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Abstract 

The aim of the present work is to synthesize high strength monolithic SiC tubes to improve the 

imperviousness of a SiC/SiC composite structure. A few hundred micrometers-thick tubular coatings were 

produced by chemical vapor deposition (CVD) at atmospheric pressure, from CH3SiHCl2/Ar/H2 mixtures. 

The CVD-SiC tubes were obtained by deposition on the inner walls of a SiO2-tube substrate, previously 

coated with a pyrocarbon interfacial layer to promote delamination. A continuous deposition process was 

developed to allow the realization of relatively long CVD-SiC tubes, by sliding the heating system along the 

substrate. The chemical composition and the microstructure of the tubes were studied by electron probe 

microanalysis, Raman spectroscopy and scanning electron microscopy. 

The deposition rate, composition and microstructure of the CVD-SiC coatings were investigated as a 

function of the substrate temperature and the gas flow rates. A Fourier transformed infrared (FTIR) 

spectroscopy analysis was carried out at the reactor outlet to characterize the gas phase reactions. The FTIR 

analysis of pure species from the Si-C-Cl-H system as well ab initio calculations at the density functional 

theory (DFT) level allowed the assignment of the main IR features in the experimental spectra and the 
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quantitative analysis of the complex gas mixture. This study has led to the proposal of a simplified 

dichloromethylsilane decomposition scheme which is consistent with the influence of the CVD parameters 

on the nature of the gas phase and the coating. The deposition rate, the Si/C atomic ratio, the SiC crystalline 

state and the surface morphology are indeed strongly related to the CH3SiCl3 decomposition rate and the 

further progress of homogeneous reactions. 

 

Keywords 

CVD, atmospheric pressure, Silicon carbide, nuclear fuel cladding, gas phase analysis 

 

  



 

 

1. Introduction 

Generation IV nuclear energy systems are next-generation technologies that will allow a more efficient 

use of the nuclear fuel and provide a better operating safety. They are expected to be available around 2040. 

Tubular SiC/SiC composites [1, 2] are materials of prime interest to be part of the nuclear fuel claddings of 

future power plants [3-6], thanks to their low neutron activation characteristics [7] but also their high 

strength and fracture toughness at high temperature [8]. 

The optimization of SiC/SiC composites for nuclear purposes requires high thermal properties as well as 

excellent gas imperviousness [9]. The latter point has implied the need of an additional sealing layer. Lately, 

several concepts have appeared with the will to place this layer around a single SiC/SiC composite layer 

[10], or between two composite layers, as a liner [11].  A few refractory metallic materials, such as 

Tantalum, have shown a good compatibility with the composite structure, but a SiCβ sheath, having high 

specific mechanical properties, no porosity, as well as an excellent stability at high temperature and under 

neutron irradiation, might as well ensure this function. 

SiC monofilaments are exemplary CVD-SiC materials in terms of mechanical properties [12]. They are 

prepared by chemical vapor deposition at atmospheric pressure (APCVD) on a hot filament substrate, using 

chlorosilanes (e.g. dichloromethylsilane: DCMS) diluted in hydrogen as the SiC precursor [13, 14]. A 

failure strength up to 6 GPa and an ultimate strain of about 1.5 % can indeed be reached by the high 

performance SCS-Ultra commercialized by Specialty Materials Inc. On the basis of the CVD-SiC filament 

processing experience, the aim of the present study is to prepare SiC tubes by APCVD, with a composition, 

microstructure and morphology compatible with high strength and strain at failure. 

In this study, the synthesis of monolithic SiC tubes by APCVD from the DCMS/H2 system and the 

characterization of their properties are detailed. A particular attention is given to the chemical composition, 

the structure of the coatings and their growth rates, all of them depending on the deposition parameters. 

Fourier transform infrared (FTIR) analyses of the gas phase at the reactor outlet have been performed to 

follow the decomposition of the precursor during the process and the IR spectra were confronted to ab initio 



 

 

calculations at the density functional theory (DFT) level of the theoretical features of the different 

chlorosilanes likely present in the gas phase. The correlation between all these experimental approaches has 

led to the proposal of a simplified gas phase reaction and deposition mechanism. 

 

2. Experimental  

The APCVD reactor presented in Figure 1 consists of a horizontal silica glass tube (L = 1000 mm, 

∅int = 46 mm) connected to gas inlet/outlet flanges at both ends. Dichloromethylsilane (CH3SiHCl2, DCMS, 

97%, from Sigma Aldrich) was used as the SiC precursor rather than other precursors (such as CH3SiCl3,  

MTS, which is more often industrially used), because of its low decomposition temperature [15]  and its 

high vapor pressure (PDCMS = 48 kPa at 20 °C) favoring a use at atmospheric pressure. These properties led 

the choice of the DCMS/H2 system for the synthesis of CVD-SiC monofilaments [13]. The DCMS vapor 

saturation was obtained from a H2 carrier gas going through a bubbler maintained at 20°C. The DCMS 

concentration was adjusted by further diluting the initial saturated DCMS/H2 mixture in a secondary H2 

flow. 

The inside of a silica tube (L = 500 mm, ∅int = 8 mm) was used as a substrate. A thin layer of pyrolytic 

carbon (PyC) was deposited at the surface of the SiO2 tube in order to prevent chemical bonding between 

the substrate and the coating. The PyC interfacial layer was deposited in the same reactor by sliding the 

heating bench and by injection of pure propene at low pressure (QC3H6 = 100 sccm, T = 1000°C, P = 3 kPa). 

The tube was brought to high temperature by a surrounding graphite susceptor heated by induction. This 

unit was placed inside the large silica glass tube and connected to the inlet flange in order to force the gas 

mixture to flow inside the substrate tube. The process was in a hot-wall configuration, since the whole 8 mm 

diameter reaction chamber, including the substrate walls, was isothermal in the hot deposition area (4 cm). 

The surface temperature (T) of the graphite shell outer surface was monitored in situ during the CVD 

process with a high-resolution dichromatic pyrometer (Impac ISQ 5).  



 

 

In order to manufacture relatively long silicon carbide tubes, the induction heat station was set on a 

motorized bench allowing the induction coil −andthus , the hot area− to slide along the silica tube and the 

substrate. The sliding speed of the heating bench, named hereafter S, can range from 0.25 to 5 cm/min. 

For this study, the temperature T and total gas flow Qtot ranged from 1100 to 1200°C and from 250 to 

1000 sccm (standard cm
3
.min

-1
), respectively. This parameter range is slightly modified compared to our 

previous work [16].  

The morphology of the coatings was characterized with a field emission gun scanning electron 

microscope (SEM) (FEI Quanta 400F).  

Electron probe microanalyses (EPMA) (SX 100 from CAMECA, France) were conducted on cross-

sections of the CVD-coated SiO2 substrate parallel and perpendicular to the tube axis. The Si, C and O 

concentrations were assessed using the wavelength dispersive spectroscopy (WDS) mode (10 kV, 10 nA). 

Pure SiC and SiO2 were use as standards. The carbon content was deduced by difference to avoid errors due 

to surface contamination. The error in the concentrations is approximately 1 at. %. Punctual and line scan 

measurements were performed along the cross section of the coatings, with a lateral resolution of 

approximately 1 μm².  

Raman microprobe (RM) analyses (Labram HR from Horiba Jobin Yvon) were also conducted on the 

same specimens. The excitation source was a He–Ne laser (λ=632.8 nm). The power was kept below 1 mW 

to avoid heating of the sample. The lateral resolution of the laser probe was close to 1 μm and the depth 

analyzed was less than 1 µm. As for EPMA, punctual and line scan analyses were recorded along the cross 

section of the deposit. 

A quantitative study of the gas phase was carried out by Fourier transform spectroscopy (FTIR) at the 

reactor outlet. The IR beam of the spectrometer (Nicolet 550) was led through a room temperature analysis 

cell (with two ZnSe windows at both ends, L = 50 cm) installed at the reactor outlet (absorption 

configuration). While the reaction chamber was set at atmospheric pressure, the pressure in the gas cell was 

adjusted to 1 kPa to avoid saturation of the absorption peaks on the FTIR spectra. At the outlet of the gas 



 

 

cell, the infrared beam was focused on the HgCdTe MCT-A detector placed below. The whole infrared 

beam path was enclosed and constantly purged with a nitrogen flow in order to limit the absorption of 

atmospheric compounds. A background spectrum was first recorded with a pure H2 flow in the reactor and 

subtracted to the reacting gases spectrum. The apparatus allowed the acquisition of spectra in the 

wavenumber range 600 - 4000 cm
-1

, with a resolution of 1 cm
-1

. 

 

3. Theoretical calculations of IR spectra 

The geometry optimizations, vibrational frequencies and absorption intensities were calculated by 

Gaussian 09 program [17] on the DELL cluster of the MCIA computing center of the University Bordeaux 

I. Calculations of the optimized geometry of CH3SiHCl2 (DCMS), CH3SiCl3 (MTS), SiH3Cl, SiH2Cl2, 

SiHCl3 (TCS) and SiCl4 were performed at the density functional theory level using B3LYP functional [18, 

19] and cc-pVTZ basis set. Vibrational frequencies and IR intensities were calculated at the same level of 

theory. For comparison to experiment, the calculated intensities were converted to Lorentzian bands with a 

half-width of 4 cm
-1

. To obtain a detailed assignment of each compound, the potential energy distribution 

(PED) for each mode has been determined, in the harmonic approximation, according to the method 

developed by Allouche [20].  

 

4. Results  

 

4.1.Synthesis of monolithic tubes : influence of the experimental conditions 

Following the continuous PyC deposition described in the experimental section, the silicon carbide 

synthesis was realized in both continuous and static conditions. The PyC interlayer exhibits a thickness of 

350 nm which does not introduce major surface flaws at the substrate/SiC coating, and partly stays adherent 

to the coating after cooling, hence requiring a further removal by oxidation (Figure 2). A list of 

representative experiments conducted in static configuration is given in Table I. 



 

 

Both EPMA and SEM measurements around the perimeter of cut rings confirmed the chemical 

composition and thickness homogeneity of the coatings. The oxygen concentration was found to remain 

lower than 2 at.% in all specimens. 

Deposition runs in static configuration have been mainly conducted in order to study the influence of 

the deposition parameters on the growth rate and the stoichiometry of the coating. 

Whatever the single source precursor [14, 16-21] used (CH3SiCl3, (CH3)2SiCl2, CH3SiHCl2), the key 

parameters in the deposition of SiC by CVD are the temperature, the total pressure, the global gas flow rate 

(or residence time) and the nature of the precursor dilution, characterized by the α ratio: 

DCMS

H

Q

Q
2   

The Si/C atomic ratio increases significantly with α (Table I). At a temperature of 1100 °C and for a 

total flow rate of 500 sccm, when α increases from 0 to 12, the silicon atomic concentration in the coating 

varies from 45 at.% to 68 at.%, i.e. from a carbon excess to a very significant silicon excess. An important 

dilution of DCMS in H2 also results in a strong decrease of the deposition rate. It should be mentioned that 

in comparison to our previous work [16], growth rates have been greatly improved by the forced injection of 

the gas mixture inside the substrate. Hence, even high dilutions of the precursor result in deposition rates 

above 100 µm/h. For moderate α values, i.e. for 1 < α < 4, a maximum of 930 µm/h can be achieved, which 

is high enough to synthesize both long and thick tubes in a relatively short period of time. After reaching 

this maximum, the deposition rate decreases at particularly low α values, as already observed for the 

CH3SiCl3/H2 system [21]. Together with the increase of deposition rate, it is worthy of note that solid 

particles tend to grow from the gas phase beyond 1100°C and for low  values. These solid products seem 

to appear and deposit at the tube outlet, in cool parts, as already observed for DCMS/C3H8/H2 [14] or 

(CH3)2SiCl2/H2 systems [22]. This phenomenon could be due to the polymerization of light instable species 

[23] and is probably favored by high pressure and low precursor dilution.   

The Raman spectra (Figure 3) show clear Raman features assigned to crystalline SiC (expected at 750-

1000 cm
-1

) in the deposits [24] at low α values, but also a strong peak around 520 cm
-1

, typical of free 



 

 

silicon. The intensity of the Si band varies with α in very good agreement with the excess silicon expected 

in the coating, as deduced from the EPMA measurements. 

A gradual improvement of the SiC crystalline state can be noticed when the deposition temperature 

increases. For α = 4, Qtot = 500 sccm and when the deposition temperature increases from 1100 °C to 

1200 °C, the emergence of two sharp characteristic bands in the 750 – 1000 cm
-1

 region of the Raman 

spectra confirms the increasing amount as well as the coarsening of the SiC phase. In parallel, the narrow 

peak at 520 cm
-1

 as well as the 500 cm
-1

 bump due to crystalline and amorphous Si, respectively, both 

disappear, indicating lower excess silicon at high temperature. The Si/C atomic ratios obtained by EPMA 

are very consistent with the Raman analyses. Only a few changes in the deposition rate can be noticed with 

the variation of temperature, with a mean value as high as nearly 1 mm/h.  

The influence of the total gas flow rate was examined in a next step. When Qtot increases from 

250 sccm to 1000 sccm (T = 1100 °C, α = 4), the silicon concentration, as measured by EPMA, tends to 

increase from 51 at.% to 65 at.% (see Table 1). These results are consistent with the Raman analyses 

(Figure 3) showing that the peak assigned to crystalline Si tends to disappear at low Qtot while 

simultaneously, the SiC characteristic bands gradually appear. The deposition rate increases significantly 

with Qtot from 440 µm/h at 250 sccm, to a maximum of 1170 µm/h at 1000 sccm.  

For all these studies carried out in static conditions, the chemical compositions and deposition rates 

correspond to the maximal thickness of the coating, located in the hot part of the deposition area. At both 

sides of this hot zone, the drop of the induction power (i.e. of the temperature) leads to major modifications 

of both chemical composition and thickness. These changes have to be properly characterized, since the 

whole temperature profile will affect the deposition conditions at a given position of the substrate during the 

continuous process. Figure 4 shows the evolution of chemical composition along the coating, which is 

typically 4.5 cm long in static runs. A decrease of the carbon content can be noticed when temperature drops 

at both ends of the tube. This phenomenon is more significant at the outlet side of the tube, indicating that 

temperature is not the only parameter causing these changes. 



 

 

Using a continuous process, samples of a thickness up to 200 µm were successfully synthesized by 

sliding the induction coil at low velocities (S ranging from 0.25 to 0.5 cm/min). Tubes as long as 25 cm 

were obtained, demonstrating the feasibility of the process. The chemical composition of the coating is 

consistent with the results obtained in static conditions. Homogeneous tubes along the axis having a Si/C 

ratio of 1 in the radial central zone were indeed produced at high temperature (T = 1200 °C), medium flow 

rates (Qtot = 500 sccm) and low dilutions (α = 2 to 4). The radial composition profile (along the thickness) of 

a particularly thick tube elaborated in heat stage sliding conditions (S = 0.25 cm/min) (T = 1200 °C, 

Qtot = 1000 sccm, α = 2), has been compared to the axial profile (along the gas flow direction) of a tube 

synthesized in the same CVD conditions but in static configuration. The total thickness (e) and the radial 

composition profile through the thickness of the tube wall (CSi()) obtained in sliding conditions, are indeed 

directly related to the longitudinal deposition rate and concentration profiles obtained in static configuration 

(respectively R(x) and CSi(x)), since d = 1/S R(x)dx. 

 Both Raman and EPMA analyses exhibit a similar evolution of the chemical and phase compositions. 

The presence of free silicon was indeed observed in the part of the coating corresponding to the beginning 

of the deposition during the continuous process (Fig. 5), i.e. to the low temperature and low maturation 

conditions in the static configuration, at the entrance of the heated zone (Fig. 4). 

 

4.2.Gas phase analysis 

The changes in the chemical composition of the deposit are related to the variations of the temperature 

on the concentration of the effective silicon and carbon precursors brought to the deposition area. FTIR 

analyses of the gas phase at the reactor outlet were performed so as to determine how the modification of 

the gas phase with temperature affects the deposition process. This study will allow linking the gas phase 

composition changes with the structural and chemical properties of the coating. 

In a first step, the infrared spectra of DCMS and species potentially encountered in the gas mixture 

(such as SiHCl3 (TCS) and SiCl4) were recorded at room temperature (Figure 6). The main bands observed 



 

 

in the IR spectra as well as those reported in the literature [25-30] are given in the Table II. The assignment 

of these bands has been performed from the ab initio at the B3LYP/cc-pVTZ level and PED calculations 

performed during this study. The calculated frequencies and intensities of the vibrational modes as well as 

their assignment on the basis of the normal modes are reported in the supporting information (Table i to 

Table vi) for DCMS, MTS and chlorosilanes (SiH3Cl, SiH2Cl2, SiHCl3 and SiCl4). It is noteworthy that the 

frequencies of the stretching vibration of the CH3 and SiHn groups are overestimated due to anharmonic 

effects (scaling factors of 0.96 and 0.98 can be used for the stretching vibration of the CH3 and SiHn groups, 

respectively). 

The infrared spectrum of DCMS shows the presence of a weak band at 2984 cm
-1

 corresponding to the 

antisymmetric stretching vibration of the methyl groups (aCH3), a very sharp and intense band at 2217 cm
-

1
, due to the stretching vibration of Si-H bond, a low intensity signal at 1268 cm

-1
 corresponding to 

symmetric bending vibration of the methyl groups (sCH3) and a conglomerate of intense peaks in the 900 – 

650 cm
-1

 region, due to the bending vibrations of HCSi and HSiCl (889 and 852 cm
-1

) and to the stretching 

vibration of Si-C bond. The IR bands exhibits PQR or PR profiles characterizing the coupling of vibrations 

with rotation. The infrared spectra of SiCl4 and TCS compounds are easier to interpret. IR spectrum of SiCl4 

reveals only one band at 620 cm
-1

, assigned to the antisymmetric stretching vibration of SiCl4 (aSiCl4). 

Finally, the IR spectrum of SiHCl3 (TCS) compound exhibits three main bands at 2260 cm
-1

 corresponding 

to the stretching vibration of Si-H bond, at 807 cm
-1

, corresponding to the bending vibration of HSiCl and at 

590 cm
-1

, due to the antisymmetric stretching vibration of SiCl3 (aSiCl3). 

An investigation of the temperature effect on the gas phase composition was carried out in a second 

step. The infrared spectra recorded at room temperature after heating the gas phase at various temperatures, 

ranging from 25 to 1250 °C, are reported in Figure 7. Whereas the spectra remains unchanged from 25 °C to 

700 °C, major chemical modifications appear at higher temperatures. As the analysis is carried out ex situ at 

room temperature, the detected molecules are necessarily stable and some of them may result from the 

recombination of unstable intermediates (e.g. free radicals). Furthermore, at high temperature, where the 



 

 

deposition rate becomes significant, some part of them might be consumed through heterogeneous reactions 

leading to the SiC deposition. Hence, the consumption of DCMS, the apparition of new species at the 

reactor outlet and their possible consumption due to homogeneous or heterogeneous reactions provide 

useful information for a better understanding of the APCVD process. The decomposition of 

dichloromethylsilane in the reactor is accompanied by the formation of HCl, SiHCl3, SiH2Cl2, SiCl4 and 

CH4 (Fig. 7). The formation of unsaturated hydrocarbons such as C2H2 was also observed, but only at very 

high temperatures.  

To follow the evolution of the gas phase with the raising temperature, the temperature dependence of 

several IR bands associated with the DCMS precursor or with the new produced species was investigated. 

One or two bands were selected per species, after verifying that these bands did not overlap with other 

neighboring IR bands. Thus, the bands at 2217 and 756 cm
-1

 have been chosen for DCMS, 2260 and 807 

cm
-1

 for SiHCl3, 950 cm
-1

 for SiH2Cl2 and 620 cm
-1

 for SiCl4. For the CH4 species, the PQR profile in the 

3220-2820 cm
-1

 spectral range as well as the only Q band of the antisymmetric stretching vibration (aCH4) 

at 3017 cm
-1

 have been considered, subtracting the HCl contribution for each temperature. For the HCl 

species, three bands at 2843, 2821 and 2798 cm
-1 

have been considered. In this study, the analysis was 

pushed a step further by converting the qualitative monitoring (area of the bands vs temperature) into 

quantitative data (concentration of species vs temperature). For this purpose, available pure products 

(DCMS, SiHCl3, SiCl4, CH4 and HCl) were analyzed in the FTIR cell at various pressures (i.e. at various 

concentrations, considering the perfect gas equation C=P/RT) in order to determine the molar absorptivity 

for each band following the Beer-Lambert law: 

                            (1) 

where       is the integrated absorbance for a band,       the molar absorptivity for the considered band, 

L the length of the analysis cell (0.5 m) and C the concentration of the gas phase. The molar absorptivity 

      (in cm.mol
-1

) can be directly related to the calculated intensity of the band,      (in km.mol
-1

) by the 

relationship:  



 

 

                           (2) 

The evolutions of the concentration with temperature are reported in supporting information (Figure i 

and Figure ii) for several bands of SiHCl3 and other pure products derived from DCMS. The values of      

determined from these figures are in good agreement with those determined by ab initio calculations (table i 

and table v in supporting information). A good agreement has also been obtained for the antisymmetric 

stretching vibration of SiCl4 at 620 cm
-1

 (I=537.4 km.mol
-1

 from experimental data vs I=542.4 from ab 

initio calculations). As some mismatch between experimental and calculated values was observed for CH4 

and HCl species, only the theoretical values were considered. The infrared spectra recorded from pure 

species indeed did not allow the assessment of a consistent       coefficient, probably due to peak 

overlapping or on insufficient spectral resolution. 

Using the molar absorptivity determined experimentally for DCMS, SiHCl3 and SiCl4 and calculated for 

SiH2Cl2, CH4 and HCl, in the Beer-Lambert relation (1), it was then possible to plot the evolution of 

concentration of the different species versus the temperature, as shown in Figure 8. For the DCMS and TCS 

compounds the results were averaged from the bands at 2217 and 756 cm
-1

 and at 2260 and 807 cm
-1

, 

respectively (see supporting information Figure iii and Figure iv). Figure 8 reveals a progressive formation 

of CH4 and HCl during heating, starting beyond 700 °C, while DCMS is simultaneously consumed. This 

modification of the gas phase is essentially due to kinetic effects (the DCMS decomposition rate being 

activated by the temperature rise). Even at high temperature, when DCMS is fully decomposed, only a part 

of the species expected at thermodynamic equilibrium [31] is observed experimentally by FTIR 

spectroscopy. This is mainly due to the ex situ conditions, which imply that only stable products can be 

evidenced at room temperature. A thermo-kinetic modeling of the DCMS/H2 system (e.g. on the basis of the 

work of Ge and Gordon [32]) is in progress to accurately describe these changes of gas phase. The evolution 

of the respective Si and Cl containing compounds seems to be related. A gradual chlorination of the 

chlorosilane species can be noticed : SiH2Cl2 first appearing from 750 °C and then reaching a maximum at 

850 °C, followed by SiHCl3, reaching a maximum at 950 °C and finally SiCl4, substituting for the two 



 

 

others at high temperatures as the major silicon bearing species found at the reactor outlet. The global 

decrease of the various products starting at 1200 °C might correspond to heterogeneous reactions, i.e. to the 

formation of the coating or other solid byproducts appearing in larger amounts at this temperature. The 

decrease of the HCl concentration is surprising however; as it is rather expected to keep on increasing with 

T [31]. This could be related to the reaction of chlorine species (such as HCl) with the Si-rich regions from 

the surface at high temperature, as suggested by the decrease of both deposition rate and silicon content of 

the coating [31, 33]. The formation of the solid condensates at the outlet of the tube might as well have led 

to gas depletion or a pressure drop downstream. This would explain the decrease of the deposition rate as 

well as the general concentration decrease observed for all species at 1100 and 1200°C (including HCl, 

chlorosilanes and CH4). 

 

5. Discussion 

The deposition of SiC on the inner walls of the SiO2 tube and the use of a pyrocarbon interphase is a 

very promising method for obtaining smoothed net-shape SiC tubes. The anisotropy of PyC promotes the 

SiC/SiO2 interface delamination. The silicon carbide tube can easily be extracted from the silica substrate by 

taking advantage of the perfectly flat SiO2/SiC interface and the thermal expansion coefficients mismatch 

between the silica and the SiC.  

The investigation of the influence of the various experimental deposition parameters on the coating 

gives information about the type of regime controlling the CVD process in the explored conditions. For 

T ≥ 1100 °C, the deposition process is apparently not thermally activated, rather suggesting a mass transfer-

limited regime [35].  This is confirmed by a strong dependence of the deposition rate on the gas flow rate, as 

also reported in previous studies [33, 36]. However, since the temperature increase results in parallel in 

important changes of the composition of the gas phase (and therefore of the local concentration of the 

effective Si and C precursors) in the hot area, the usual assumption of a precursor supply limitation should 

be considered with care. The increase of the deposition rate with Qtot and with the optimization of injection 



 

 

conditions [16] is also indicative of a regime limited by diffusion. The gas velocity is an important 

parameter especially in the case of a mass transfer regime where the deposit morphology can be very 

sensitive to the gas flow around the substrate. In addition, Qtot may affect the decomposition rate of 

precursors through the residence time, which varies along the position in the hot area. The change in the 

composition of the deposit suggests a major effect of the maturation of gas phase, i.e. of the decomposition 

rate of DCMS into various intermediates, which may act as effective precursors of Si and C for the coating.  

A sufficiently high deposition temperature is required to form a near stoichiometric and highly 

crystalline coating. Whereas there are only a few studies on the CVD from DCMS/H2 [13-14, 37-38], 

several articles on the dichlorodimethylsilane (DCDMS)/H2 system [37, 39-40] and an abundant work on 

the MTS/H2 system [12, 21, 31-34] can be found in the literature. Féron et al. used the DCMS/H2 system 

(α = 2,3) at atmospheric pressure in a cold wall reactor to synthesize monofilaments (∅ = 200 µm) [14]. 

They always obtained Si-rich coatings (Si/C at. > 1.4) with much higher deposition rates (4000 µm/h at 

1200 °C), according to a chemical reaction controlled regime, for T < 1200 °C. This confirms the 

occurrence of a strong DCMS depletion in the present case, in a hot wall configuration and with a much 

higher S/V ratio. On the other hand, Cagliostro et al. used (CH3)2SiCl2 (DCDMS) at similar temperatures 

and pressure in a hot wall reactor configuration [39, 40]. They found a dependence of the deposition rate 

with the total flow rate for T > 900 °C and a strong silicon excess in the coating, decreasing along the 

reactor axis (i.e. while the residence time increases). A similar behavior was reported in several studies of 

the MTS/H2 system in relatively similar T and P conditions. Papasouliotis et al. and Huttinger et al. indeed 

evidenced, for T = 1000 °C, a decrease of both the deposition rate and the silicon excess along the hot zone 

[21, 41-42]. The decreasing of the total flow rate also leads to a drop of the deposition rate (due to increase 

of the residence time) [41].  

Since the silica substrate cannot withstand temperatures higher than 1200 °C in the hot-wall 

configuration, only a narrow operating temperature window is allowed. Since the deposition rate is 



 

 

apparently not thermally activated, the gas flow rate (or the residence time) appears as a key parameter for 

elaboration of long and thick tubes. 

The gradual decomposition of DCMS above 700°C corresponds to the formation of various products in 

the gas phase. The apparition of methane and hydrogen chloride, both stable species, is progressive and 

tends to a plateau for the highest temperatures. The formation and consumption of the various chlorosilanes 

appearing successively (Figure 8) is apparently strongly related to the silicon incorporation in the coating. 

A decomposition route of the DCMS during the APCVD process can be tentatively proposed by the 

analysis of the above results and the previous conclusions from the literature. Zhang and Hüttinger [21-38] 

proposed a mechanism for the deposition of SiC at near atmospheric pressure from the MTS/H2 mixture, as 

did Cagliostro et al. for DCDMS [41]. As for MTS, the Si-C bond is probably readily dissociated into CH3˙ 

and HSiCl2˙ radicals in the hot zone [21, 42-44]. This assumption was confirmed by the ab initio 

calculations of Allendorf et al. [44]. The Si-H bond of DCMS or HSiCl2˙ is also probably easily broken to 

form eventually SiCl2, likely a major silicon source for the coating [21, 42-44]. In parallel, CH3˙ readily 

recombines into CH4, which is thermally stable and has a low surface reactivity. The chlorosilanes and SiCl4 

detected by FTIR result from the recombination of the HSiCl2˙ and SiCl2 radicals, in the hot zone or during 

the cooling. The higher reactivity of SiCl2 compared to CH4 is responsible for the presence of excess silicon, 

especially at low temperatures and high α ratios. At high temperature (T > 1050 °C), the depletion of the 

most surface reactive silicon species in favor of SiCl4, the HCl concentration increase, inhibiting Si-

deposition [29, 41, 43], and finally the formation of more reactive unsatured hydrocarbons such as C2H2 

(detected at 1200 °C and above), might be responsible for the increase of the carbon ratio in the coating. On 

the other hand, a higher H2 concentration (higher α) promotes the reduction of SiCl2 and therefore the 

deposition of free silicon, as well as the formation of CH4, which limits the deposition of carbon.  

 

6. Conclusions 



 

 

 Long and dense monolithic SiC tubes with thick walls were synthesized by CVD at atmospheric 

pressure inside a SiO2 tube covered with pyrocarbon. An optimization of the process was carried out by 

analyzing the influence of different parameters such as the DCMS dilution in hydrogen, the total flow rate 

and the deposition temperature. The increase of deposition rate with the gas flow rate, and the low thermal 

activation of the deposition process indicate that the process is limited by mass transfer. Significant changes 

in the composition of the coating are observed when the deposition temperature and the H2/DCMS ratio 

vary. This is related to the homogeneous reactions occurring in the reactor.  

A FTIR spectroscopy analysis of the gas phase at the reactor outlet allowed its evolution to be followed 

versus temperature. The analysis of pure species such as DCMS, HSiCl3 and SiCl4 allowed the experimental 

assessment the values of molar absorptivities and the quantification of these products in the gas mixture. 

The successive production of SiH2Cl2, SiHCl3 and SiCl4 with an explicit lineage was highlighted, along with 

a continuous production of CH4 and HCl. The increase of temperature induces a depletion of the reactive 

silicon species (e.g. SiCl2) and could also promote the reactivity of the carbon precursors. On the other hand 

an important dilution in H2 inhibits the carbon deposition and favors the reduction of chlorosilanes, hence 

resulting in a Si-rich deposit.  

A thermodynamic study of the DCMS/H2 system is currently being carried out in parallel to this 

experimental work. 

The continuous synthesis of longer silicon carbide tubes by sliding of the heating coil along the substrate 

was successfully achieved, confirming the potential of the continuous deposition process for industrial 

purposes. 

The mechanical testing of the samples by C-ring compression tests is in progress and should provide 

mechanical properties of these CVD-SiC tube structures. 
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Table I. Deposition conditions for the synthesis of SiC tubes in static configuration 

 
 

N° Qtot (sccm) α = QH2/QDCMS T (°C) Si %at. 
Deposition rate 

(µm/h) 

1 500 0 1100 45 to 60 N/A 

2 500 1 1100 52 620 

3 500 2 1100 55 910 

4 500 4 1100 58 930 

5 500 8 1100 65 650 

6 500 12 1100 68 510 

7 1000 4 1100 65 1170 

8 250 4 1100 51 440 

9 500 4 1125 58 990 

10 500 4 1150 53 1080 

11 500 4 1175 51 1110 

12 500 4 1200 49 960 
 

  



 

 

Table II. Frequencies (in this study) of the main IR features, assignment and literature values 

 
 

Observed frequencies 

(cm
-1

) 
Assignment 

Chemical 

compound 
Literature values 

590 a(SiCl3) SiHCl3 585, 592 [26] 

620 a(SiCl4) SiCl4 619 [26], 620 [25] 

756 (SiC) DCMS 752, 762 [26] 

807 (HSiCl) SiHCl3 805 [28] 

852 
(HCSi) + 

(HSiCl) 
DCMS 

 

[25] [29] 

 889 

949 (SiH2) SiH2Cl2 960 [26] 

1268 s(CH3) DCMS 1270 [26], 1272 [25] 

1307 a(CH4) CH4 
1305 [25], 1306 [27], 

1310 [26] 

2217 (SiH) DCMS 2220 [28] 

2260 (SiH) SiHCl3 2260 [25], 2270 [26] 

2984 a(CH3) DCMS - 

3017 a(CH4) CH4 3018 [26] 

2700-3100 
(HCl) 

vibro-rotation 
HCl 2700-3095 [26] [30] 

 

 : stretching;  : bending; a : antisymmetric; s : symmetric 

  



 

 

 
 

Figure 1. APCVD reactor for SiC deposition 

 

Figure 2. (a) Cross section of the SiO2/PyC/SiC interfacial region. (b) Extracted SiC tube (T = 1200 °C, 

Qtot = 500 sccm, α = 2, v =
 
0.25 cm/min) 

 

Figure 3. Influence of α (a), T (b) and Qtot (c) on the Raman features 

 

Figure 4. Temperature (T), thickness (e) and composition (Si atomic concentration) longitudinal profiles of 

a coating synthesized in static configuration (α = 4, Tmax = 1100 °C, Qtot = 500 sccm) 

 

Figure 5. Radial EPMA (a) and Raman (b) profile of a thick SiC tube (α = 2, Q = 1000 sccm, T = 1200 °C) 

 

Figure 6. Experimental IR spectra of pure species (CH4, HCl, SiCl4, HSiCl3, CH3HSiCl2) 

 

Figure 7. IR spectra of the gas phase (Qtot = 500 sccm, α = 4, Patm) as a function of T in 3200 – 2800 cm
-1

 

(a),  2300 – 2150 cm
-1

 (b), 1360 – 1200 cm
-1

 (c) and 1000 – 600 cm
-1

 (d) frequency domains 

 

Figure 8. Concentration of the various species in the gas phase (Qtot = 500 sccm, α = 4, Patm) as a function of 

T 
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