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Abstract

Idempotence is a desirable property when cautiousness is wanted in an
information fusion process, since in this case combining identical informa-
tion should not lead to the reinforcement of some hypothesis. Idempotent
operators also guarantee that identical information items are not counted
twice in the fusion process, a very important property in decentralized ap-
plications where the information origin cannot always be tracked (ad-hoc
wireless networks are typical examples). In the theory of belief functions,
a sound way to combine conjunctively multiple information items is to de-
sign a combination rule that selects the least informative element among
a subset of belief functions more informative than each of the combined
ones. In contrast, disjunctive rules can be retrieved by selecting the most
informative element among a subset of belief functions less informative
than each of the combined ones. One interest of such approaches is that
they provide idempotent rules by construction.

The notions of less and more informative are often formalized through
partial orderings extending usual set-inclusion, yet the only two informa-
tive partial orders that provide a straightforward idempotent rule leading
to a unique result are those based on the conjunctive and disjunctive
weight functions. In this article, we show that other partial orders can
achieve a similar goal when the problem is slightly relaxed into a distance
optimization one. Building upon previous work, this paper investigates
the use of distances compatible with informative partial orders to de-
termine a unique solution to the combination problem. The obtained
operators are conjunctive/disjunctive, idempotent and commutative, but
lack associativity. They are, however, quasi-associative allowing sequen-
tial combinations at no extra complexity. Some experiments demonstrate
interesting discrepancies as compared to existing approaches, notably with
the aforementioned rules relying on weight functions.

Keywords: Belief functions, combination, distance, idempotence,
partial order, convex optimization
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1 Introduction

The theory of belief functions is a framework for reasoning under uncertainty.
It was initially proposed to model imprecise statistical observation [6], and this
initial work was then extended [22] to include subjective or epistemic uncer-
tainty (e.g., when a variable has a fixed, yet ill-known value). It has received a
considerable attention in the soft computing community as it allows the combi-
nation of uncertain, imprecise or conflictual pieces of evidence. The flexibility
of the theory of belief functions has led some people to think of it as a data
fusion framework whereas its initial purpose is more general.

Combining pieces of evidence coming from different sources of information is
one of the most frequently studied problem in the belief function theory. In par-
ticular, a rich literature exists (see for example [27, 11] and references therein)
proposing alternatives to Dempster’s rule when this latter does not apply, that
is when sources of information are either unreliable or non-independent, or both.
This paper deals with the second issue, that is the one concerning source in-
dependence, and more particularly with the case where this dependence is ill-
known and hard to assess.

Under such an assumption, it is common to adopt a cautious approach,
also known as least-commitment principle [14] (LCP). A natural consequence
of this principle is that if all the sources provide the same mass function, then
the result of the combination should be this very mass function, or in other
words the combination should be idempotent. However, if idempotence is a
consequence of the LCP, satisfying idempotence does not imply satisfying the
LCP. As shown by Dubois and Yager [16], there is virtually an infinity of ways
to derive idempotent combination rules, not all of them necessarily following a
least-commitment principle. For instance, Cattaneo [3] provides an idempotent
rule following a conflict-minimization approach, which may lead to non-least
committed results [9].

So, to satisfy the LCP, we must add additional constraints on the combi-
nation rule. One such natural constraint is to consider a partial order over
informative content of mass functions, and to require the combination result to
be one of the maximal element of this partial order within the subset of possible
combination results. Unfortunately, such an approach can present two short-
comings: it will very often lead to multiple solutions corresponding to all possible
maximal elements [12], and estimating this set of solutions may be computa-
tionally challenging. Denœux [7] shows that using the canonical decomposition
and the associated partial order leads to a unique LCP, idempotent solution,
yet this solution has two limitations: the set of possible combination results is
quite small, leading to a not so conservative behavior (as we will see on a simple
example in Section 5, and as already pointed out in [9]), and the combination
only apply to specific (i.e., non-dogmatic) mass functions.

In this paper, we take inspiration from some of our previous work [20] study-
ing the consistency of distances with partial orders comparing informative con-
tents to propose a new way to derive cautious combination rules. Our approach
departs from previous ones, as it is formulated as an optimization problem (sim-
ilarly to what is done by Cattaneo [3] for conflict minimization) that naturally
satisfies the LCP principle. Our approach makes minimal assumptions about
the shape of the combination result, in the sense that the only constraints it
imposes on the combination result is to be more informative than each initial
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belief function in the conjunctive case, and less informative in the disjunctive
case. This also contrasts with previous approaches [7, 4, 9], that considered
the results to take specific forms (either in the form of a joint mass function
with prescribed marginals [4, 9], or in a weight function combined through uni-
norms [7]). It is in fact in-line with the generic conjunctive operator described
by Dubois et al. [11].

Our approach also solves the two problems of solution uniqueness and com-
putability, since if the distance is chosen so as to minimize a strictly convex ob-
jective function, we are guaranteed to have a unique solution satisfying the LCP
and computable by convex optimization. Section 2 recalls the basics needed in
this paper. The bulk of the proposal is contained in Section 3, where we present
the combination approach and study its properties in the conjunctive case. In
section 4, we present equivalent results for the disjunctive case. Section 5 com-
pares our proposal with respect to existing ones.

This paper is an extended version of [19] which was presented at the 4th

international conference on belief functions, BELIEF’16 to which this special
issue of IJAR is dedicated.

2 Preliminaries and problem statement

This section briefly sketches the basics of evidence theory and provides refer-
ences for readers interested in further details. Like most of the belief function
literature, this paper is limited to belief functions on finite spaces. The deriva-
tion of the results introduced in this paper in the continuous case is left for
future work.

2.1 Basic concepts

A body of evidence Ei defined on the finite space Ω = {ω1, . . . , ωn} will be
modeled by a mass function mi : 2Ω → [0, 1] that sums up to one, i.e.,∑
E⊆Ωmi(E) = 1. Following usual notation, 2Ω denotes the power set of Ω.

In evidence theory, this basic tool models our uncertainty about the true value
of some quantity (parameter, variable) lying in Ω. The cardinality of 2Ω is de-
noted by N = 2n. The set M of mass functions on Ω is called mass space. A
set A is a focal element of m iff m(A) > 0. The complement m of a mass
function m is such that ∀A ⊆ Ω, we have m (A) = m (Ac) where Ac denotes the
complement of the set A in Ω.

A mass function assigning a unit mass to a single focal element A is called
categorical and denoted by mA: mA(A) = 1. If A 6= Ω, the mass function mA

is equivalent to providing the set A as information, while the vacuous mass
function mΩ represents ignorance. A function mi such that mi = (1− α)mA +
αmΩ with α ∈ [0; 1] is called a simple mass function and is regarded as an
elementary evidence supporting the event A.

Besides, a mass function mi such that mi (Ω) = 0, i.e. Ω is not a focal
element of mi, is called a dogmatic mass function. A mass function mi such
that mi (∅) = 0, i.e. ∅ is not a focal element of mi, is called a normalized mass
function while a function such that mi (∅) > 0 is called subnormal. Some
authors [6, 22] consider that ∅ cannot be assigned a positive mass (closed world
assumption) because it arises from inconsistencies and should be re-assigned to
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the remaining valid hypotheses. In contrast, other authors [23, 28] prefer to
keep track of the mass assigned to ∅ (open world assumption) and consider that
it is a valuable feature to assess the quality level of information encoded in a
given mass function. Under the open world assumption, the mass assigned to ∅
can also be interpreted as the support given to the fact that the true value of
the variable of interest does not belong to Ω, i.e. Ω is not exhaustive. Under
the closed world assumption, Ω is assumed to be the exhaustive set of solutions
and a positive mass for ∅ is induced by other factors such as errors in the model
or unreliability of some pieces of evidence.

If the reliability of the evidence encoded in a mass function can be evaluated
through a coefficient α ∈ [0, 1], then a so-called discounting operation on m
can be performed. A discounted mass function is denoted by mα and we have :

mα = (1− α)m+ αmΩ. (1)

α is called the discounting rate. Consequently, setting α = 1 turns a mass
function into the vacuous mass function (as the source is totally unreliable),
while α = 0 leaves it untouched. Note that a discounted categorical mass func-
tion is a simple mass function. Several alternative set functions are commonly
used in the theory of belief functions and encode the same information as a
given mass function mi. The belief, plausibility and commonality functions
of a set A are defined as

beli(A) =
∑

E⊆A,E 6=∅
mi(E), (2)

pli(A) =
∑

E∩A6=∅
mi(E), (3)

qi(A) =
∑
E⊇A

mi(E) (4)

and respectively represent how much the event A is implied by, consistent with,
and considered common by the actual evidence. Under the open world assump-
tion, another representation is provided by the implicability function bi. This
function is closely related to the belief and plausibility functions through the
following relations: ∀A ∈ 2Ω,

bi(A) = beli(A) +mi(∅), (5)

bi(A) = 1− pli (Ac) . (6)

In this paper, we will also use the conjunctive weight function denoted
by wi and introduced by Smets [25]. It is only defined for non-dogmatic mass
functions (m(Ω) > 0). This representation has its roots in a decomposition of
a mass function into simple ones which are standing for elementary pieces of
evidence supporting each event A ( Ω individually. The simplest transition
relation allowing to compute a conjunctive weight function is obtained from the
commonality function as follows:

wi (A) =
∏
E⊇A

qi (E)
(−1)|E|−|A|+1

, ∀A ⊆ Ω. (7)
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The non-dogmatic condition prevents division by zero to happen in Equation (7).
In practice, when a dogmatic mass function mi has to be turned into a conjunc-
tive weight function, one can discount it with a very small discount rate as
compared to the minimum positive mass of mi. The discount rate can be cho-
sen as small as necessary so that the values of wi stabilize to some value up to
a desired precision threshold.

Unlike other representations, the codomain of these functions is (0; +∞) and
not [0, 1]. Having wi (A) < 1 is understood as the fact that some evidence has
been collected allowing to support A being true. Having wi (A) > 1 means that
A is unlikely to the point that a significant amount of evidence needs to be
collected before starting to support A being true. Finally, wi (A) = 1 stands for
a neutral opinion regarding event A. We refer to Denœux [7] for more details
on the conjunctive weight function.
When mass function are unnormalized (m(∅) > 0), a dual decomposition can
be obtained using the disjunctive weight function denoted by vi. It can be
computed for instance from the implicability function as follows:

vi (A) =
∏
E⊆A

bi (E)
(−1)|A|−|E|+1

, ∀A ⊆ Ω. (8)

In the same way as conjunctive weight functions, one turns a normalized mass
function mi into a disjunctive weight function by artificially assigning an in-
finitesimal mass value to ∅ and then renormalize so that

∑
E⊆Ωm(E) = 1.

Such a constraint may be perceived as less natural than m(Ω) > 0, in particular
under a closed-world assumption.

2.2 Mass function combination

In this subsection, we give a very brief presentation of how pieces of information
are usually combined when they are represented by belief functions. Suppose two
sources of information S1 and S2 have gathered pieces of evidence allowing them
to define two mass functions m1 and m2 respectively. Let us further suppose
that S2 collected some certain but imprecise piece of evidence, i.e. m2 = mB

with B ( Ω and |B| ≥ 1. Under such circumstances, a natural solution is to
re-allocate the mass m1 (A) to the set A ∩ B. This combination is denoted by
m1|B and is given by the following formula:

m1|B (X) =
∑

A∩B=X

m1 (A) . (9)

This combination is called conditioning because when m1 and m2 are prob-
ability distributions, probabilistic conditioning is retrieved. The mass function
m1|B can be understood as m1 given that B is true. Note however that this
corresponds to a revision step, which fits well with an information fusion set-
ting, but that other conditioning rules fitted to other settings (e.g., focusing
operation) could be devised. The interested reader can check [13].

Evidential combination rules address the same combination problem in a
more general context, i.e. when m2 is not a categorical mass function. The
straightforward generalization of conditioning gives the conjunctive rule [23].
This rule is denoted by ∩© and the result of the combination of m1 with m2 is
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denoted by m1 ∩©2 = m1 ∩©m2. We have

m1 ∩©2 (X) =
∑

A∩B=X

m1 (A)m2 (B) . (10)

The most widely used combination rule is Dempster’s rule [6], denoted by ⊕
and obtained by normalizing the output of the conjunctive rule:

m1⊕2 (X) =

{
m1 ∩©2(X)

1−m1 ∩©2(∅) if X 6= ∅
0 if X = ∅

. (11)

Both the conjunctive and Dempster’s rules transfer masses to intersections of
focal sets, which is justified when the sources are reliable and consequently do
not support incompatible events. In practice, this is not always true and one
alternative is to transfer masses to unions of focal sets instead. The disjunctive
rule [10] ∪© relies on this idea. We have

m1 ∪©2 (X) =
∑

A∪B=X

m1 (A)m2 (B) . (12)

Another important assumption that is a prerequisite to each of these rules is
source independence. In [6], Dempster introduces belief functions in connection
with probability theory. More precisely, Dempster derives a normalized belief
function for each source Si by coupling a probability space (Xi, σXi

, µi) with a
multi-valued mapping Γi from Xi to Ω (which is actually a mapping Xi −→ 2Ω).
In this setting, independence between S1 and S2 is understood in the usual
probabilistic way and the combined belief function is induced by the product
measure µ1 ⊗ µ2.

It is not easy to describe what practical situations fall in the independent
source assumption. As an example, Dempster mentions that two belief functions
derived from non overlapping statistical samples are obviously independent.
Let alone this textbook case, what means independence (or distinctness [24])
is far less obvious. Yet, assuming independence when sources are likely to be
correlated in some ways may lead to reinforcing some unwarranted assumptions
(see [17] for example).

When independence cannot be reasonably assumed, a sound way to circum-
vent this difficulty is to require the combination rule to be idempotent. Indeed,
idempotence will automatically prevent evidence pieces from being counted
twice. Denoeux [7] introduced a conjunctive idempotent rule, known as the
cautious rule ∧©, as well as a disjunctive idempotent rule, known as the bold
rule ∨©. For a pair of non-dogmatic mass functions (m1,m2), their cautious
combination is defined as

m1 ∧©2 = ∩©
A(Ω

m
w1(A)∧w2(A)
A , (13)

where ∧ is the minimum operator. For a pair of non-normalized mass functions
(m1,m2), their bold combination is defined as

m1 ∨©2 = ∪©
A 6=∅

m
v1(A)∧v2(A)
Ac . (14)

Finally, except for Dempster’s rule, the normalized version of a given rule �
will be denoted by �∗.
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2.3 Comparing mass functions with respect to informative
content

When considering two mass functions m1 and m2 providing information about
the same quantity, a natural question is to wonder if one of these two is more
informative than the other. This question can be answered if the mass space
M is endowed with a relevant partial order v with m1 v m2 when m1 is more
informative than m2.

Determining if a function m1 is more informative than m2 is not a trivial
task except in specific circumstances. For instance, informative content related
partial orders should extend set inclusion, since when A ⊆ B, A is more informa-
tive than B. Such partial orders are obtained by stating that m1 is f-included
in m2, denoted m1 vf m2, if f1 ≤ f2 where ≤ is the element-wise inequality,
meaning that

f1 ≤ f2 ⇔ f1 (A) ≤ f2 (A) ,∀A ⊆ Ω,

for some f ∈ {pl, q, w} denoting a given type of set functions. We consider
that the partial order vw is also valid for dogmatic mass functions using the
infinitesimal discounting approximation as described in Section 2.1.

Besides, one could think of defining a partial order using implicability func-
tions but from equation (6) this partial order is formally equivalent to vpl. It
is also possible to use belief functions to derive the partial order vbel. Unlike
the other partial orders, vbel is defined as

m1 vbel m2 ⇔ bel1 (A) ≥ bel2 (A) ,∀A ⊆ Ω.

Although vbel is a valid partial order from a mathematical point of view, it
turns out to have singular properties. For instance, for any subset A ( Ω such
that A 6= ∅, we have

mA @bel mΩ @bel m∅, (15)

while for any f ∈ {pl, q, w}, we have

m∅ @f mA @f mΩ. (16)

More precisely, m∅ and mΩ are respectively the unique minimal and maximal
elements of (M,vf ), f ∈ {pl, q}. The function m∅ is the minimum of (M,vw)
but this poset has several maximal elements. Concerning (M,vbel) the maximal
element is m∅ and any function m{x} is a minimal element (for any x ∈ Ω). In
particular, the non-uniqueness of minimal elements will be problematic for the
approach that will be introduced in the next section. Since vbel is very seldom
used in the literature, we will not include it in our study but only comment on
it in relevant parts of this article.

Similarly to the belief function, the disjuntive weight function induces a
partial order with reversed inequalites:

m1 vv m2 ⇔ v1 (A) ≥ v2 (A) ,∀A ⊆ Ω.

This latter will be mentioned only in the derivation of disjunctive operators
(section 4).
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Another widely used partial order relies on the concept of specialization.
A function m1 is a specialization of m2, denoted m1 vs m2, if there is a
non-negative N ×N matrix S = [S (k, j)] such that

for j = 1, . . . , N,

N∑
k=1

S (k, j) = 1,

S (k, j) > 0⇒ Ek ⊆ E′j ,

for k = 1, . . . , N,

N∑
j=1

m2(E′j)S (k, j) = m1(Ek).

The term S (k, j) > 0 is the proportion of the focal set E′j that ”flows down”
to focal set Ek. The order in which subsets are indexed is arbitrary.

A subclass of specialization matrices are Dempsterian specialization matri-
ces. A matrix Di is a Dempsterian specialization matrix if it is a specialization
matrix and if for any Ek ⊆ E′j , one has Di (k, j) = mi|E′j (Ek) for some mass

function mi. Now, one writes m1 vd m2 if m1 is a specialization of m2 relying
on a Dempsterian matrix D0 which actually means that m1 = m0 ∩©m2.

Each of these orders is partial in the sense that in general there are some in-
comparable pairs (m1,m2), i.e. m1 6v m2 and m2 6v m1. There are implications
between them, as we have

m1 vw m2

m1 vv m2

}
⇒ m1 vd m2 ⇒ m1 vs m2 ⇒

{
m1 vpl m2

m1 vq m2
. (17)

2.4 Evidential distances and their compatibility with par-
tial orders

Another way to compare mass functions is by measuring how distant they are.
An evidential distance is a function d : M ×M → [0,∞] that satisfies
the symmetry, definiteness and triangle inequality properties. In [20], we have
formalized the idea of compatibility between a distance and a partial order in
the following way:

Definition 1. Given a partial order vf defined onM, an evidential distance d
is said to be @f -compatible (in the strict sense) if for any mass functions
m1, m2 and m3 such that m1 @f m2 @f m3, we have:

max {d (m1,m2) ; d (m2,m3)} < d (m1,m3) , (18)

For some family of set-functions f that are in bijective correspondence with
mass functions, an interesting distance df,k is defined as

df,k (m1,m2) = ‖f1 − f2‖k =

∑
A⊆Ω

|f1 (A)− f2 (A) |k
 1

k

. (19)

In particular, we showed that for any k ∈ N∗ \ {∞}, dpl,k is @pl-compatible and
dq,k is @q-compatible (in the strict sense for all of them).
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3 A distance-based cautious conjunctive aggre-
gation

In Section 2.2 as well as in the belief function literature, all combination rules
use some particular features of belief functions (masses mi or weights wi) to
derive conjunctive rules. In [11], Dubois et al. consider the fusion problem from
a more abstract point of view, and merely require conjunctive and disjunctive
rules to satisfy the following principle: given items of information I1, . . . , I` and
an information ordering v relation defined on them, a rule is conjunctive if its
result I∩ is such that

I∩ v Ii, ∀i ∈ {1, . . . , `}
and is disjunctive if its result I∪ is such that

I∪ w Ii, ∀i ∈ {1, . . . , `}.

They then recommend (in absence of other information) to follow the LCP
principle in the conjunctive case, and the “most committed principle” in the
disjunctive case to pick a combination result. This view has the advantage that
it makes no a priori assumption about the shape of the rule, nor about the
dependence assumption it should satisfy. This section and the next introduce
how we decline this view with belief functions to obtain computable idempotent
operators, starting with the conjunctive operator in Section 3 and pursuing with
the disjunctive one in Section 4.

3.1 Conjunctive combination using partial orders

Rather than seeing a conjunctive combination of E1, . . . , E` as a particular oper-
ator defined either on the mass functions m1, . . . ,m` or on the weight functions
w1, . . . , w`, we simply consider that a mass function m∗ resulting from a con-
junction should be (i) more informative (in the sense of some partial order vf )
than any m1, . . . ,m` and (ii) should be among the least committed elements
(in terms of information) among those, in accordance with the LCP. Formally
speaking, if we denote by

Sf (mi) := {m ∈M | m vf mi} (20)

the set of all mass functions more informative than mi, then m∗ should be such
that:

(i) m∗ ∈ Sf (m1) ∩ . . . ∩ Sf (m`),

(ii) 6 ∃m′ ∈ Sf (m1) ∩ . . . ∩ Sf (m`) such that m∗ @f m′.

The first constraint expresses the conjunctive behavior of such an approach. The
second constraint says that m∗ is a maximal element (i.e. a least committed
solution) for admissible solutions subject to the first constraint.

While this solution is generic and does not require any explicit model of
dependence, it should be noted that the choice of the partial order to consider
is not without consequence. Considering the orders mentioned in Section 2.3
and their relation, Equation (17) tells us that for a mass function m, Sw(m) ⊆
Sd(m) ⊆ Ss(m) ⊆ Spl(m), hence the space of solutions will be potentially much
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smaller when choosing vw rather than vpl. In practice and in accordance with
the LCP, it seems safer to choose the most conservative partial orders, i.e. vpl
or vq in our case. We will see in Section 5 that it can have some impact on the
combination results, even for simple examples.

While our definition of the cautious result of a conjunctive combination
appears natural, it still faces the problem that many different solutions m∗

could actually fit the two constraints, as v is a partial order. This means that
to identify a unique solution, we need an additional criterion, that preferably
leads to efficient computations. One idea to solve this problem that we explore
here is to use distances that are compatible with v.

3.2 New conjunctive operators from soft LCP

To derive new conjunctive operators, we consider a weaker form of least com-
mitment principle which we call soft LCP. This principle states that when
there are several candidate mass functions compliant with a set of constraints,
the one with minimal distance value from the vacuous mass function should be
chosen for some v-compatible distance. We call this version of the LCP soft
because the philosophy behind LCP is to guide us to the most uninformative
solution, which may be ill-defined as requiring this solution to be unique is too
strong. Our idea is therefore to soften the initial LCP requirements by adding
constraints ensuring uniqueness.

The resulting conjunctive operator, denoted uf,k, depends on the chosen
distance df,k, and is defined as follows

Definition 2. for any set of ` functions {m1, ..,m`}, we have

m1 uf,k .. uf,k ml = arg min
m∈Sf (m1)∩..∩Sf (m`)

df,k (m,mΩ) . (21)

According to [20, corollary 4], we know that the problem induced by the
soft LCP is a convex optimization problem with a unique solution if the chosen
distance df,k is @f -compatible and if 2 ≤ k < ∞. Considering results in [20],
the operator uf,k can be applied for f ∈ {pl, q}. To our knowledge, there is
no evidential distance reported to be vw, vd or vs-compatible in the litera-
ture, hence that uf,k can be easily applied for f ∈ {w, d, s} is not guaranteed.
One could probably derive a vw-compatible distance by computing ‖w1 − w2‖k.
However, the minimization problem solution is already known from the cautious
rule, i.e. ∧© = uw,k, and is one of the rare exception1 where the raw application
of LCP leads to a unique solution. The absence (for the time being) of a prac-
tical mean to compute the solution of problem (21) when f ∈ {d, s} is not a
major drawback, as those partial orders limit the space of solutions by inducing
more restrictive spaces Sf (mi). For the sake of the paper readability, the f = d
or s cases are not further discussed in the main body of this paper but only
commented in A.

Concerning ubel,k, there is no theoretical impediment but a practical one.
Indeed, one may have Sbel (m1) ∩ Sbel (m2) = ∅. When f ∈ {pl, q}, we know
that such intersections are not empty because they always contain m∅.

Operators uq,k and upl,k can be easily implemented using standard solvers
available in scientific programming libraries because they amount to a convex

1The inverse pignistic [15] being another one.
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minimization problem. We give some details on how to implement those oper-
ators when k = 2 in B.

Definition 2 could have been formulated in a more general way by replacing
distance df,k by any distance such that the minimization problem has a unique
solution. We chose to focus on Lk norm based distances as results are available
to prove the existence of a unique solution for them. The most popular distance
in evidence theory is Jousselme distance [18] which is not consistent with any
of the partial order evoked in this paper, at least when we can have m(∅) 6= 0.
Note that [20, corollary 4] is a sufficient condition to obtain a unique solution
therefore one cannot conclude about the ability of Jousselme distance to induce
a bona fide operator in the same way as definition 2.

Finally, we would like also to stress that a soft LCP solution is an LCP
solution to the problem presented in the previous subsection as long as mΩ

is the maximum of (M,vf ). Indeed condition (i) is verified by construction.
Concerning condition (ii), suppose ∃m′ ∈ Sf (m1)∩. . .∩Sf (m`) such thatm∗ @f
m′. As d is consistent with @f , m∗ @f m′ @ mΩ implies d(m′,mΩ) < d(m∗,mΩ)
which is in contradiction with the very definition of m∗, hence condition (ii) is
verified as well. There is however little to no debate about the fact that mΩ is
the least informative mass function.

Just for a quick illustration, we provide the following example which is a
continuation of [7, example 2].

Example 1. Let Ω = {a, b, c}. Here are two non-dogmatic mass functions
along with their combinations under our new operators and other standard
approaches.

subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω
m1 0 0 0 0.3 0 0 0.5 0.2
m2 0 0 0.3 0 0 0 0.4 0.3

m1 uq,2 m2 0 0 0.2 0.1 0 0 0.5 0.2
m1 upl,2 m2 0 0 0.3 0 0 0 0.4 0.3
m1 ∩©m2 0 0 0.6 0.12 0 0 0.2 0.08
m1 ∧©m2 0 0 0.42 0.09 0 0 0.43 0.06

We see that the conjunctive and cautious rules transfer much more mass to {b}
than operators uq,2 and upl,2 do. Also, observe that m1 upl,2 m2 = m2 because
m2 @pl m1.

3.3 Properties of new conjunctive operators

The commutativity of the set-intersection and the symmetry property of dis-
tance give that uf,k is commutative. Each operator uf,k is also idempotent: for
any possible solution m ∈ Sf (m1)\{m1}, we have df,k (m1,mΩ) < df,k (m,mΩ)
because df,k is vf -compatible and m vf m1 vf mΩ, hence m1 uf,k m1 = m1.

Each of these operators are also conjunctive by construction, in the sense
that the output mass function is more informative than any of the initial mass
functions. Indeed if mi states that ω is not a possible value of the unknown
quantity (pli({ω}) = 0), then any function in S (mi) also states so. Since the
combination result belongs to S (mi), then this piece of information is propa-
gated by uf,k.
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Except for the f = w case2, these operators are, however, not associative
because we can have

Sf (m1 uf,k m2) ( Sf (m1) ∩ Sf (m2) .

The above remark is illustrated by the following example in the f = q case.

Example 2. Let Ω = {a, b, c} denote some space. Let us introduce the following
mass functions on Ω:

subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω
m1 0 0.1 0 0 0 0 0.1 0.8
m2 0 0 0 0.1 0.1 0 0 0.8

m1 uq,2 m2 0 1/15 1/15 0 1/15 0 0 0.8
q1 1 0.9 0.9 0.8 0.9 0.8 0.9 0.8
q2 1 0.9 0.9 0.9 0.9 0.8 0.8 0.8

q1 ∧ q2 1 0.9 0.9 0.8 0.9 0.8 0.8 0.8
q12 1 1/15 1/15 0.8 1/15 0.8 0.8 0.8

where q12 denote the commonality function in correspondence with m1 uq,2m2.
Let m3 denote the following mass function

subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω
m3 0 0.1 0 0 0.3 0 0.2 0.4
q3 1 0.5 0.6 0.4 0.9 0.4 0.6 0.4

We have q3 ≤ q1 ∧ q2 and thus m3 ∈ Sq (m1)∩Sq (m2). However m1 uq,2m2 6vq
m3 and thus m3 6∈ Sq (m1 uq,2 m2).

Fortunately, when f ∈ {pl, q}, the constraints of the minimization prob-
lem can be stored and updated iteratively, meaning that the complexity of the
combination does not increase with `. In practice, one needs to be able to com-
pute combinations iteratively without storing the whole set of mass functions
{m1, . . . ,m`} and restart the combination from scratch when a new function
m`+1 arrives. This property is often referred to as quasi-associativity. Let c
denote a set function from 2Ω to [0; 1] which is meant to store the problem con-
straints. Algorithm 1 allows to compute combinations using uq,k sequentially.
The same algorithm works for upl,k. In practice, what we simply do is storing,
for each set A, the lowest commonality (resp. plausibility) value encountered in
{m1, . . . ,m`}.

Algorithm 1 Sequential combination using uq,k
entries : {m1, ..,m`}, k ≥ 2.
c← min {q1; q2} (entrywise minimum).
m← m1 uq,k m2.
for i from 3 to ` do
c← min {c; qi} (entrywise minimum).
m← arg min

m′
dq,k (m′,mΩ) subject to q′ ≤ c.

end for
return m.

2Remember that ∧© = uw,k and ∧© is associative [7].
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It should be noted that this quasi-associativity is induced by the associativity
of the entrywise minimum.

It can be argued that the choice of screening distances from the least com-
mitted mass function in definition 2 is somewhat arbitrary. The following lemma
shows that, for uq,k and upl,k, another relevant choice yields the same operators:

Lemma 1. For f ∈ {q, pl} and for any finite integer k such that k ≥ 2, one
has:

m1uf,k..uf,kml = arg min
m∈Sf (m1)∩..∩Sf (m`)

df,k (m,mΩ) = arg max
m∈Sf (m1)∩..∩Sf (m`)

df,k (m,m∅) .

(22)

Proof. We give a proof for uq. The one for upl follows a similar scheme.
Let us denote by m∗ the mass function yielded by m1 uq m2. For any mass

function m ∈ Sq (m1) ∩ .. ∩ Sq (m`), we thus have

‖q − qΩ‖k ≥ ‖q∗ − qΩ‖k ,
⇔ ‖1− q‖k ≥ ‖1− q∗‖k .

The above inequality comes from the fact that commonalities for the vacuous
mass function are constant with value one. Observing that there is a symmetry
relating function g (x) = ‖1− x‖ with function h (x) = ‖x‖ for any vector x in
the unit hypercube, we deduce

‖q‖k ≤ ‖q∗‖k ,
⇔ ‖q − q∅‖k ≤ ‖q∗ − q∅‖k .

The above inequality is obtained by remembering that q∅ has null value for all
non-empty set. It has value one for ∅ but this is tantamount to add the same
constant term to both sides of the inequality.

Getting nearer to the least committed state of belief is thus equivalent to
drifting apart from the most committed one for these two operators. Another
interesting property to investigate is the compatibility with Dempster’s con-
ditioning (9), recalled in Section 2.2. The next proposition shows that it is
retrieved as a special case of the uq,k conjunctive rule.

Proposition 1. Let m0 denote a mass function. For any finite integer k such
that k ≥ 2 and any subset A ⊆ Ω, we have

m0 uq,k mA = m0|A. (23)

Proof. The commonality function corresponding to the categorical mass func-
tion mA is given by

qA (B) =

{
1 if B ⊆ A
0 otherwise

. (24)

From this, one obviously has q0 (B) qA (B) = q0 (B)∧qA (B). Remembering that
entrywise product of two commonality functions is the commonality function of
their conjunctive combination, we have

Sq (m0) ∩ Sq (mA) = Sq
(
m0|A

)
.
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By definition of Sq
(
m0|A

)
, its unique maximal element is m0|A, meaning that

∀m ∈ Sq
(
m0|A

)
, one has m vq m0|A. Now since we also have that m0|A vq mΩ

and dq,k is vq-compatible, then

arg min
m∈Sq(m0)∩Sq(mA)

dq,k (m,mΩ) = m0|A. (25)

Concerning upl,k, we have not been able to prove (or refute) an equivalent
result. The only case in which the result can be easily proved is when A has unit
cardinality. Indeed, after conditioning on a singleton, plausibility and common-
ality functions coincide and the result proved in proposition 1 applies. In order
to derive a possible counter-example, we sampled uniformly mass functions m0

and mA using the sampling procedures presented in [2]. After 1e6 runs, no
counter-example was found for k = 2, therefore the result may be conjectured.

Another property that can be sometimes interesting is invariance with re-
spect to refinement. Given two spaces Ω and Θ, a refinement r of Ω into Θ is
a mapping from Ω to 2Θ \ ∅ such that the family {r (ω)}ω∈Ω is a partition of
Θ which is an abstract space with greater cardinality than Ω. For any mass
function m defined on Ω, another one m′ on Θ is induced by r as follows:

m′
(⋃
ω∈A

r (ω)

)
= m (A) ,∀A ⊆ Ω. (26)

The idea behind refinement is that one may be interested in reasoning at
different scales, starting with a coarse one and then transferring our beliefs
on a finer one using mapping r. As shows the next example, the operators
introduced in this article are not immune to such an operation, for the main
reason that distances are in general not invariant with respect to refinements
(for a discussion about this, see [8]).

Example 3. Let Ω = {a, b, c} and Θ = {θ1, θ2, θ3, θ4} denote two spaces.
Suppose there exist a refinement r such that :

r (a) = {θ1, θ4} ,
r (b) = {θ2} ,
r (c) = {θ3} .

Let us introduce the following mass functions on Ω:

subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω
m1 0.1 0 0.1 0.5 0.1 0 0.1 0.1
m2 0 0 0 0.3 0.1 0.3 0 0.3

Let us denote by m′1 and m′2 the mass functions on Θ induced by r from m1

and m2, respectively. The mass function m′1uq,22 induced by r from m1 uq,2 m2

is not equal to m′1 uq,2m′2. In particular, we have m′1 uq,2m′2 ({θ3}) = 0.2 while
m′1uq,22 ({θ3}) = 0.1.

Although informative partial orders are preserved after refinement, the sets
of more informative functions Sf (mi) are different. In example 3, the hypoth-
esis a is refined into two elements: θ1 and θ4. This implies increased freedom
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in the selection of the mass function minimizing the distance from the vacuous
function. In general, there is no reason why this solution should be in corre-
spondence (through mapping r) with the solution obtained without refining.

A last point that deserves investigation is the presence of a neutral element,
i.e. a function me such that m uf,k me = m,∀m ∈M.

Proposition 2. For any finite integer k such that k ≥ 2 and any f ∈ {q, pl},
the unique neutral element of operator uf,k is the vacuous mass function mΩ.

Proof. The vacuous mass function mΩ is the maximum of (M,vf ) for f ∈
{q, pl} which implies that Sf (mΩ) = M. Consequently, the feasible set of
m uf,k mΩ is Sf (m). By defintion of Sf (m), we have (m uf,k mΩ) vf m.
Since distance d is consistent with vf , (m uf,k mΩ) vf m vf mΩ implies
d (m uf,k mΩ,mΩ) ≥ d (m,mΩ). But m uf,k mΩ is by definition the unique
minimizer in Sf (m) of the distance from mΩ, hence m uf,k mΩ = m.

Furthermore, suppose me 6= mΩ is a neutral element. Since mΩ is neutral
me uf,kmΩ = me but since me is neutral as well then me uf,kmΩ = mΩ, hence
a contradiction.

This property is desirable because the vacuous mass function represents the
absence of information and in a conjunctive combination context, we expect the
absence of information to have no impact on the combination result.

4 Disjunctive combination using partial orders

In the same fashion as the conjunctive case, one can consider that a mass func-
tion m∗ resulting from a disjunction should be (i) less informative (in the sense
of some partial order vf ) than any m1, . . . ,m` and (ii) should be among the
most committed elements (in terms of information) among those. This is a dual
reasoning as LCP. Formally speaking, if we denote by

Gf (mi) := {m ∈M | mi vf m} (27)

the set of all mass functions less informative than mi, then m∗ should be such
that:

(i) m∗ ∈ Gf (m1) ∩ . . . ∩ Gf (m`),

(ii) 6 ∃m′ ∈ Gf (m1) ∩ . . . ∩ Gf (m`) such that m′ @f m∗.

Again, such a procedure does not lead to a unique solution in general (except
when f = v). One way to circumvent this issue is to select the mass function
in Gf (m1)∩ . . .∩Gf (m`) with minimal distance from the minimum of (M,vf )
(if it exists) as long as the chosen metric is @f -compatible.

Let us focus on f ∈ {pl, q}, where a unique minimal element exists and is
m∅. According to corollary 3 in [20], we know that this problem is a convex
optimization problem with a unique solution if the chosen distance df,k is @f -
compatible and if 2 ≤ k < ∞. Let tf,k denote this operator which is formally
defined as follows:

Definition 3. for any set of ` functions {m1, ..,m`}, we have

m1 tf,k .. tf,k ml = arg min
m∈Gf (m1)∩..∩Gf (m`)

df,k (m,m∅) . (28)
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The fact that m∅ is the most committed mass function for vq and vpl is
not very intuitive. The following lemma delivers a better intuition as to what
operators tq,k and tpl,k consist of, as it shows that they can be understood as
the maximization of the distance from the vacuous mass function which is more
intuitive.

Lemma 2. For f ∈ {q, pl} and for any finite integer k such that k ≥ 2, one
has:

m1tf,k..tf,kml = arg min
m∈Gf (m1)∩..∩Gf (m`)

df,k (m,m∅) = arg max
m∈Gf (m1)∩..∩Gf (m`)

df,k (m,mΩ) .

(29)

The proof of this lemma is identical to that of Lemma 1.
The combination operators tq,k and tpl,k have similar properties as their

conjunctive counterparts. They are commutative, idempotent and quasi-associative3

but not invariant to refinement. Quasi-associativity is achieved using algo-
rithm 2 which is almost the same as algorithm 1.

Algorithm 2 Sequential combination using tq,k
entries : {m1, ..,m`}, k ≥ 2.
c← max {q1; q2} (entrywise maximum).
m← m1 uq,k m2.
for i from 3 to ` do
c← max {c; qi} (entrywise maximum).
m← arg min

m′
dq,k (m′,m∅) subject to q′ ≥ c.

end for
return m.

The neutral element of some of the disjunctive operators is given by the
following proposition.

Proposition 3. For any finite integer k such that k ≥ 2 and any f ∈ {q, pl},
the unique neutral element of operator tf,k is the total conflict mass function
m∅.

The proof of proposition 3 is very similar as the one of proposition 2 and
is thus omitted. The key point is that m∅ is the minimum of (M,vf ) for
f ∈ {q, pl}.

Just for a quick illustration we provide the following example which is a
continuation of [7, example 7].

Example 4. Let Ω = {a, b, c}. Here are two subnormal mass functions along
with their combinations under our new operators and other standard approaches.

subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω
m1 0.1 0 0 0.3 0 0 0.6 0
m2 0.1 0 0.5 0 0 0 0.4 0

m1 tq,2 m2 0.1 0 0 0.3 0 0 0.6 0
m1 tpl,2 m2 0.1 0 0 0.3 0 0 0.6 0
m1 ∪©m2 0.01 0 0.05 0.18 0 0 0.64 0.12
m1 ∨©m2 0.006 0 0.0298 0.1071 0 0 0.2143 0.6429

3Again, when f = v, tf,k = ∨© and this rule is associative [7].
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Table 1: Basic properties of operators ∩©, ⊕, ∧© and uf,k.

operator condition for use commutativity associativity idempotence invariance w.r.t. neutral
refinement element

∩© none yes yes no yes mΩ

⊕ m1 ∩©2 (∅) < 1 yes yes no yes mΩ

∧© m1 (Ω) > 0 and m2 (Ω) > 0 yes yes yes yes none
uq,k none yes quasi yes no mΩ

upl,k none yes quasi yes no mΩ

We see that the disjunctive and bold rules transfer much more mass to Ω than
operators tq,2 and tpl,2 do. Also, observe that m1 tq,2 m2 = m1 tpl,2 m2 = m1

because m2 @q m1 and m2 @pl m1.

5 Related works: discussion and experiments

This section studies the relation between the current work and the main oper-
ators used to combine belief functions, both in terms of basic properties and
experiments. They demonstrate that our distance-based operators allow to re-
distribute masses more gradually than standard approaches. We also discuss the
influence of parameter k and f in the mass function returned by our operators.

5.1 A comparison with related works in the conjunctive
case

As said earlier, there are many works that have addressed the problem of deriv-
ing alternatives to Dempster’s rule or the conjunctive rule that do not rely on
independence assumptions.

A principled and common approach is to rely on a set of axiomatic prop-
erties [11] or to adapt existing rules from other frameworks [9]. In practice,
such axioms seldom lead to a unique solution, and it is then necessary to advo-
cate more practical solutions. Our rule can be seen as an instance of such an
approach, where the axiom consists in using the LCP over sets of f -included
masses, and the practical solution is to use a distance compliant with such an
axiom. Cattaneo’s solution [3] as well as Denoeux [7] cautious rules can also
be seen as instances of the same principle. The former proposes to solve a
conflict minimization problem rather than minimizing the informative content
(thus not strictly following an LCP principle), while the latter focuses on using
the set Sw(m1)∩ . . .∩Sw(m`) and the order vw, and demonstrates that in this
case there is a unique LCP solution known in closed form. Finally, an idea of
combination by distance minimization is suggested but not studied in [4]. The
author pursues a different goal anyway as the constraints are on marginal mass
functions.

We compare our approach with rules ∩©, ⊕ and ∧© which are the most fre-
quently used. Table 1 summarizes some basic theoretical properties satisfied by
operators ∩©, ⊕, ∧© and uf,k.

From a practical point of view, let us stress that combinations using uf,k for
f ∈ {pl, q} and k = 2 are really easy to compute. Indeed, quadratic program-
ming techniques can solve equation (21) in a very few iterations. The function
m∅ can be used to initialize the minimization as we are sure that it belongs to
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Figure 1: Mass assigned to {b} after combination of m1 = αm{b}+(1− α)m{a}
and m2 = αm{b} + (1− α)m{c} with ∩©, ∧© and uf,2.

Sf (m1) ∩ . . . ∩ Sf (m`). See also B for more details on how to implement this
quadratic program.

Let us illustrate the operator discrepancies on a simple situation inspired
from Zadeh’s counter-example [29]. Suppose m1 = αm{b} + (1− α)m{a} and
m2 = αm{b} + (1− α)m{c} are two mass functions on a frame Ω = {a, b, c}.
Figure 1 shows the mass assigned to {b}, the commonly supported element of
m1 and m2, after combination by ∩©, ∧© and uf,2. The same masses are obtained
for f ∈ {pl, q}. A very small mass ε = 1e− 4 was assigned to Ω while a mass ε

2
was removed from each focal element of each input mass function when using
∧© so as to circumvent the non-dogmatic constraint.

As could be expected, our rule tries to maintain as much evidence on {b}
as possible. A striking fact is that we have obviously m1 uf,2 m2 ({b}) = α.
More precisely, we have m1 uf,2 m2 = (1− α)m∅ + αm{b}. This result can be
proved for any finite k ≥ 2 when f = q. Let q1∧2 denote the entrywise minimum
of functions q1 and q2. In this particular setting, q1∧2 happens to be a valid
commonality function. Consequently, m1∧2 ∈ Sq (m1) ∩ Sq (m2). By definition
of the partial order vq, for any function m ∈ Sq (m1) ∩ Sq (m2), we have m vq
m1∧2. Since we also have m1∧2 vq mΩ and dq,k is vq-compatible, then m1 uq,k
m2 = m1∧2. In other words, our approach coincides with the minimum rule
applied to commonalities in this case. When f = pl, the result can also be
proved. For any m ∈ Spl (m1)∩Spl (m2), the constraints pl ({a}) = pl ({c}) = 0
imply that only {b} and ∅ are possible focal sets for m. More precisely, this
actually implies that Spl (m1) ∩ Spl (m2) is the segment (1− β)m∅ + βm{b} in
M parametrized by β ∈ [0;α]. vpl is a total order for this segment. From
relation (18), we obtain m1 upl,k m2 = (1− α)m∅ + αm{b}.

A closed form expression for the other rules can also be obtained. It is easy
to see that m1 ∩©m2 =

(
1− α2

)
m∅ + α2m{b}. Concerning the cautious rule,

taking the limit ε→ 0, we obtain

m1 ∧©m2 =

{
m∅ if α < 1

m{b} if α = 1
.

This example shows also that the behavior of Denœux’s cautious rule ∧© may
not be so cautious, as it keeps no mass on {b} except when α = 1. This is a
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Table 2: Basic properties of operators ∪©, ∨© and tf,k.

operator condition for use commutativity associativity idempotence invariance w.r.t. neutral
refinement element

∪© none yes yes no yes m∅
∨© m1 (∅) > 0 and m2 (∅) > 0 yes yes yes yes none
tq,k none yes quasi yes no m∅
tpl,k none yes quasi yes no m∅

quite bold behavior, due mainly to the fact that Sw induces stronger constraints
than Spl or Sq. This clearly shows that while idempotence is a pre-requisite to
have a cautious attitude towards source (in)dependence, it is not sufficient to
guarantee a really cautious behavior when mass functions are not identical. Even
the conjunctive rule appears to have an intermediate behavior as compared to
the two others, hence could be termed as more cautious than Denœux’s rule. In
[7, example 3], Denœux actually shows that using ∧© can yield a mass function
that is w-included in the result of the conjunctive combination. It should also
be stressed that this is a limit use case for ∧©, hence arguably an unfavourable
one.

The normalized versions of these three rules deserve also some comments.
This time, we obtain m1 u∗q,k m2 = m1 u∗pl,k m2 = m1 ⊕ m2 = m{b} which
is the result criticized by Zadeh. In contrast, the normalized cautious rule
achieves a progressive reduction of the support given to {b} as α decreases. The
normalized cautious rule appears to offer an intermediate behavior as compared
to the conjunctive rule and either of the unnormalized operator uq,k or upl,k.
In particular, when α = 1

2 , m1 ∧©∗m2 is the uniform Bayesian mass function
whereas operators uq,k and upl,k are still giving some support to {b} solely.
This time, the rule ∧©∗ appears indeed more cautious than ours, but could be
argued to no longer be really conjunctive, as it supports every element whereas
each source respectively discarded one as totally impossible.

5.2 A comparison with related works in the disjunctive
case

Similarly as in the conjunctive case, we also give a comparison with popular dis-
junctives rules: ∪© and ∨©. Table 2 summarizes some basic theoretical properties
satisfied by operators ∪©, ∨© and tf,k.

Let us illustrate the disjunctive operator discrepancies on a simple situa-
tion analogous to the experiment presented in the conjunctive case. Suppose
m1 = αm{a,b} + (1− α)m{a,c} and m2 = αm{a,b} + (1− α)m{b,c} are two
mass functions on a frame Ω = {a, b, c}. Figure 2 shows the mass assigned to
{a, b} after combination by ∪©, ∨© and tf,2. The same masses are obtained for
f ∈ {pl, q}. A very small mass ε = 1e− 4 was assigned to ∅ while a mass ε

2 was
removed from each focal element of each input mass function when using ∨© so
as to circumvent the normalization constraint.

The aspect of figure 2 is remarkably similar to the conjunctive case but the
conclusions that we will draw from it are different. As could be expected, our
rule tries to maintain as much evidence on {a, b} as possible. A striking fact
is that we have obviously m1 tf,2 m2 ({a, b}) = α. More precisely, we have
m1 tf,2 m2 = (1− α)mΩ + αm{a,b}.

This result can be proved for any finite k ≥ 2 when f = q. Let q1∨2
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Figure 2: Mass assigned to {a, b} after combination of m1 = αm{a,b} +
(1− α)m{a,c} and m2 = αm{a,b} + (1− α)m{b,c} with ∪©, ∨© and tf,2.

denote the entrywise maximum of functions q1 and q2. We have q1∨2 ({a}) =
q1∨2 ({b}) = 1 which implies that for any m ∈ Gq (m1)∩Gq (m2), only supersets
of {a, b} can be focal sets of m. In this example, this means that m = βm{a,b}+
(1− β)mΩ with β ∈ [0; 1]. Observing that if q denotes the commonality function
in correspondence with m, we also have

q1∨2 ({c}) ≤ q ({c}) ,
⇔ 1− α ≤

∑
B⊆{c}

m (B) .

Since Ω is the only set that is a superset of both {a, b} and {c}, we deduce that
m (Ω) ≥ 1− α or equivalently β ≤ α.

More precisely, this actually implies that Gq (m1) ∩ Gq (m2) is the segment
(1− β)mΩ + βm{a,b} in M parametrized by β ∈ [0;α]. vq is a total order
for this segment. This segment can also be seen as the set of mass functions
obtained by discounting αm{a,b} + (1− α)mΩ. From relation (18), we obtain
m1 tq,k m2 = (1− α)mΩ + αm{a,b}. When f = pl, the same reasoning applies.

A closed form expression for the other rules can also be obtained. It is easy
to see that m1 ∪©m2 =

(
1− α2

)
mΩ+α2m{a,b}. Concerning the bold rule, taking

the limit ε→ 0, we obtain

m1 ∨©m2 =

{
mΩ if α < 1

m{a,b} if α = 1
.

Like in the conjunctive example, the behavior of the bold rule ∨© is symp-
tomatic of the fact that Gw induces stronger constraints than Gpl or Gq. The bold
rule keeps no mass on {a, b} except when α = 1. Finally, the disjunctive rule
appears to have an intermediate behavior as compared to the two others. Also,
this time all normalized versions of these rules coincide with their unnormalized
counterparts.

5.3 Sensitivity with respect to parameters

In this subsection, we investigate the influence of the parameters of the newly
introduced operators starting with the norm integer parameter k on the re-
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Figure 3: Sensitivity w.r.t. k: estimated probability to observe a mass discrep-
ancy higher than 1e − 5 when using uq,2 as compared to uq,k (k ∈ {3, .., 10}).

sults produced by the introduced operators. We restrict this analysis to the
conjunctive operators relying on @q.

Figure 3 gives the frequentist probability estimates that a discrepancy (max-
imal absolute difference between mass functions) greater than 1e−5 is observed
between m1 uq,2 m2 (A) and m1 uq,k m2 (A) (for any A) and with k ∈ {3, ..10}.
The input mass functions m1 and m2 are sampled uniformly in M [2]. The
estimated probabilities are computed after 1e5 runs.

According to this figure, discrepancies are more and more likely to occur as
k increases. It can also be concluded that choosing values of k + 1 instead of k
has a very limited impact on the returned results. Even for a quite large gap of
values for k, significant discrepancies are rare events: the probability to witness
a discrepancy from k = 2 as compared to k = 10 is less than 1.2e− 3.

Another parameter to choose from is the partial order. We have argued
that f ∈ {q, pl} should be preferred because the corresponding partial orders
are the finest ones. It is however more arbitrary to choose between q and pl-
inclusion. As already illustrated in example 1, the operators do not coincide
and can lead to significantly different results. However, we could hardly expect
to have equivalent results when using different partial orders (hence different
sets of solutions) and distances (different optimisation criteria).

The frequentist probability (estimated from 1e5 trials4) to observe a dis-
crepancy greater than 1e − 5 between m1 uq,2 m2 and m1 upl,2 m2 is 0.8807
which is pretty high. Figure 4 shows how the discrepancies are distributed.
The most probable case (with probability of 0.12) is to obtain identical results.
When the operators leads to different results, the maximal absolute difference
between masses is concentrated around 0.09, which is significant but also not
too overwhelmingly high.

4Mass functions are sampled uniformly in the mass space.
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Figure 4: Sensitivity w.r.t. f ∈ {q, pl}: estimated probability distribution of
the observed discrepancy (in norm L∞) when using uq,2 as compared to upl,2.

6 Conclusion

This paper introduces cautious conjunctive combination operators for mass func-
tions by relying on constraints inducing a more informative mass function than
the combined ones on one hand, and on the minimization of distances to total
ignorance on the other hand. The metrics used in the minimization procedure
must be compatible with partial orders comparing informative contents. A dual
idea is also developed to introduce disjunctive rules. It relies on constraints
inducing a less informative mass function than the combined ones on one hand,
and on the maximization of distances to total ignorance on the other hand.

These procedures give rise to several commutative, idempotent and quasi-
associative combination operators. It is also noteworthy that conjunctive ones
are in line with the philosophy of the LCP principle. Our distance optimization
approach allows these new operators to be easily interpretable and to rely on
sound justifications.

Simple experiments demonstrate that the introduced operators allow one to
redistribute masses more gradually as compared to standard approaches and
thus comply with some user’s expectations, in contrast with some other well-
known rules.

We believe distance based approaches offer promising perspectives in many
problems within the belief function theory framework or the imprecise proba-
bilities framework, and provides a new view of combination relying on an op-
timization standpoint. For example, we could try to extend our framework to
n-monotone capacities, or to rules combining conjunctive and disjunctive be-
haviors.

Another question that deserves investigations is the connection of our con-
junctive operators with conflict minimization ones. Distances and conflict are
not unrelated notions [21] although they cannot be directly interchanged [1].
Indeed, although conflict minimization is never explicitely sought in the pro-
posed approach, lemma 1 suggests that the result of the combination is the
farthest possible to the total conflict mass function. Consequently, there are
some situations in which both approaches coincide and those situations should
be identified.
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A Comments on distance minimization in the d
and s ordering cases

In this appendix, we comment on the properties of rules that could potentially
be induced by problem (21) or (28) if an evidential distance was proved to be
@d or @s-compatible.

Concerning quasi-associativity of an operator uf or tf (f ∈ {d, s}), the
picture is not as simple as for f ∈ {q, pl}. Indeed, to our knowledge the char-
acterization of the set of inner approximations of a mass function does not
translate in compact constraints for these partial orders. For instance, we know
from Cuzzolin [5] that Sd (mi) is a simplex with at most N vertices. Yet, in gen-
eral the intersection of simplices is not a simplex but a polytope whose vertices
are not easily derived and can increase in number after each iteration. Whether
there is an easy way to characterize these intersections is a topic for further
research.

For other properties, the same reasoning as in the f ∈ {q, pl} cases ap-
ply as well when f ∈ {d, s}. In particular, commutativity and the conjunc-
tive/disjunctive nature are proved identically. Also, mΩ is necessarily the neu-
tral element of operators ud or us as mΩ is the maximum of both (M,vd) and
(M,vs). Likewise, m∅ is the minimum of both (M,vd) and (M,vs) and thus
m∅ is the neutral element of operators td and ts.

B Quadratic programming implementation

In this appendix, we show how the problem specified by equation (21) can
be reshaped as a traditional quadratic programming one when k = 2. This
reshaping relies on matrix calculus with belief functions. In short, any set
function used for evidence representation can be seen as a vector in RN . Under
this setting, many belief function operations are translated into dot products
between matrices and vectors. We refer to Smets’ paper [26] for an exemplified
presentation on this topic. The vector version of any evidential function will be
denoted in bold letters, e.g. mk is the vector version of mass function mk.

Most solvers available in scientific programming libraries allow to solve quadratic
programming problems defined as follows:

x∗ = arg min
x

1
2xtQx + xta , (30)

subject to Ax = c1 ,

c−2 ≤ x ≤ c+
2 ,

c−3 ≤ Bx ≤ c+
3 ,

where Q is a symmetric matrix, a is a vector with the same dimensionality as
x and A, B, c1, c−2 , c+

2 , c−3 and c+
3 are known matrices and vectors depicting

linear constraints.
Let us now explain how our distance based combination operators can be

reshaped in such a problem. We start with uq and comments on other orders
and for the disjunctive case will follow. There exists a definite positive matrix
M that maps mass vectors to commonality vectors. Matrix M is called the
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inclusion matrix because

Mij =

{
1 if Ei ⊆ Ej
0 otherwise

,

where Mij is the entry of M where i encodes set Ei and j encodes set Ej . For
any mass function mk, we have :

qk = Mmk.

Following matrix notations, problem(̃21) for a pair of mass functions and when
k = 2 writes as:

m1 uq,2 m2 = arg min
m∈S+

q (m1)∩S+
q (m2)

dq,2 (m,mΩ) ,

= arg min
m∈S+

q (m1)∩S+
q (m2)

‖Mm−MmΩ‖2 ,

= arg min
m∈S+

q (m1)∩S+
q (m2)

(Mm−MmΩ)
t
(Mm−MmΩ) ,

= arg min
m∈S+

q (m1)∩S+
q (m2)

mtMtMm + mt
ΩMtMmΩ − 2mtMtMmΩ,

= arg min
m∈RN subject to:

1tm=1
0≤m≤1

0≤Mm≤min{q1;q2}

1

2
mtMtMm + mt

(
−MtMmΩ

)
.

Now the solver described by (30) can be employed by choosing:

• Q←MtM,

• a← −MtMmΩ,

• A← 1t,

• c1 ← 1,

• c−2 ← 0,

• c+
2 ← 1,

• B←M,

• c−3 ← 0,

• c+
3 ← min {q1,q2},

where 0 is the null vector and 1 is the all-one vector. The solver will return the
mass vector m1 uq,2 m2. The optimization can start at point m∅ since we are
sure that it is compliant with all constraints.

For the plausibility based operator upl,2, one just has to replace matrix
M with 1 − JMt where J is the binary anti-diagonal matrix. Of course,
min {pl1,pl2} is assigned to constraint c+

3 .
Finally, in the disjunctive case, the same settings as in the conjunctive case

are used for operators tq,2 and tpl,2 respectively. Only constraints c−3 and
c+

3 are adapted to problem (28) as well as the initial mass vector to start the
optimization which is now mΩ.

GNU Octave and Matlab implementations are available at this link: https:
//github.com/john-klein/Conjunctive-and-Disjunctive-combination-by-distance-minimization.
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