Fixed points in conjunctive networks and maximal independent sets in graph contractions

Abstract : Given a graph G, viewed as a loop-less symmetric digraph, we study the maximum number of fixed points in a conjunctive boolean network with G as interaction graph. We prove that if G has no induced C 4 , then this quantity equals both the number of maximal independent sets in G and the maximum number of maximal independent sets among all the graphs obtained from G by contracting some edges. We also prove that, in the general case, it is coNP-hard to decide if one of these equalities holds, even if G has a unique induced C 4 .
Type de document :
Article dans une revue
Journal of Computer and System Sciences, Elsevier, 2017, 88, pp.145-163. 〈10.1016/j.jcss.2017.03.016〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01630474
Contributeur : Adrien Richard <>
Soumis le : mardi 7 novembre 2017 - 16:22:01
Dernière modification le : vendredi 10 novembre 2017 - 01:17:50

Fichier

2017-04-18_MaxFP_Symmetric_Arx...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Julio Aracena, Adrien Richard, Lilian Salinas. Fixed points in conjunctive networks and maximal independent sets in graph contractions. Journal of Computer and System Sciences, Elsevier, 2017, 88, pp.145-163. 〈10.1016/j.jcss.2017.03.016〉. 〈hal-01630474〉

Partager

Métriques

Consultations de la notice

13

Téléchargements de fichiers

1