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Abstract In collaborative tasks, displaying legible be-

havior enables other members of the team to anticipate

intentions and to thus coordinate their actions accord-

ingly. Behavior is therefore considered to be legible when

an observer is able to quickly and correctly infer the in-

tention of the agent generating the behavior.

In previous work, legible robot behavior has been

generated by using model-based methods to optimize

task-specific models of legibility. In our work, we rather

use model-free reinforcement learning with a generic,

task-independent cost function. In the context of ex-

periments involving a joint task between (thirty) human

subjects and a humanoid robot, we show that: 1) leg-

ible behavior arises when rewarding the efficiency of

joint task completion during human-robot interactions

2) behavior that has been optimized for one subject
is also more legible for other subjects 3) the universal

legibility of behavior is influenced by the choice of the

policy representation.

Keywords Human-Robot Interaction (HRI) · legible

motion · implicit coordination · reinforcement learning

(RL)
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Fig. 1 Illustration of the button pressing experiment, where
the robot reaches for and presses a button. The human sub-
ject predicts which button the robot will push, and is in-
structed to quickly press a button of the same color when
sufficiently confident about this prediction. By rewarding the
robot for fast and successful joint completion of the task,
which indirectly rewards how quickly the human recognizes
the robot’s intention and thus how quickly the human can
start the complementary action, the robot learns to perform
more legible motion. The three example trajectories illustrate
the concept of legible behavior: it enables correct prediction
of the intention early on in the trajectory.

1 Introduction

Humans exploit many non-verbal cues to efficiently co-

ordinate their actions in joint tasks [16]. By monitoring

the actions of others and inferring their intentions, a

human can predict and preemptively initiate the appro-

priate complementary actions without the need for ver-

bal communication [17,16,2]. Furthermore, it has been

shown that humans unconsciously change their behav-

ior, for instance the speed of task execution, to improve

coordination [25].

The first contribution of this article is to show that

robots may learn to adapt their behavior so that it be-

comes more legible, based only on observations of ac-

tual interactions with humans. We do so by proposing
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Fig. 2 Distinction between universal and idiosyncratic leg-
ibility. The left graph with trajectories has been adapted
from [6].

a generic task-independent cost function, which is op-

timized with a model-free reinforcement learning algo-

rithm.

Since our approach does not require a model, it is

applicable to different tasks without modification. How-

ever, it does require a training phase to learn to gener-

ate legible behavior, and the resulting behavior general-

izes to different tasks. A novel task thus requires learn-

ing a new behavior. In contrast, previous model-based

methods [1,3,12,14,18,19] are able to generate legible

behavior on-the-fly, but require task-specific models of

legibility. A novel task thus requires the design of a

novel model by an expert.

Our approach is thus well suited for scenarios where

not all tasks are known in advance, and where similar

tasks are executed many times. In assembly lines where

humans and cobots work together for instance, the re-

sulting behavior is used thousands of times. The num-

ber of trials required to learn the behavior (<100) may

thus well be worth the investment, and could also be

performed on-the-job.

One question that arose whilst performing the ex-

periments was whether robots learn to generate univer-

sally legible behavior, or rather idiosyncratic behavior

that a human learns to interpret. The difference be-

tween the two is illustrated in Fig. 2. Even for cultures

in which cycling is not widespread, an arm spread out

to the left is likely to convey the intention that the

cyclist will make a left turn. In contrast, the idiosyn-

cratic signals exchanged between members of a cycling

team during a race are not known to the general public

(see Fig. 2, right), and only understood amongst other

riders with whom these signals have been agreed upon

beforehand.

Similarly, a robot may learn arbitrary but recog-

nizable variations of the movement, such as the loop

in Fig. 2 which the human may learn to be predictive

of moving to the left. This idiosyncratic behavior will

have to be relearned by other humans working with

the same robot. In universally legible behavior on the

other hand, the intention is already understood during

the first interaction(s).

The second contribution of this paper is to measure

how well the legibility of behavior that has been learned

from interactions with one subject transfer to other sub-

jects, to determine whether the learned behaviors are

universally or idiosyncratically legible.

The third contribution is to show how the repre-

sentation of the robot’s controller influences whether

universal or idiosyncratic legibility is achieved.

This article is structured as follows. After presenting

related work in Section 2, we present four experiments1

on the experimental setup illustrated in Fig. 1 and 3:

– Section 3: An experiment with 9 users, where the

robot learns to be legible, using dynamical move-

ment primitives as a policy representations.

– Section 4. As above, but using a viapoint policy,

which is of much lower dimensionality.

– Section 5. Two experiments in which we study the

transferability of legible robot behavior from one

subject to another, with a total of 16 subjects. Sec-

ond experiment gives some insight on the universal

legibility of behaviors.

We conclude the article with Section 6.

2 Related work

In human-robot interaction, improving the human un-

derstanding of robot motion is a key feature. One way to

achieve this can be to imitate the human motion in the

same task context. The minimum jerk model [8] makes

the assumption that human hand motion can be mathe-

matically retrieved, by minimizing the jerk in Cartesian

space, during a grasping task. On an industrial robot,

however, trajectories generally follow a trapezoidal joint

velocity profile [4]. Research has shown that predicting

this type of motion is harder than a minimum jerk pro-

file [9].

For specific tasks, it is possible to manually define

motion that convey the desired intention. This can be

made for different applications. For instance to facil-

itate handing over an object [1,3,12,14,18,19], or to

coordinate robot soccer players [20,15]. The concept of

legibility has also been studied in the context of safe

navigation in the presence of humans [13]. Note that

some researchers prefer to use the term “readability”

rather than “legibility” [24].

Most similar to our purposes is the work of Dragan

et al. [7]. They make a general-purpose definition of

1 The experiment in Section 3 was previously reported [21].
Those in Section 4 and 5 are novel.
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legibility: how probable is a goal, given a partially ob-

served trajectory? Higher legibility implies that earlier

in the trajectory it is already possible to distinguish the

final goal. To note that legibility is different from pre-

dictability, clearly defined in that paper, predictability:

what is the most probable trajectory, given knowledge

of the goal? Although legibility and predictability are

general ideas, they are implemented as cost functions

that might not apply to all task contexts. It is a non-

trivial task to adapt this cost function to novel task

contexts, and especially to different (classes of) users.

Robots are able to generate legible behavior by opti-

mizing the legibility measure off-line through functional

gradient optimization [6]. Alternatively, they can also

generate deceptive behavior [5].

Following the work in [5,6], Zhao et al. [26] perform

a human-robot experiment with Baxter torso-humanoid

robot. For a large number of possible targets their re-

sults prove that a straight line pointing to the target is

easier to predict than a trajectory obtained via maxi-

mizing the legibility criterion. Thus legibility seems to

depend on the context of the task (e.g. number and

position of possible targets).

We investigate legibility as an emergent adaptive

property of interactions between people and robots.

Rather than defining legibility as an explicit property

to be optimized, we reward task efficiency. We apply

model-free reinforcement learning methods, where the

robot iteratively improves its legibility through trial-

and-error interaction with a human. This approach has

the advantage that no assumptions about the task or

the human must be made, and the robot automatically

adapts its legibility to the user preferences during the

interaction. We evaluate our approach in several user

studies with Baxter robot.

3 Experiment A: Learning Legible Motion

The hypothesis underlying this first experiment is that

legibility of robot behavior needs not be defined and

optimized explicitly, but that it arises automatically

if joint task execution is penalized for not being effi-

cient. To verify this hypothesis we have designed a joint

human-robot task, in which the robot’s behavior is op-

timized – through model-free reinforcement learning –

to minimize joint task execution duration. In this work,

we use the term “joint task” to signify that both the

robot and human must succeed at their subtask in order

for the overall task to succeed, and that these subtasks

depend on each other.

Fig. 3 Button pressing experiment set-up with the Baxter
robot, human subject, and the two rows of buttons that they
will press. The two possible targets corresponds to the “red”
and “yellow” button on the box, the two buttons on the left
side of the subject.

3.1 Methods

We now describe the experimental set-up, the policy

representation that was used to generate the robot mo-

tion, the cost function that represents the task (fast

joint task completion without errors), and the reinforce-

ment learning algorithm used to iteratively optimize

this cost function.

3.1.1 Experimental Set-up

In the joint human-robot task, depicted in Fig. 3, the

robot reaches for and presses one of two buttons. Sub-

jects are given two goals: Efficiency: press the same

button as you think the robot will, as quickly as possi-

ble. Robustness: avoid making mistakes, i.e. pressing

a different button from the one the robot will.

The 9 subjects for this experiment are administra-

tive staff, PhD students in computer science, and under-

grad students of cognitive science.

The protocol of an experiment is as follows. The ex-

periment starts with a habituation phase of 32 trials

where the robot performs always the same trajectory

for the same button. This phase allows the subject to

get used to the robotic motions, and practice the predic-

tion and button pressing. It also allows to validate that

the improvement in the subject’s prediction is not only

due to them learning the robot’s motion. Further im-

provement after that habituation phase will then only

be explained by the robot being more legible. Prelim-

inary results indicate that 32 trials are sufficient for

habituation[21].

After habituation, we start the optimization phase

of 96 trials with the reinforcement learning algorithm

presented in Section 3.1.3. The two policies that gener-

ate trajectories for the two different buttons are opti-

mized in two independent processes.
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3.1.2 Task Representation: Cost Function

The cost function that the robot optimizes during the

96 trials after the habituation phase consists of three

components:

J = Trobot + Tsubject︸ ︷︷ ︸
Efficiency

+ γδbuttons︸ ︷︷ ︸
Robustness

+α|...q1...N,1...T |︸ ︷︷ ︸
Energy

(1)

Efficiency: The time between the onset of the robot’s

movement (t0) and the pushing of the button by the

human (Tsubject) and the robot (Trobot).

Robustness: Whether the subject pressed the correct

button (δbuttons =0) or not (δbuttons =1). γ is an arbi-

trary high cost, it was set to 20 in this experiment,

expressing that a failure is equivalent to a penalty

of 20s in terms of efficiency.

Energy: The sum over the jerk, i.e. the third derivative

of the joint positions (
...
q ti). at each time step i in

the trajectory. The scaling factor α is chosen such

that the cost of the jerk is about 1/20 of the total

cost in the initial trajectories.

The joint task completion time depends mainly on

how fast the human is able to predict the intention

of the robot (proximate cause). But we use the total

time because: 1) the ultimate motivation behind our

research is to make human-robot interaction more ef-

ficient. 2) our set-up easily allows us to determine the

button pressing times, but not the exact time at which

the human predicts the robot’s intention.

3.1.3 Optimization Algorithm: Direct Policy Search

The robot uses direct policy search to optimize the cost

function in (1). Direct policy search is a form of re-

inforcement learning in which the search for the op-

timal policy is done directly in the space of the pa-

rameters θ of a parameterized policy πθ, rather than

using a value function. The specific algorithm we use

is PIBB (Policy Improvement through Black-Box opti-

mization [22]). Since any model-free direct policy search

algorithm could be used to implement this optimiza-

tion (e.g. NES, CMA-ES or PoWER [23]), the details

of PIBB’s implementation have been deferred to Ap-

pendix A.

3.1.4 Policy Representation: Dynamical Movement

Primitive

The parameterized policy representation πθ used in

this experiment is a dynamical movement primitive

(DMP) [10]. DMPs combine a feedback controller (a

spring-damper system with rest point g) with an open

loop controller (a function approximator f) to generate

smooth goal-directed movements, see (2). The so-called

phase system is 1 at the beginning of the movement and

decays exponentially towards 0. The phase variable s is

essentially an alternative 1-dimensional representation

of time t.

τ ẍt = α(β(g − xt)− ẋt)︸ ︷︷ ︸
feedback controller

+ stf(st)︸ ︷︷ ︸
open loop controller

(2)

τ ṡt = −αsst phase system (3)

When integrated over time, DMPs generate trajec-

tories [xt ẋt ẍt], which, for instance, are used as a de-

sired joint angle or desired end-effector coordinate. In

our experiments, 7 such systems are coupled to deter-

mine the 7 joint angles x1:7t of the robot’s arm over

time.

The function approximator f takes the movement

phase s as an input. In this paper, we use a radial basis

function network with B = 3 Gaussian basis functions:

f(st) =

B∑
b=1

gb(st)θb RBFN (4)

gb(s) = exp

(
−(s− cb)2

2σ2
b

)
Gaussian kernel (5)

The policy parameters θ thus correspond to the weights

of the basis functions. Because there are 7 joints with 3

basis functions each, the dimensionality of θ is 21. Dur-

ing the optimization, variations in θ lead to variations

in the trajectory towards the button.

DMPs are convenient for our experiments, as they

ensure convergence towards the goal g (i.e. the location
of the button), whilst allowing the trajectory towards

this goal to be adapted by changing the parameters θ of

the radial basis function network used inside the DMP

(for instance to improve legibility). But our approach

does not hinge on the use of DMPs as a policy repre-

sentation, and we refer to [10] for details.

Please note that the same cost function, optimiza-

tion algorithm and policy representation have been used

for a very different task, i.e. the pick-and-place task de-

scribed in [21]. Although the learned behavior for a task

is specific to that task, our algorithms for learning these

behaviors are not task-specific themselves.

3.2 Results

For illustration purposes, the top graph in Fig. 4 shows

an example experiment for one subject, visualizing both

the values of the time it takes the subject to push

the button (Tsubject) and whether the same buttons are
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pushed. The transition from the habituation to the op-

timization phases is depicted as a dashed line.

The main results of Experiment A are summarized

in the two lower graphs in Fig. 4, which highlight statis-

tics at important transitions during learning: the start

(trial 1 to 8), the last trial of the habituation phase

(25-32), and the first (33-40), intermediate (81-88) and

final (121-128) block of trials during the optimization

phase. We also measure the trajectory completion at

prediction time, i.e the relative amount of trajectory

(timewise) observed by the subject when it presses the

button. This measure is calculated using the formula

100(1− Trobot−Tsubject
Trobot

). The complete results are shown

in the left column of Fig. ?? in Appendix B.

The box plots show the average value of Tsubject over

all 9 subjects and over blocks of 8 trials. To allow com-

parison between subjects without introducing variance

due to the natural overall differences in their button

pressing time Tsubject, we normalized the results of each

subject by their intrinsic time after habituation, which

is computed as the average of the last 8 values of Tsubject

in the habituation phase. Thus, the normalized mean

over the last 8 trials of the habituation phase is 100 for

each subject by definition.

Finally, the bottom graph in Fig. 4 shows the num-

ber of prediction errors per block of 8, averaged over all

subjects.

3.3 Discussion

The main conclusion we derive from Fig. 4 is that opti-

mizing the robot’s motion leads to a substantial (20%)

and significant (p = 5e−8, Wilcoxon signed-rank test)

drop in Tsubject, i.e. the time it takes for the user to

press the button, between the end of the habituation

phase (25-32) and the end of the optimization (121-

128). As Trobot is consistent throughout the experiment,

this drop in Tsubject also induces a drop in the trajec-

tory completion at prediction time (from 70% to 50%).

This improved efficiency is not merely due to subjects

simply guessing a button, because the number of mis-

takes does not increase over time (p = 0.26, Wilcoxon

signed-rank test between end of habituation and end of

optimization).

There is also a relatively small but significant (p =

0.001) decrease of the prediction time during the ha-

bituation phase, which indicates that the differences in

the initial trajectories before optimization already en-

able the subject to predict the robot’s intention. The

fact that Tsubject is further improved by 20% during the

optimization shows that the optimized trajectories are

more easily distinguishable, i.e. legible, than the initial

trajectories.

Fig. 4 Top: Example experiment for one subject, where
Tsubject is plotted against the number of trials. Successful and
failed trials are depicted as circles and crosses respectively.
Middle: Average over all 9 subjects (µ ± σ) of the trajec-
tory completion at prediction time, i.e, the relative amount
of trajectory (timewise) observed by the subject when it
presses the button. This value is calculated using the formula

100(1−Trobot−Tsubject
Trobot

). Bottom: Normalized Tsubject (see main

text for normalization method), averaged over all 9 subjects
and blocks of 8 trials; average number of failures, i.e. when
different buttons were pushed, averaged over all 9 subjects
and blocks of 8 trials. The lower two graphs show the values
at certain key frames during learning; the complete results
are presented in the left column of Fig. ?? in Appendix B.

After the habituation phase, subject’s performance

get lowered (higher prediction time and higher number
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of mispredictions). This effect arises from the variance

of the parameters. As we do not model legibility, the

robot can perform deceptive motions [5] while explor-

ing the parameter space of the trajectories. This type of

motion, which leads to higher cost under our cost func-

tion in 1, will slowly disappear after some iterations.

Only the most legible trajectories remain, as confirmed

by the drop in prediction time and the low mispredic-

tion rate.

In summary, the optimization algorithm effectively

improves human-robot collaboration by producing mo-

tions that are easier to predict by the subject. By penal-

izing errors and the joint robot/human execution time,

the robot learns policies that enable the human to dis-

tinguish the robot’s intentions earlier without more er-

rors.

Although the answer to our initial question “Can

a robot learn to generate legible motion from user in-

teractions?” is positive, the resulting trajectories were

nevertheless different from those observed in [6]. As an

example, Fig. 5 plots two views of the robot’s trajec-

tory. We clearly see a substantial upward movement

at the beginning of the trajectory for button 1. This

is certainly not universally legible behavior, but rather

idiosyncratic behavior that the human subject learns

to interpret as the motion that will eventually move

towards button 1.

Further anecdotal evidence is that some subjects re-

ported being able to infer the intention of the robot

from differences in the sound produced by its motors.

Differences in sound arise due to the different veloc-

ity profiles of the trajectories for the two buttons. This

is clearly a very different type of legibility from that

studied in [5,6,26]. Although this can be seen as an-

other learned idiosyncrasy, it also suggests that legi-

bility could be obtained by other means than only ob-

serving spatial variations of trajectories. This idea is

also highlighted in Glasauer’s work [9] where they prove

that minimum jerk velocity profiles are more legible

than trapezoidal joint velocity one. Combining those

elements could lead to even more legible trajectories.

For this reason, we designed a second experiment,

discussed in the next section, which is aimed at avoiding

such idiosyncratic behavior, and measuring the effects

on learning legibility.

4 Experiment B: Learning Legible Motion with

a Less Expressive Policy

The overall experimental set-up is the same as in Ex-

periment A. Therefore, we only explain the differences,

which are the policy representation, and a slightly mod-

ified cost function.

Fig. 5 Side and top view of generated trajectories after
optimization for a single subject. Black/dashed: trajectory
for button 1/2 respectively.

4.1 Methods

To avoid the idiosyncratic behavior observed with the

DMPs, we designed a policy that allows for much less

variations. The DMPs were defined in joint space (7

joints) with 3 basis functions that are varied per joint,

leading to a policy that has θ=21 parameters. To reduce

this number, the second policy representation generates

trajectories that pass through a viapoint, which itself

is parameterized by only two parameters, as visualized

in Fig. 6.

The trajectories are generated from a start point S

(initial robot configuration) to an end point G (such

that the button is pushed), which are fixed throughout

the experiment. The height of the parabolic path is de-

fined as a parameter h. The rotation around the x-axis,

parallel to the ground, is defined as the parameter α.

We represent this rotation seen from above. This policy

constraints the generated trajectories for more smooth-

ness. We expect them to resemble the ones obtain in

Dragan’s work [7]. However we do not encode explicit

informations about their legibility. Thus during the ex-

ploration of the parameter space some of the generated

trajectories might be really deceptive. We call this pol-

icy the viapoint policy.

The cost function for the viapoint policy is the same

as in Eq. 1, except that the penalty on the jerk is now

in task space, not joint space. As before, the optimiza-

tion of this cost function takes place within space of

the policy parameters θ, which is now of dimensional-

ity 2 (instead of 21 as with the DMP). We again use 9

subjects. To avoid any habituation effect from the first

experiment we have chosen new participants.

4.2 Results

The main results of Experiment B are summarized in

Fig. 7, which has the same format as Fig. 4. The com-

plete results for this experiment are shown in the right

column of Fig. ?? in Appendix B. Fig. ?? allows for a

direct comparison of Experiment A and B.
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Fig. 6 Viapoint policy representation. Top: the trajectory is
generated from the start S to the goal G (the location of the
button), through a viapoint whose distance to the line S−−G
is determined by the parameter h. The rotation around the
x-axis is determined by α.

4.3 Discussion

We again observe a drop of the prediction time dur-

ing optimization. Similarly to Experiment A this also

creates a drop in the trajectory completion at predic-

tion time (from 80% to 60%). The number of prediction

errors increases during the optimization process before

stabilizing at the end. The average number of errors is

still sufficiently low, and not significantly different com-

pared to the end of habituation (p = 0.73), to prove

that the subjects are not simply guessing the next tar-

get. The decrease in prediction time during the habit-

uation is significant (p = 0.005) as well as the decrease

after the optimization (p = 2.1e−5).

Qualitatively, these are thus the same results as in

Experiment A. As for the DMPs, we represent in Fig. 8

two views of the trajectories. As expected, this policy

produces smoother trajectories to the targets. In this

case, the trajectories look like what we would expect

from a legible behavior, i.e an exaggeration on the right

for the right target and on the opposite side for the left

one.

The higher variance at the end of the optimization

compared to Experiment A suggests not all subjects

obtain such legible behaviors. In Fig. 9 we represent

another example of optimized trajectories. The trajec-

tories seen from above (top view) look rather deceptive.

One hypothesis is that by constraining the trajecto-

ries to resemble legible behavior we increase the number

of local minima of the optimization. Consider that the

global minima is achieved when the trajectories meet

what we expect a legible motion to be. Because of the

sampling in the parameter space that solution might

not be found during the optimization. Moreover sub-

Fig. 7 Top: Average over all 9 subjects (µ±σ) of the trajec-
tory completion at prediction time, i.e, the relative amount
of trajectory (timewise) observed by the subject when it
presses the button. This value is calculated using the for-

mula 100(1 − Trobot−Tsubject
Trobot

). Bottom: Normalized Tsubject,

averaged over all 9 subjects and blocks of 8 trials; average
number of failures, i.e. when different buttons were pushed,
averaged over all 9 subjects and blocks of 8 trials. The lower
two graphs show the values at certain key frames during learn-
ing; the complete results are presented in the right column of
Fig. ?? in Appendix B.

Fig. 8 Side and top view of generated trajectories after
optimization for a single subject. Black/dashed: trajectory
for button 1/2 respectively.

jects might learn a deceptive or idiosyncratic motion as

they do with the DMP policy. Thus most of them de-

crease their prediction time at the end of the optimiza-

tion. However the ones with the biggest drop obtain

trajectories similar to those represented in Fig. 8.

The experiment in the next section will investigate

how well trajectories generated by the two different op-



8 Baptiste Busch et al.

Fig. 9 Side and top view of generated trajectories after
optimization for a single subject. Black/dashed: trajectory
for button 1/2 respectively. The generated trajectory seems
more deceptive when looking at the top view. Yet trajectories
are distinguishable in term of height as represented by ∆h in
side view.

timized policies (DMP and viapoint) transfer to novel

users.

5 Experiment C and D: Transferability of

Legibility

Experiment A and B verify that robots are able to

improve the legibility of their behavior from interac-

tions with humans. We now present two experiments

in which we investigate whether the adaptations that

have been learned during interactions with one sub-

ject also improve the legibility for other subjects. The

first experiment (Experiment C) uses the same proto-

col as A and B, but starts with trajectories that have

been previously optimized. The second experiment (Ex-

periment D) does not involve optimization, but rather

presents several previously optimized trajectories in a

random order. Experiment C is aimed at determining

whether humans can learn to interpret the idiosyncratic

motions of robots, whereas D aims at which type of tra-

jectories enable humans to immediately recognize inten-

tions, without the need to learn how to interpret them.

5.1 Methods

Experiment C Do subjects learn quicker when start-

ing with policies that have been optimized previously

with another subject? To analyze this, we ran the same

experimental protocol with the habituation and opti-

mization phase as described in Section 3.1, with 4 novel

subjects each for both policy parameterizations (DMP

and viapoint policy). In contrast to the optimizations

described previously, the initial trajectories are now tra-

jectories that have been previously optimized for other

subjects. The initial trajectories were not chosen ran-

domly but correspond to the most legible ones for each

parameterization, i.e. the ones that lead to the biggest

drop in term of prediction time.

Run 1 2 3 4 5 6 7 8 9 10

Targets R R B R B B B R B R

Types DMP2 S S DMP1 V P1 V P2 DMP1 V P2 DMP2 V P1

Table 1 Illustration of one random sequence for experiment
D. A complete run comprises a repetition of four such random
sequences. This makes a total of 40 trials.

Experiment D The aim of this experiment is to deter-

mine if subjects can immediately recognize the inten-

tion of the robot from trajectories optimized for other

subjects. Therefore, we use neither a habituation nor

optimization phases for one particular trajectory, but

rather present different previously optimized trajecto-

ries only a few times. A limited number of presentations

is necessary, because the human may learn to inter-

pret potential idiosyncrasies of the movements, which

we want to avoid in this experiment.

For both buttons, five types of trajectories are pre-

sented:

– trajectories generated by two optimized DMP poli-

cies (from Experiment A) that lead to the largest

reduction in Tsubject. We refer to them as DMP1

and DMP2

– as above but with two viapoint policies (from Ex-

periment B) noted V P1 and V P2

– straight line minimum-jerk trajectories (S) with

end-effector pointing toward the button, as a base-

line.

The order of the buttons (denoted R and B) and

trajectory types is random within a sequence of 10 tri-

als. The sequence is repeated 4 times which lead to a

complete run comprising 40 trials. An example of a ran-

dom sequence is presented in Table 1. The work of Zhao

et al. [26] shows that straight line minimum-jerk trajec-
tories, with end-effector pointing toward the target, are

the most legible for a high number of possible targets.

By comparing the DMPs and the viapoint based tra-

jectories to this kind of straight lines, we hypothesize

that for the two-target case scenario the other types

of trajectories convey more informations and thus are

more legible. For this experiment, 8 novel subjects were

used.

5.2 Results

The results of Experiment C are plotted in Fig. 10.

Whereas previous experiments showed smaller improve-

ments during habituation (7% and 10% for DMP and

viapoint respectively) and large improvements during

optimization (a further 20% and 20%), we here see the

inverse. The improvement during habituation is now

37% and 43% (both p < 1−5), whereas during opti-

mization they are small and not significant (p = 0.47
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Fig. 10 Box plots for the normalized prediction times, when
starting with previously optimized trajectories from the be-
ginning, averaged over all subjects, and blocks of 8 trials.
Top) DMP based trajectories. Bottom) viapoint trajectories.

and p = 0.52). The complete results of Experiment C

are shown in Fig. ?? in Appendix C.

The results of Experiment D are summarized in

Fig. 11. The top graph, depicts Tsubject for all types of

trajectories. Each bar represents the average over all

users and buttons. Differences between buttons were

not significant (p > 0.33, Wilcoxon signed-rank test),

and thus pooled. Differences between the DMP and the

two other type of trajectories are significant (p < 0.03,

Welch’s t-test). However the difference between the vi-

apoint policy and the straight line is not significant

(p = 0.21). The bottom graph depicts the same results

for the number of errors. The differences between the

viapoint policy and the two other type of trajectories

is significant (p < 0.03, Welch’s t-test). However there

is no significant difference between the DMP and the

straight lines (p = 0.33)

5.3 Discussion

The results in Fig. 10 suggest that subjects can quickly

learn to recognize the intentions of the robot from tra-

jectories optimized for another subject, for both the

Fig. 11 Times (top graph) and prediction errors (bottom
graph) for the three type of trajectories.

DMP and the viapoint policy. Because the improvement

in Tsubject during habituation is much more pronounced

than during Experiment A and B, we deduce that these

trajectories are indeed more legible.

From a comparison between Tsubject of Experiment A

and B and their equivalent in Experiment C we ob-

serve some interesting behaviors. First the difference in

Tsubject for the DMP on the first eight trials is signif-

icant (p < 0.03, Mann–Whitney U test) with Tsubject

being lower for Experiment A. We also note that the

subject’s predictions happen at 70% of the trajectory

in Experiment A and 90% in Experiment C and that

this difference is significant (p < 0.03, Mann–Whitney

U test). Initial trajectories for Experiment A are close

to straight line to the target (learned by demonstra-

tion). According to the definition of legibility this sug-

gests that optimized trajectories might be less legible

when shown to novel users without habituation. How-

ever humans adapt very quickly and by the end of the

habituation the optimal time is reached and does not

vary throughout the optimization. Moreover at the end

of the habituation the prediction is performed at 50%

of the robot trajectory when subject are shown opti-

mized trajectories compared to 60% with the straight

lines. We then deduce that optimized trajectories are

more legible. This is however a contradiction with the

fact that they started as less legible. As stated, the defi-

nition of legibility from Dragan et al. [7], cannot handle

such contradictions because it does not account for the

possibility of habituation. At the end of the optimiza-
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tion phase the difference between Experiments A and C

is not significant neither in term of time (p = 0.42)

nor in term of trajectory completion at prediction time

(p = 0.08).

For the viapoint policy the situation is the exact

opposite. During the first eight trials the difference in

Tsubject is not significant (p = 0.23) neither is the dif-

ference in term of trajectory completion (p = 0.41).

Thus optimized trajectories are at least as legible as

straight lines without habituation. However at the end

of the optimization there is a significant difference in

term of time (p < 0.03) and therefore in term of trajec-

tory completion trajectory with a drop of almost 10%

(from 50% to 40%) . The trajectories selected for Exper-

iment C were the most legible one, i.e. the one that lead

to the greatest drop in the subject’s prediction time be-

tween habituation and optimization. This observation

supports the hypothesis that the optimization of Ex-

periment B have some local minima.

Are the viapoint trajectories more legible than the

DMPs? For the DMP based trajectories, when look-

ing at trials 8 to 16, the difference, in term of predic-

tion time, between the straight lines of the habituation

phase of Experiment A and the already optimized tra-

jectories of Experiment C are not significant(p < 0.03).

This means that after 8 trials of habituation subjects

were able to perform similarly to those who observed

straight lines to the target. But by the trials 16 to 24

they perform significantly better. For the viapoint pol-

icy it is sufficient to wait for the trials 8 to 16 to see

a significant improvement in the prediction time. Thus

we can conclude that the viapoint policy requires less

habituation trials to perform better than the two other

type of trajectories.

Between DMP and viapoint policies we note, at the

end of the optimization, a difference in term of trajec-

tory completion (50% with the DMP trajectories versus

40% with the viapoint ones). However this difference

can be explained by the fact that Trobot is slightly dif-

ferent between the two policies. In fact, in term only of

prediction time, both DMP and viapoint policies per-

form similarly (they both converge to 3.5s). Therefore,

a direct comparison between them in term of prediction

time might not be suitable as the subject’s prediction

time depends also on the speed of the movement of the

robot.

The results in Fig. 11 are in accordance with the

observations made in Experiment C. In term of predic-

tion time all trajectories perform similarly. We recall

that Trobot differs between the DMP and the viapoint

policies. Thus comparing them only on time might be

biased. However there is no ambiguity when looking at

errors. The number of errors for the DMP policy is sim-

ilar to that of the straight trajectory, but the number

of errors for the viapoint policy is far lower. This means

that subjects are able to recognize the intention of the

robot from the viapoint policy much more robustly than

from the two other policies. Because subjects are able

to do so immediately without habituation or previous

training, this indicates that the viapoint policy is more

legible than the two other policies.

From those results we conclude that reusing opti-

mized trajectory on novel subjects allows for a faster

learning of the robot’s sense of legibility. Even with

DMP based trajectories, where the robot’s motion can

be considered as idiosyncratic, subject were able to

recognize faster the robot’s intention. Moreover only

the habituation phase is sufficient to reach the per-

formances of the initial subjects for whom trajectories

have been optimized. After habituation, no further im-

provement is achieved. The legibility of previously op-

timized trajectories could not be further increased by

further optimization with another user. Another con-

clusion is that the viapoint policy is significantly more

legible than the two other type of trajectories as it re-

quires less habituation and leads to a lower error rate

when presented without habituation.

6 Conclusion

In this article we studied how legibility can be obtained

in a model-free approach. As any particular task will re-

quire different properties of motion, we want to achieve

such results without any task-specific model of legibil-

ity. To such end we take an approach where we define a

task-independent cost function that rewards efficiency

(joint execution time), robustness (task errors), and en-

ergy (jerk). These measures can be readily defined for

any task. To optimize such cost function through exper-

iment we rely on a model-free optimization algorithm,

PIBB, to efficiently optimize this cost function through

trial-and-error interaction of the robot with the human.

In several human-robot experiments, we showed

that indeed, for different types of motions, robots are

able to improve their behavior allowing humans to bet-

ter read the robots’ intentions early and robustly. Our

results show that people, even after being habituated

to robotic motions, can still substantially improve their

prediction times if the robot optimizes its motions.

A second conclusion is that, when optimizing with

policies that have a high-dimensional parameter vector

(which leads to a lot of variance in the types of motions

it can generate, such as with the DMP), it is most likely

that idiosyncratic behavior arises. Novel subjects can

infer the intention of the robot from its behavior, but

this requires an extended phase of interaction with the
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robot. These interactions are necessary for the novel

subject to get to know the specific idiosyncrasies the

robot has learned with the previous subject.

Furthermore, the robot is still able to learn legible

behavior, even if we actively suppress idiosyncratic be-

havior by allowing only stereotypical curved minimum

jerk movements. Already during first interactions, novel

subjects are able to read such behavior more efficiently

and robustly than when using the DMP policy. This

indicates that this behavior is immediately and more

generally legible.

Are the generated viapoint trajectories universally

legible, i.e. across different robots or human cultures?

Without any habituation, in term only of prediction

time, they perform similarly to straight lines to the

target. Although prediction time is a good indicator

of legibility, there might be other factors that explain

its variation. When working with real humans we also

have to consider that some psychological effects can in-

terfere with our expectations. For example, at the be-

ginning of the task some subjects might wait for more

confidence instead of trying to guess and potentially

making mistakes. Moreover in all our experiment our

subject’s share similar background and culture. Would

the generated behavior be still legible for people from

other cultural background?

In general, we expect that the transition from id-

iosyncratic to universally legible behavior may not al-

ways be that well defined.
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A Policy Improvement through Black-Box

Optimization

Policy improvement is a form of model-free reinforcement
learning, where the parameters θ of a parameterized pol-
icy πθ are optimized through trial-and-error interaction with
the environment. The optimization algorithm we use is PIBB,
short for “Policy Improvement through Black-Box optimiza-
tion” [23]. It optimizes the parameters θ with a two-step iter-
ative procedure. The first step is to locally explore the policy
parameter space by sampling K parameter vectors θk from
the Gaussian distribution N (θ,Σ), to execute the policy with
each θk, and to determine the cost Jk of each execution. This
exploration step is visualized in Fig. 12, where N (θ,Σ) is rep-
resented as the large (blue) circle, and the samples Jk=1...10

are small (blue) dots.

The second step is to update the policy parameters θ.
Here, the costs Jk are converted into weights Pk with

Pk = e

(
−h(Jk−min(J))

max(J)−min(J)

)
(6)

where low-cost samples thus have higher weights. For the
samples in Fig. 12, this mapping is visualized (to the right).
The weights are also represented in the left figure as filled
(green) circles, where a larger circle implies a higher weights.
The parameters θ are then updated with reward-weighted av-
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eraging

θ ←
K∑
k=1

Pkθk (7)

Furthermore, exploration is decreased after each iteration
Σ← λΣ with a decay factor 0 < λ ≤ 1. The updated policy
and exploration parameters (red circle in Fig. 12) are then
used for the next exploration/update step in the iteration.

In the optimization experiments described in this article,
the parameters of PIBB are K = 8 (trials per update), Σ =
5I (initial exploration magnitude) and λ = 0.9 (exploration
decay).

Despite its simplicity, PIBB is able to learn robot skills
efficiently and robustly [22]. Alternatively, algorithms such
as PIˆ2, PoWER, NES, PGPE, or CMA-ES could be used,
see [23,11] for an overview and comparisons.

B Complete results for Experiment A and B

See next page.

C Complete results for Experiment C

See next page.
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