R. C. Brown, Thermochemical Processing of Biomass Conversion into Fuels, Chemicals and Power. Chapter I-Introduction to Thermochemical Processing of Biomass into Fuels, Chemicals, and Power, 2011.

F. X. Collard and J. A. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew. Sustain. Energy Rev, vol.38, pp.594-608, 2014.

V. S. Sikarwar, M. Zhao, P. S. Fennell, N. Shah, and E. J. Anthony, Progress in biofuel production from gasification, Prog. Energy Combust. Sci, vol.61, pp.189-248, 2017.

S. R. Kersten, X. Wang, W. Prins, and W. P. Van-swaaij, Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations, Ind. Eng. Chem. Res, vol.44, pp.8773-8785, 2005.

B. Lai-fui-chin, A. Gorin, and H. B. Chua, Biomass Derived Syngas Cleaning Technologies, 2014.

D. De-clercq, Z. Wen, O. Gottfried, F. Schmidt, and F. Fei, A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion, Renew. Sustain. Energy Rev, vol.79, pp.204-221, 2017.

K. Hagos, J. Zong, D. Li, C. Liu, and X. Lu, Anaerobic co-digestion process for biogas production: progress, challenges and perspectives, Renew. Sustain. Energy Rev, vol.76, pp.1485-1496, 2017.

A. Löfberg, T. Kane, J. Guerrero-caballero, and L. Jalowiecki-duhamel, Chemical looping dry reforming of methane: toward shale-gas and biogas valorization, Chem. Eng. Proc: Proc. Intens, p.10, 2017.

M. Jafarbegloo, A. Tarlani, A. W. Mesbah, and S. Sahebdelfar, Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance, Int. J. Hydrogen Energy, vol.40, pp.2445-2451, 2015.

R. Y. Chein, Y. C. Chen, C. T. Yu, and J. N. Chung, Thermodynamic analysis of dry reforming of CH 4 with CO 2 at high pressures, J. Nat. Gas Sci. Eng, vol.26, pp.617-629, 2015.

B. Vasconcelos, L. Zhao, P. Sharrock, A. Nzihou, and D. P. Minh, Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites, Appl. Surf. Sci, vol.390, pp.141-156, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01609114

S. De-llobet, J. L. Pinilla, R. Moliner, and I. Suelves, Relationship between carbon morphology and catalyst deactivation in the catalytic decomposition of biogas using Ni, Co and Fe based catalysts, Fuel, vol.139, pp.71-78, 2015.

B. Vasconcelos, Phosphates-based Catalysts for Synthetic Gas (syngas) Production Using CO 2 and CH 4, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01365331

M. Luneau, E. Gianotti, F. C. Meunier, C. Mirodatos, E. Puzenat et al., Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas, Appl. Catal. B: Environ, vol.203, pp.289-299, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01457663

J. M. Ginsburg, J. Piña, T. E. Solh, and H. I. De-lasa, Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models, Ind. Eng. Chem. Res, vol.44, pp.4846-4854, 2005.

J. H. Kim, D. J. Suh, T. J. Park, and K. L. Kim, Effect of metal particle size on coking during CO 2 reforming of CH 4 over Ni-alumina aerogel catalysts, Appl. Catal. A Gen, vol.197, pp.191-200, 2000.

C. J. Liu, J. Ye, J. Jiang, and Y. Pan, Progresses in the preparation of coke resistant Nibased catalyst for steam and CO 2 reforming of methane, ChemCatChem, vol.3, pp.529-541, 2011.

L. Mo, E. T. Saw, Y. Du, A. Borgna, M. L. Ang et al., Highly dispersed supported metal catalysts prepared via in-situ selfassembled core-shell precursor route, Int. J. Hydrogen Energy, vol.40, pp.13388-13398, 2015.

A. Alipour, M. Rezaei, and F. Meshkani, Effect of alkaline earth promoters (MgO CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al 2 O 3 in dry reforming of methane, J. Ind. Eng. Chem, vol.20, pp.2858-2863, 2014.

D. San-josé-alonso, M. J. Illán-gómez, and M. C. , Román-Martínez, K and Sr promoted Co alumina supported catalysts for the CO 2 reforming of methane, Catal. Today, vol.176, pp.187-190, 2011.

M. A. Goula, N. D. Charisiou, G. Siakavelas, L. Tzounis, I. Tsiaoussis et al., Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO 2 or La 2 O 3 catalysts, Int. J. Hydrogen Energy, vol.42, pp.13724-13740, 2017.

E. Dahdah, J. Abou-rached, S. Aouad, C. Gennequin, H. L. Tidahy et al., CO 2 reforming of methane over Ni x Mg 6-x Al 2 catalysts: effect of lanthanum doping on catalytic activity and stability, Int. J. Hydrogen Energy, vol.42, pp.12808-12817, 2017.

H. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek et al., La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures, Fuel, vol.182, pp.8-16, 2016.

A. Löfberg, J. Guerrero-caballero, T. Kane, A. Rubbens, and L. Jalowiecki-duhamel, Ni/ CeO 2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production, Appl. Catal. B: Environ, vol.212, pp.159-174, 2017.

B. Abdullah, N. Azeanni-abd, D. V. Ghani, and . Vo, Recent advances in dry reforming of methane over Ni-based catalysts, J. Clean. Prod, vol.162, pp.170-185, 2017.

Z. Taherian, M. Yousefpour, M. Tajally, and B. Khoshandam, Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane, Micropour. Mesopour. Mat, pp.9-18, 2017.

G. Nahara, D. Mote, and V. Dupont, Hydrogen production from reforming of biogas: review of technological advances and an Indian perspective, Renew. Sustain. Energy Rev, vol.76, pp.1032-1052, 2017.

G. G. Meric, H. Arbag, and L. Degirmenci, Coke minimization via SiC formation in dry reforming of methane conducted in the presence of Ni-based core-shell microsphere catalysts, Int. J. Hydrogen Energy, vol.42, pp.16579-16588, 2017.

Z. Taherian, M. Yousefpour, M. Tajally, and B. Khoshandam, A comparative study of ZrO 2 , Y 2 O 3 and Sm 2 O 3 promoted Ni/SBA-15 catalysts for evaluation of CO 2 /methane reforming performance, Int. J. Hydrogen Energy, vol.42, pp.16408-16420, 2017.

A. Movasati, S. M. Alavi, and G. Mazloom, CO 2 reforming of methane over Ni/ZnAl 2 O 4 catalysts: influence of Ce addition on activity and stability, Int. J. Hydrogen Energy, vol.42, pp.16436-16448, 2017.

M. Galera-martínez, D. Pham-minh, E. Weiss-hortala, A. Nzihou, and P. Sharrock, Synthesis, characterization and thermo-mechanical properties of copper loaded apatitic calcium phosphates, Comput. Interface, vol.20, pp.647-660, 2013.

B. Vasconcelos, D. Pham-minh, N. D. Tran, A. Nzihou, and P. Sharrock, Synthesis of carbon nanotubes/hydroxyapatite composites using catalytic methane cracking, Comput. Interface, vol.22, pp.673-687, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01609216

D. Pham-minh, N. D. Tran, A. Nzihou, and P. Sharrock, One-step synthesis of calcium hydroxyapatite from calcium carbonate and orthophosphoric acid under moderate conditions, Ind. Eng. Chem. Res, vol.52, pp.1439-1447, 2013.

A. Ababou, D. Bernarche-assolant, and M. Heughebaert, Influence des conditions de calcination sur l'évolution morphologique de l'hydroxyapatite, Ann. Chim, vol.19, pp.165-175, 1994.

D. Bernache-assollant, A. Ababou, E. Champion, and M. Heughebaert, Sintering of calcium phosphate hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 I. Calcination and particle growth, J. Eur. Ceram. Soc, vol.23, pp.229-241, 2003.

Z. Boukha, M. Kacimi, M. F. Pereira, J. L. Faria, J. L. Figueiredo et al., Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite, vol.317, pp.299-309, 2007.

K. Takanabe, K. Nagaoka, K. Nariai, and K. Aika, Titania-supported bimetallic catalysts for carbon dioxide reforming of methane, J. Catal, vol.232, pp.268-275, 2005.

J. Zhang, H. Wang, and A. K. Dalai, Development of stable bimetallic catalysts for carbon dioxide reforming of methane, J. Catal, vol.249, pp.300-301, 2007.

C. Wang, N. Sun, N. Zhao, W. Wei, and Y. Zhao, Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO 2 catalysts and their synergetic effect in dry reforming of methane, Catal. Today, vol.281, pp.268-275, 2017.

M. Miyake, K. Watanabe, Y. Nagayama, H. Nagasawa, and T. Suzuki, Synthetic carbonate apatites as inorganic cation exchangers, J. Chem. Soc. Faraday Trans, vol.86, pp.2303-2306, 1990.

D. Pham-minh, H. Sebei, A. Nzihou, and P. Sharrock, Apatitic calcium phosphates: synthesis, characterization and reactivity in the removal of lead(II) from aqueous solution, Chem. Eng. J, pp.180-190, 2012.

B. Rego-de-vasconcelos, D. Pham-minh, P. Sharrock, and A. Nzihou, Regeneration study of Ni/hydroxyapatite spent catalyst from dry reforming, Catal. Today, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01700646

J. Xu, W. Zhou, Z. Li, J. Wang, and J. Ma, Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts, Int. J. Hydrogen Energy, vol.34, pp.6646-6654, 2009.

M. S. Aw, I. G. Crnivec, P. Djinovic, and A. Pintar, Strategies to enhance dry reforming of methane: synthesis of ceria-zirconia/nickelecobalt catalysts by freeze-drying and NO calcination, Int. J. Hydrogen Energy, vol.39, pp.12636-12647, 2014.

J. D. Bellido, J. E. De, J. C. Souza, E. M. M'peko, and . Assaf, Effect of adding CaO to ZrO 2 support on nickel catalyst activity in dry reforming of methane, Appl. Catal. A: Gen, vol.358, pp.215-223, 2009.

R. Amin, B. Liu, S. Ullah, and H. Z. Biao, Study of coking and catalyst stability over CaO promoted Ni-based MCF synthesized by different methods for CH 4 /CO 2 reforming reaction, Int. J. Hydrogen Energy, vol.42, pp.21607-21616, 2017.

B. Bachiller-baeza, C. Mateos-pedrero, M. A. Soria, A. Guerrero-ruiz, U. Rodemerck et al., Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO 2-La 2 O 3, Appl. Catal. B: Environ, vol.129, pp.450-459, 2013.

A. Serrano-lotina and L. Daza, Influence of the operating parameters over dry reforming of methane to syngas, Int. J. Hydrogen Energy, vol.39, pp.4089-4094, 2014.

M. A. Soria, C. Mateos-pedrero, A. Guerrero-ruiz, and I. Rodriguez-ramos, Thermodynamic and experimental study of combined dry and steam reforming of methane on Ru/ZrO 2-La 2 O 3 catalyst at low temperature, Int. J. Hydrogen Energy, vol.36, pp.15212-15220, 2011.

R. V. Goncalvesa, L. L. Vono, R. Wojcieszak, C. S. Dias, H. Wender et al., Selective hydrogenation of CO 2 into CO on a highly dispersed nickel catalyst obtained by magnetron sputtering deposition: a step towards liquid fuels, Appl. Catal. B: Environ, vol.209, pp.240-246, 2017.

L. Wang, H. Liu, Y. Chen, and S. Yang, Reverse water-gas shift reaction over co-precipitated Co-CeO 2 catalysts: effect of Co content on selectivity and carbon formation, Int. J. Hydrogen Energy, vol.42, pp.3682-3689, 2017.

J. Huo, J. Jing, and W. Li, Reduction time effect on structure and performance of Ni-Co/ MgO catalyst for carbon dioxide reforming of methane, Int. J. Hydrogen Energy, vol.39, pp.21015-21023, 2014.

M. Fan, A. A. Adbullah, and S. Bhatia, Catalytic technology for carbon dioxide reforming of methane to synthesis gas, ChemCatChem, vol.1, pp.192-208, 2009.

F. R. Shamskar, M. Rezaei, and F. Meshkani, The influence of Ni loading on the activity and coke formation of ultrasound-assisted co-precipitated Ni/Al 2 O 3 nanocatalyst in dry reforming of methane, Int. J. Hydrogen Energy, vol.42, pp.4155-4164, 2017.

C. Wang, N. Sun, N. Zhao, W. Wei, Y. Sun et al., Coking and deactivation of a mesoporous Ni-CaO-ZrO 2 catalyst in dry reforming of methane: a study under different feeding compositions, Fuel, vol.143, pp.527-535, 2015.

A. Wolfbeisser, O. Sophiphun, J. Bernardi, J. Wittayakun, K. Föttinger et al., Methane dry reforming over ceria-zirconia supported Ni catalysts, Catal. Today, vol.277, pp.234-245, 2016.

J. Kim, D. J. Suh, T. Park, and K. Kim, Effect of metal particle on coking during CO 2 reforming of CH 4 over Ni-alumina aerogel catalysts, Appl. Catal. A: Gen, vol.197, pp.191-200, 2000.

M. Usman, W. M. Daud, F. Hazzim, and . Abbas, Dry reforming of methane: influence of process parameters-a review, Renew. Suistain. Energy Rev, vol.45, pp.710-744, 2015.

H. Ay and D. Uner, Dry reforming of methane over CeO 2 supported Ni Co, and Ni-Co catalysts, Appl. Catal. B: Environ, vol.179, pp.128-138, 2015.

M. S. Challiwala, M. M. Ghouri, P. Linke, M. M. El-halwagi, and N. O. Elbashir, A combined thermo-kinetic analysis of various methane reforming technologies: comparison with dry reforming, vol.17, pp.99-111, 2017.

M. A. Munoz, J. J. Calvino, J. M. Rodríguez-izquierdo, G. Blanco, D. C. Arias et al., Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO 2 reforming of methane, Appl. Surf. Sci, vol.426, pp.864-873, 2017.

S. Bang, E. Hong, S. W. Baek, and C. H. Shin, Effect of acidity on Ni catalysts supported on P-modified Al2O3 for dry reforming of methane, Catal. Today, p.10, 2017.

S. Mahboob, M. Haghighi, and F. Rahmani, Sonochemically preparation and characterization of bimetallic Ni-Co/Al 2 O 3-ZrO 2 nanocatalyst: effects of ultrasound irradiation time and power on catalytic properties and activity in dry reforming of CH 4, Ultrasonics Sonochem, vol.38, pp.38-49, 2017.

P. Djinovic and A. Pintar, Stable and selective syngas production from dry CH 4-CO 2 stream sover supported bimetallic transition metal catalysts, Appl. Catal. B: Environ, vol.206, pp.675-682, 2017.

Z. Taherian, M. Yousefpour, M. Tajally, and B. Khoshandam, Catalytic performance of samaria-promoted Ni and Co/SBA-15 catalysts for dry reforming of methane, Int. J. Hydrogen Energy, vol.42, pp.24811-24822, 2017.