains are in the process of buckling
through the course of softening and the softening-critical state transition [13]; thus, significant nonzero
rotation should be present in each of these increments). Incremental DIC analyses are conducted
between each consecutive image pair, e.g. 46–47, 47–48, etc., and then, corresponding accumulations
were performed. The deformation gradient, F, and, then, Ω and o each were computed over the
corresponding accumulated increments.

We define the relative difference between finite and infinitesimal rotations as:

ΔΩ inf ¼ Ω� o
Ω

: (14)

A fixed number of displacement data points (582) inside the shear band were used for each
calculation. Figures 6a through 6c shows the frequency distributions of ΔΩinf, expressed as
percentages, for the three respective strain increments. For Δea=0.15% (Figure 6a), the relative
difference between finite and infinitesimal rotations is less than 1% for approximately 80% of the 582
data points, and the maximum difference is less than 2%. However, as axial strain increment increases,
not only does the mean relative difference increase, but the spread in relative difference also increases.
For Δea=1.27% (Figure 6c), the average ΔΩinf is 4.5%; and, for more than 40% of the data points, the
calculated differences are between 5 and 12% (Figure 6d). Note that part of the increased spread in
relative difference in Figures 6a to 6c is because of the significant spatial variation in kinematic
activity along the shear band that arises in the latter parts of softening [13].

The results in Figure 6 clearly justify the use of finite strain measures for representing shear band
kinematics, in particular for deformation increments greater than 0.15% global axial strain (�2 to 4%
gross shear strain). Because the spatial regions where rotational magnitudes are highest likely signify
force chain buckling, an accurate characterization of the spatial variation in kinematic activity, and
consequently force chain spacing, is crucial for proper behavioral characterization and potential length
scale assessment associated with granular material deformation.

Further glimpse on the nature of straining within a shear band, and the limitations of the DIC
technique when used over large strain increments, we compare finite strain rotation, Ω, calculated from
accumulated DIC measurements to rotation calculated from a single direct DIC analysis performed
directly over the same strain increment, Ωdirect. For the former, we use the accumulated data for the
strain increment Δea=0.59% described above. For the latter, we perform a DIC analysis directly from
images 46–50 and calculate Ωdirect for the same 582 points within the shear band as in the accumulated
results. We define the relative difference between the two methods, ΔΩdir, in a similar fashion as
Figure 6. Frequency distributions ((a) through (c)) and cumulative distribution function (d) of the relative
difference between finite and infinitesimal rotations within the shear band as a function of strain increment.

10



Eqn 14 but with o replaced by Ωdirect. Figure 7 presents the frequency and cumulative (inset)
distribution functions for ΔΩdir. The results show significant spread in ΔΩdir, which locally can be as
high as 60%. For about 30% of the data points, the difference exceeds 5%. The results in Figure 7
emphasize the necessity of accumulating incremental DIC results for precise shear-band behavioral
characterization over large strains.
7. VOLUMETRIC STRAIN NONUNIFORMITY IN SHEAR BANDS

We utilize the accumulation procedure described above to examine the nature and evolution of
kinematic volumetric activity within a persistent shear band, with a particular focus on spatial
nonuniformity and patterning. Our analyses were foremost targeted with the aim of most distinctly
capturing the kinematic pattern seen at the softening-critical-state transition by Rechenmacher et al.
[13], which, again, is indicative of a coordinated force chain buckling event. Based on trial and error,
we have found that gross shear band shear strain increments of roughly 10 to 15% most optimally
capture the kinematic fluctuations associated with this force chain collapse event (see [13]). These
increments formed the starting point for the analyses shown here.

Figure 8 shows spatial variations in the Jacobian, J (Eqn. 13), along and surrounding a persistent
shear band, and their evolutions through macroscopic postpeak deformation during a plane strain
compression test on a dense MC sand specimen (Figure 9). Figures 8a through d each represent
behavior over an axial strain increment of approximately 0.6% (�14% gross shear strain across band)
derived from an accumulation of DIC results over three consecutive 0.2% axial strain DIC increments.
The data points in Figure 9 demarcate the position with respect to macroscopic behavior of the first
and last images in each 0.6%-accumulated increment (image numbers are labeled only in Figure 9a for
clarity). The first accumulated strain increment (Figure 8a), between images 64–70, represents the
initial stages of softening, just after full shear band formation. The specimen globally is dilating
(Figure 9). Similar behavior is reflected locally in the Jacobian data in Figure 8a, and dilation
magnitude is largely uniform along the length of the shear band. In the next strain increment,
represented between images 70–76, the sand is still undergoing macroscopic softening. Both global
and local dilation have lessened in magnitude, as compared to the previous increment. Locally, few
zones along the shear band began to exhibit contraction (Figure 8b). The third increment, reflected
between images 76–82, is at the softening-critical-state transition. Global volume change is nearly
zero, and yet, Figure 8c indicates that significant nonzero volumetric activity is occurring locally
within the shear band: contractive and dilative behavior alternate in nearly periodic fashion spatially
along the length of the shear band. Such behavior is a direct manifestation of the coordinated
Figure 7. Frequency and cumulative (inset) distributions for differences between finite-strain rotations
calculated from accumulated versus direct DIC analyses over 0.59% axial strain increment.
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Figure 8. Local shear band volumetric strains for a dense MC sand specimen calculated from
accumulations over the following axial strain increments: (a) 6.3 to 7.0%, (b) 7.0–7.6, (c) 7.6–8.3, (d)
8.3–8.9 (see Figure 9). Light colors (yellow online) represent dilation (J>1) and dark colors (blue

online) represent contraction (J<1).
multiforce chain buckling identified by Rechenmacher et al. [13]. We emphasize again that the strain
increment of analysis represented in Figure 8c was not stumbled upon randomly: it was settled on after
many extensive trials of different windows, and thus we feel it fairly accurately represents the typical
duration of this force chain buckling event. The final increment, between images 82–88, is entirely
within the critical state: shear stress is approximately constant and global volumetric strain is
approximately zero (note that the minor global volumetric contraction near the end of the test was
performed because of a small leak that formed in the specimen drainage line). Nevertheless, local
volumetric contraction and dilation (Figure 8d) are still occurring along the shear band, though in a
less patterned fashion as the previous increment. Note that through all increments, local volume
change outside of the shear band is practically zero.

Because global volumetric strain is nearly zero for the strain increments reflected in Figures 8c and
d, the expansion and contraction observed along the shear bands should balance each other. As an
additional means to validate the nature of our DIC-derived accumulated volumetric behavior, we
integrate and average the calculated local J values across the shear band and compare it to the global
volumetric strain measured for the same analysis increments. The boundaries of the shear band are
approximated by way of the displacement gradient: regions of nonzero displacement gradient (above a
small threshold) are considered to be inside the shear band. The volumetric strain, evol, then is
calculated from evol=1�J. Table I compares the integrated local and global volumetric strains for each
12



Figure 9. Global shear stress (top) and volumetric strain (bottom) versus global axial strain during a plane
strain compression test on dense MC sand. Data points indicate the first and last image numbers
corresponding to the accumulated increments in Figure 8. Image locations/numbers in (b) are same as in (a).
The “bumps” in the curves at approximately 2.0 and 5.5% axial strain were because of an errant fluctuation
in sensor readings. The slight volumetric compression during critical state was because of a very small leak

in the specimen drainage line.
analysis increment. During softening (image increments 64–70 and 70–76), volumetric strain within
the shear band is significantly higher than it was captured globally. Mooney et al. [8] and Finno and
Rechenmacher [2] similarly saw differences between local and global dilative volumetric strain
magnitudes within shear bands. Nearer to and during the critical state (image increments 76–82 and
82–88), both global and local measurements reflect minimal volume change. Note that the values of
local evol reported in Table I depend on the threshold used to assess the shear band limits; however,
this dependency is on the order of (10-2) % of volumetric strain. Further, while the critical state local
(integrated) volumetric strain magnitudes of �0.06 and �0.11% may seem significant as compared to
global magnitudes recorded during softening, they represent less than 3% of the integrated volumetric
strain (�3.53%) that occurred during softening. From this standpoint, the shear band can be
considered to be deforming at constant volume. This general agreement between the integrated local
and global volumetric strains serves to further validate the precision of our accumulation approach.
Moreover, the results in Figures 8 and 9 and Table I quantitatively confirm that a global critical state of
continual shearing at constant volume had been achieved in the shear band only in an average sense:
locally, the shear band material is undergoing significant nonzero volumetric strain. This observation
suggests that the traditional definition of “critical state” does not accurately describe true material
behavior, at least during the initial stages of critical state that were analyzed here.
Table I. Postpeak incremental global and local (accumulated shear band only) volumetric strains during a
plane strain test on dense MC sand (Figure 9).

Image increment
Axial strain increment Global volumetric strain Integrated local volumetric strain

(%) (%) (%)

64–70 6.3–7.0 �0.44 �3.53
70–76 7.0–7.6 �0.14 �0.66
76–82 7.6–8.3 0.00 �0.06
82–88 8.3–8.9 +0.03 �0.11
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The need for accumulating incremental DIC results was clearly justified in Sections 5 and 6.
However, to directly assess the effect of large-strain DIC analysis (i.e. without accumulation) on
computed volumetric behavior, we performed a DIC analysis directly from images 76 to 82 and
compared the computed Jacobian, J, with the accumulated result shown in Figure 8c. Both analyses
produced a very similar pattern of J variation along the shear band. However, consistently, the
DIC-direct analyses overpredicted J magnitudes, translating to local over-predictions in volumetric
strain, which in some cases is as high as 50%. Similar comparisons of our tests yielded similar
results. These observations further emphasize the need for accumulation approaches for accurate
assessment of mesoscale granular material response using DIC methods.

At the softening-critical-state transition, Rechenmacher et al. [13] found a pattern of Jacobian
variation similar to that in Figure 8c, which, again, has been shown to represent the kinematic
manifestation of a coordinated multiforce chain collapse event. The seemingly periodic variation in the
pattern, seen here as well as in [13] and [25], is striking. The spacing between successive peaks in
Figure 8c was contrasted with pattern spacing observed in the works cited above, each representing
behavior for different sands [38]. Preliminarily, it seems that pattern spacing increases with median
grain size; however, the increase is not linear, which is not surprising, given the subtle differences
among the sands: the sand tested here was subrounded, the sand in [13] was more subangular, and
the data by Rechenmacher [25] was derived from more well-graded sand (Cu=3.8). Thus, other
factors besides median grain size are likely at play, and the precise nature of any such correlation
will require more data. Regardless, that kinematic spacing and grain size do correlate emphasizes
the nonrandom nature of the observed kinematic patterns. Given the important implications for
finding an underlying physically based internal length scale governing granular material deformation,
these findings merit additional research, and the techniques described here will serve an important role in
this effort.
8. CONCLUSIONS

The experimental method of DIC has been employed to quantify local displacements, for grain scale
resolution, within shear bands in sands undergoing plane strain compression. A methodology has been
presented to accumulate incremental DIC analysis results to afford displacement measurements over
large strain increments. Comparison of the accumulated deformations in uniformly translating zones
with external deformation measures have been used to validate the accuracy of the proposed
accumulation method. Comparison between kinematic rotations derived from large strain and
infinitesimal approximations legitimize the choice of large strain measures used herein and
additionally highlight the nature of the significant straining that occurs locally within shear bands.

The accumulation methodology was used to track the spatial variation of volumetric strain within a
shear band throughout the postpeak regime. Volumetric strain was seen to evolve from fully dilative to
spatially varying dilation and contraction. Integration of the volumetric strain variations across the
shear band within deformation increments during the global critical state confirms the material
volumetric strain is indeed zero during the critical state. These results further legitimize the DIC-based
accumulation approach offered here for local strain characterization in sands. The local volumetric
fluctuations seen during the global critical state suggest that the traditional definition of critical state is
not sufficient to describe local material behavior.

At the softening-critical-state transition, previous research has revealed a clear pattern of nearly
periodic spatial variation of various kinematic quantities. The volumetric strain fluctuations presented
here exhibit similar spatial variation. Comparison of the spatial periodicity found among several tests
suggests that the spatial patterning depends at least in part on grain size and that this spacing may
reflect an internal length scale that merits further consideration, for which the techniques described
here will play an important role.
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