A Proof of the Barát–Thomassen Conjecture

Abstract : The Barát-Thomassen conjecture asserts that for every tree T on m edges, there exists a constant k T such that every k T-edge-connected graph with size divisible by m can be edge-decomposed into copies of T. So far this conjecture has only been verified when T is a path or when T has diameter at most 4. Here we prove the full statement of the conjecture.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [17 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01629943
Contributor : Julien Bensmail <>
Submitted on : Tuesday, November 7, 2017 - 7:58:53 AM
Last modification on : Friday, April 12, 2019 - 4:22:51 PM
Document(s) archivé(s) le : Thursday, February 8, 2018 - 12:33:26 PM

File

RevisedVersion.pdf
Files produced by the author(s)

Identifiers

Citation

Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker, Stéphan Thomassé. A Proof of the Barát–Thomassen Conjecture. Journal of Combinatorial Theory, Series B, Elsevier, 2017, 124, pp.39 - 55. ⟨10.1016/j.jctb.2016.12.006⟩. ⟨hal-01629943⟩

Share

Metrics

Record views

640

Files downloads

81