
HAL Id: hal-01629403
https://hal.science/hal-01629403

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bivariate left-censored measurements in biomonitoring:
A Bayesian model for the determination of Biological
Limit Values based on Occupational Exposure Limits

Aurélie Martin Remy, Pascal Wild

To cite this version:
Aurélie Martin Remy, Pascal Wild. Bivariate left-censored measurements in biomonitoring: A
Bayesian model for the determination of Biological Limit Values based on Occupational Exposure
Limits. Annals of Work Exposures and Health, 2017, 61 (5), pp.515 - 527. �10.1093/annweh/wxx031�.
�hal-01629403�

https://hal.science/hal-01629403
https://hal.archives-ouvertes.fr


1 
 

TITLE: 

Bivariate left-censored measurements in biomonitoring: a Bayesian model for the 

determination of Biological Limit Values based on Occupational Exposure Limits. 

Aurélie Martin Remy1*, Pascal Wild2 

1 Department of Toxicology and Biomonitoring, Institut National de Recherche et de Sécurité, 

Rue du Morvan, CS 60027, 54519 Vandoeuvre-les-Nancy, France 

2  Scientific Management, Institut National de Recherche et de Sécurité, Rue du Morvan, CS 

60027, 54519 Vandoeuvre-les-Nancy, France 

* Author to whom correspondence should be addressed. E-mail :aurelie.remy@inrs.fr 

KEYWORDS: 

Biomonitoring, Biological Limit Values, Limit of Detection, Occupational Exposure Limit, 

Bayesian model, left-censored data



2 
 

ABSTRACT 

 

Biological Limit Values (BLV) are often determined from the occupational exposure limits 

(OEL) in modelling biological data obtained on a number of exposed subjects based on 

measurements of air exposure. In order to obtain such BLVs, biomonitoring studies are 

conducted collecting simultaneously biological and airborne measurements to these 

substances in exposed workers. 

One obstacle in the modelling of such data is the often large number of values below the 

Limit of Detection (LOD) for both biological and airborne measurements (left censored 

measurements). A second difficulty, which is also a strength, is that multiple measurements 

are obtained for the same workers, leading to non-independence of the data. 

In this paper, we propose a statistical method based on Bayesian theory making use of 

measurements below the LOD for both dependent (biological) and independent (air 

exposure) data, and taking into account multiple measurements on the same worker.  

This method relies on the modelling of the airborne exposure measurements using standard 

random effect models adapted for values below LOD and the simultaneous modelling of the 

biological measurements assumed to be linearly (on the log scale) related to the airborne 

exposure while accounting for between worker variability. 

This method is validated by a simulation study in which up to 50% of the measurements are 

censored for both variables in realistic settings. This simulation study shows that the 

proposed method is uniformly more efficient than the candidate alternative we considered 

(MLE method) that did not make use of a data with airborne measurements below the LOD. 

When the method is applied on a real biomonitoring data set among electroplating workers 

exposed to chromium with 54% censored airborne measurements and 20% censored urinary 

measurements, the slope is steeper when incorporating these data using the proposed 

Bayesian method leading to different BLV estimations depending on the OEL used. 
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INTRODUCTION 

According to the CDC, biomonitoring is defined as a method for assessing human exposure 

to chemicals by measuring the chemicals and/or their metabolites in human tissues or 

specimens, such as blood or urine. In occupational settings, its ultimate objective is to be 

able to propose suitable measures (improvement of technical, organisational and personal 

prevention) in order to reduce the exposure and its potential impact on health. For many 

hazardous substances, in particular when entry paths are multiple, the individual exposure 

sustained can only be quantified, and therefore assessed, by means of biomonitoring. One 

means of ensuring that workers are adequately protected is by setting Biological Limit Values 

(BLVs) which are not to be exceeded. Ideally, as for instance for Cadmium and Lead, BLVs 

are based on the relation between the internal exposure and its health effects observed in 

human studies. This is however only rarely the case.  

For substances for which the main entry is inhalation, in particular when the exposure is to 

fumes or aerosols, the Biological Limit Values (BLV) can be derived from Occupational 

Exposure Limit values (OELs). The French Agency for Food, Environmental and 

Occupational Health & Safety (ANSES) states for instance that (our translation) “in absence 

of such (health-based) data, for substances with a no-effect level, the BLV will be computed 

from the expected biological concentration, when the worker is exposed at the 8 hour OEL”. 

Estimating such an expected biological concentration relies on the statistical modelling on 

the biological concentration among exposed workers as a function of simultaneously 

measured airborne exposure concentrations (Lison et al. 1994) (Pierre et al. 1995) (Pierre, 

Diebold, and Baruthio 2008). Such studies typically include a limited number of workers for 

which repeated measurements are obtained. A relationship is usually documented (ACGIH 

2015) by establishing a linear relationship between log transformed atmospheric exposure 

and biological exposure using simple linear regression with air concentrations as 

independent variable and biological concentrations as dependent variable. Log-

transformation is used because the statistical distributions of both air and biological data are 

highly skewed. The logarithmic transformation has the consequence to make the distribution 

more symmetric.  

There are a series of issues with such linear regression of log-transformed data, which need 

to be accounted for by specific statistical methods.  

First, a majority of these data are repeated measurements on the same workers, leading to 

the non-independence of the data. Indeed, the elimination rates in different workers may 

differ significantly (between-worker variability in biological measurements) even with the 

same airborne exposure. On the other hand, as has been shown some time ago (Kromhout, 
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Symanski, and Rappaport 1993) the airborne concentrations may also exhibit a between-

worker variability in excess of the day-to-day variability.  

Second, although analytical methods are increasingly sensitive, the improvement of worker 

protection and collective protection leads to lower concentration levels and increasing 

numbers of exposure measurements are below the Limit Of Detection (LOD) that in the 

statistical jargon are referred to as left-censored data. Note that sometimes exposure 

measurements are reported as below the Limit of Quantification (LOQ) rather than LOD. 

Up to now, in the industrial hygiene context, methods of data censored treatment have 

mainly focused on the univariate analysis of the airborne exposure measurements (Helsel 

2005) (Hewett and Ganser 2007) (Ganser and Hewett 2010) (Huynh et al. 2014) (Huynh et 

al. 2016). In this context, (Jin et al. 2011) performed a simulation study comparing different 

approaches to take account of up to 80% left-censored measurements while at the same 

time acknowledging a between-worker variability. Their study compared the widely used 

substitution method, replacing data below the LOD for the independent variable by LOD/2 or 

LOD/sqrt(2), with mixed-effects models (based on Maximum Likelihood Estimation, MLE) to 

log-normally distributed occupational exposure data. They found that the substitution 

methods led to large biases (underestimation or overestimation) of geometric means and 

standard deviations, especially when the proportion of censored measurements was large, 

but that this was not the case with the MLE methods. 

However, we know of no paper in the context of industrial hygiene that takes into account of 

censoring for both biological and airborne concentrations. In the context of modelling the 

relation between biological concentrations as a function of airborne concentrations, censored 

data for the independent variable, i.e. the airborne concentrations, can only be ignored, 

leading to a loss of information, loss of statistical power, and loss of precision of the relation 

assessment or substituted by LOD/2 or LOD/sqrt(2) leading to bias (see for instance (Ong et 

al. 1996) or (Ghittori et al. 1995)). 

The purpose of the present paper is to present a statistical method making use of left-

censored measurements for both dependent (biological) and independent (airborne) 

concentrations while accounting for between-worker variability both for airborne and 

biological measurements in order to improve the precision of their relation. Such an improved 

method would yield a BLV that better corresponds to the OEL. 
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METHODS 

 

In this paper, we propose a statistical method based on Bayesian theory to use bivariate left-

censored data, that is data with measurements below the LOD for both dependent 

(biological) and independent (air exposure) data. This is done by modelling simultaneously 

the two variables. 

This proposed method is validated in a simulation study contrasting its performance to that of 

standard methods (based on MLE) that ignore all data corresponding to atmospheric data 

below the LOD. 

Finally the proposed Bayesian method is applied to a real data set of chromium 

measurements among electrolytic platers. 

 

Description of the data structure  

We assume that we measured repeatedly the occupational airborne exposure as well as the 

biological exposure (e.g. in urine) for a series of workers. We assumed that these workers 

belong to the same Homogeneous Exposure Group i.e. a group of workers with one 

geometric mean airborne exposure – the difference between workers being characterized by 

a between-worker geometric standard deviation.  

Both types of measurements are assumed to follow log-normal distributions and for both, 

there are within and between variance components. While the between worker variance 

component for air exposure is mainly due to differences in work practices, the between-

worker variance component for biologic exposure is due to intrinsic between-worker 

differences in metabolism. 

Finally, both measurements are measured with a certain precision and have therefore LODs 

and the biologic exposure measurement is assumed to depend, for any given worker, only on 

its atmospheric exposure.  

The log-transformed airborne measurements are denoted by X and the log-transformed 

biological measurements are denoted by Y. The corresponding respective limits of detection 

(on the log scale) are denoted by      and     .  

In a first data pattern, we simulated 20 subjects each with 11 measurements for both 

airborne and biological measurements (balanced data). In a second data pattern, we 

considered 80 subjects, with 1 measurement for 50 subjects, 2 measurements for 20 

subjects and 5 measurements for 10 subjects (unbalanced data).  

 

Bayesian modelling 

Let us first present the full Bayesian model ignoring censoring 
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Following (Kromhout, Symanski, and Rappaport 1993), the airborne exposure data X are 

modelled by a random effect model with a random effect representing between-worker 

variability and a residual error representing within-worker variability. A similar model is used 

for the biological data Y, with random effects for between-worker variability and a residual 

within-worker variability. However we assume that, given these random effects, the log 

biological exposure measurement depends linearly on the (log-transformed) airborne 

exposure measurement. 

 

For the jth observation of the ith worker, this can be written as:  

            
     

    
   with    

          
     (1) 

            
            

    
   with    

          
    (2) 

 

where 

  
  and   

  are respectively the between-worker standard deviation  and the within-worker 

standard deviation for the airborne log exposure measurements and     
  the population 

mean log airborne exposure;  

  
  and   

  are respectively the between-worker standard deviation and the within-worker 

standard deviation for log biological measurements,     
  is the population log biological 

exposure for a zero log airborne exposure (intercept), and   is the slope of the relation.  

 

Censoring  

In order to accommodate measurements below the LOD, we introduce following notation for 

a truncated normal distribution            , a normal distribution truncated to the interval 

     . Thus, in our model corresponding to (1), a left censored value observed for jth 

observation of the ith worker would be specified as        (    
     

    
 )          . In 

our model corresponding to (2), a left censored value observed for jth observation of the ith 

worker would be specified as             
            

    
             . 

 

Prior distribution of the parameters 

Weakly informative prior distributions of the variability parameters   
    

    are based on 

inverse gamma distribution with parameters (0.001, 0.001). It was chosen as it is the 

conditionally conjugate distribution for the inverse-chi2 distribution and leads to less 

computation time.  

However, in order to examine the sensitivity to these choices of priors, we also used non-

informative Half-Cauchy distributions for these parameters instead of Gamma distributions in 

a limited set of simulations. 
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The prior distribution of the variability parameter   
  is informative as information exists in the 

literature on this quantity. Following (McNally et al. 2014), we chose a lognormal with 

Geometric Mean GM=0.29 and Geometric Standard Deviation GSD=2.82 expressing that   
   

lies between 0.036 and 2.22 in 95% of the cases.  

The prior distribution of the variability parameter   
  is also informative as information exists 

in the literature on this quantity. Following (McNally et al. 2014), we chose a lognormal with 

Geometric Mean GM=0.92 and Geometric Standard Deviation GSD=1.64 expressing that   
   

lies between 0.34 and 2.38 in 95% of the cases. 

Prior distributions of the parameters      
  ,   and     

  are non-informative normal 

distributions. 

 

Estimation of model parameters 

The Bayesian model was fitted using Gibbs Sampling, a special case of Markov chain Monte 

Carlo (MCMC) methods (see (Wild et al. 1996) for Gibbs Sampling in the context of censored 

data, and (Lunn et al. 2012) for more recent general discussion of MCMC methods) that by 

default take the censored data into account. We used the freely available RJags software 

(JAGS 4.2.0 and R version 3.3.2) we compared to other freely available softwares. In the 

supplementary material available online,  Appendix 1 contains the code of the model used, 

respectively in Jags, OpenBugs and WinBugs.   

We ran the Gibbs Sampling algorithm for N=50000 samples, a thinning of 5, and discarded 

the 10000 to account for “burn-in”. Convergence was checked by running two different 

chains. The starting points of the parameters were based on their true value for the 

simulation study. When analysing the actual data, we ran three chains starting from 

overdispersed starting points. 

 

Simulation Study 

In order to assess the performance of the above proposed Bayesian model in comparison 

with previously published methods, we did a simulation study by repeatedly simulating 

airborne exposure measurement and biological exposure measurement in settings as 

realistic as possible. We thus fixed the parameters of the data generated by our simulations 

to values that were abstracted from the scientific literature or, when not available, from the 

analysis of our own biomonitoring data given rise to a series of scenarios detailed below 

Data generation scenarios 

Specifically, we defined the following main scenario by: 
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 A slope β=1 between X and Y , corresponding to the proportionality of airborne 

exposure measurements and the biological exposure measurement on the original 

(non log-transformed) scale.  

   
  = 1.25 corresponding to a     

 =3.48, that is the median of between-worker GSD 

of historic urinary data of our own biomonitoring laboratory. 

   
  = 0.37 corresponding to a     

 =1.45, that is the median of within-worker GSD 

of historic urinary data of our own biomonitoring laboratory. 

   
  = 0.29, corresponding to a     

 =1.34, that is the median of between-worker 

GSD for vapours and non-vapours components, defined by (McNally et al. 2014)) 

   
  = 0.98, corresponding to a     

 =2.66, defined from the median of the ratio 

between     
  and     

  for vapours and non-vapours-components, defined by 

(McNally et al. 2014). 

 For each combination of these parameters, we fix the theoretical probability of 

censoring in X and Y of 30 and 50%.  

Fixing these parameters, determines (for given values of the LODs) the intercept      
  and 

the mean log-exposure     
 . Without any loss of generality we arbitrarily fixed the (log-

transformed) LOD for atmospheric measurements to 0. The intercept of the regression can 

thus be interpreted as the predicted mean urinary measurement when the atmospheric 

measurement is at the LOD. 

This main scenario was simulated for balanced and unbalanced data pattern. 

Subsequently, eight scenarios were then explored only for the balanced data pattern, 

modifying from the main scenario one of the value of the 4 standard deviations at a time:  

   
  is then set to 0.71 and 1.6 (     

 =2 and     
 =4.95 ) , that is the minimum and 

the maximum of between-worker GSD of historic urinary data of our own 

biomonitoring laboratory. 

   
  is then set to 0.26 and 0.53  (    

 =1.3 and     
 =1.7 ) , that is the minimum 

and the maximum of within-worker GSD of historic urinary data of our own 

biomonitoring laboratory 

   
  is set to 0 and 0.5 (     

 =1 and     
 =1.65)  

   
  is set to 0.47 and 1.53 (    

 =1.6 and     
 =4.65), defined from the minimum 

and the maximum of the ratio between     
  and     

  for vapours and non-vapours-

components (McNally et al. 2014). 

Each selected combination of parameters was simulated N=1000 times 

 

Data analysis 

For each simulated dataset, we applied 
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- the full proposed model based on Bayesian approach as described above, using 

RJags (JAGS 4.2.0 and R version 3.3.2),  

- the reference MLE model (mixed tobit model), using STATA version 14.0 (program 

xttobit), similar to the method described in (Jin et al. 2011). However, this last method 

leads to the exclusion to all data below the LOD for X. 

 

Retained variables of interest: 

     
  : the intercept of the relation that is the predicted mean urinary measurement 

when the atmospheric measurement is set to the LOD 

   : the slope of the relation.  

 The derived BLVs corresponding to 3 theoretical values of OEL, defined by the 

theoretical percentage of exceeding them (0.1%, 2.5% and 10%). 

 

Evaluation metrics 

In order to compare the two methods, we computed the method-specific biases and RMSEs 

(Root Mean Square Error) summarizing both bias and variance over all 1000 simulated data 

sets. For each scenario, for     
  and   as well as for the derived BLVs we computed the 

bias and the RMSE according to following formulas 

             ̂      

       √       ̂      

For each parameter, we also computed the ratio between the RMSEs : 

        
                          

                              
 

 

Chromium exposure in electrolytic plating workers 

 

The proposed Bayesian method was applied to a real dataset of electrolytic plating workers 

exposed to chromium and contrasted with the reference MLE method. 

Between 2007 and 2012, the INRS (French Institute for research and Safety), conducted a 

biomonitoring study to evaluate urinary chromium of workers exposed to electrolytic plating.  

The study was carried out on 47 male workers exposed to Cr VI during electrolytic plating 

process.  

Workers were from 5 companies. Full shift air samples were collected, over one to 5 days, 

and urinary samples were collected at the end of each shift.  

The measure of airborne exposure to soluble CrVI (inhalable fraction) (CrA) was obtained by 

personal sampling. The samples were taken by aspiration of the ambient air through a device 
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consisting of a 37 mm diameter filter (Whatman QMA quartz fiber) placed in a closed 

cassette (Millipore) at a flow rate of 2 L / min provided by a controlled flow pump (INRS 

2004). The LOQ of CrA ranged between 0.16 and 1.16 µg/m3 depending on the sampled 

volume. Analysis of CrA was performed by optical emission spectroscopy analysis (ICP-

OES) according to the method described in the French METROPOL database (INRS 2008). 

Chromium urinary analyses were performed in a controlled atmosphere room. The method 

consisted of the graphite tube atomization followed by detection by an atomic absorption 

spectrometer with Zeeman correction of the type AA220 (Varian, Melbourne Australia) (Dube 

1988). The method developed and validated in the laboratory has a LOQ ranging between 

0.3 and 0.83 µg/ L. 

Creatinine in urine samples was determined by the Jaffe method (JAFFE 1886) using a 

clinical biology apparatus of the type Daytona (Randox, Crumlin, UK). 

The proposed Bayesian approach was first applied as described above with the variant 

specifying 5 different Homogeneous Exposure Groups (HEG), one for each company. Each 

HEG had a different geometric mean for the airborne exposure but we assumed that the 5 

HEGs had the same between and within worker GSDs. 

On the basis of the current French OEL (1 µg/m3) of CrVI (INRS 2006), and on the current 

American TLV® (50 µg/m3) of soluble CrVI (ACGIH 2015), the corresponding BLVs were 

computed from the regression parameters estimated with the two methods. 

 

RESULTS 

 

Simulation study 

Figure 1 shows the distribution of the slope estimations in the simulated data sets of the main 

scenario with balanced and unbalanced data patterns. As expected, the two methods were 

unbiased. However, the dispersion of the estimates increases with X-censoring but is always 

lower using our proposed Bayesian method, whatever censoring and data pattern. Note that 

for the unbalanced data pattern the dispersion is greater and the difference in dispersion  

between the two methods more important. See also the corresponding scatter plots in 

Appendix 2 of the supplementary material available online. 

Table 1 shows the results of the simulations. Overall these simulations show that the RMSE 

is always lower when using the proposed Bayesian approach as documented by the ratios of 

RMSEs which are always greater than 1. This is particularly apparent for the unbalanced 

data.  

Considering the balanced data, the mean ratio over the scenarios for the intercept is only 

1.04 thus the gain in using the proposed Bayesian procedure is moderate and does not vary 

much according to the censoring pattern nor according the scenario.  
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For the slope β, the gain in using the proposed method is much more obvious (mean ratio 

over all scenarios 1.27), and is particularly important when the censoring is 50% in X (mean 

1.37 with 30% censoring in Y and 1.35 with 50% censoring in Y). This ratio of RMSEs does 

not depend to a great extent on     
 , it decreases with     

  and with     
  and increases 

with     
  The maximal ratio 1.66 was obtained for scenario 4 (    

  =1.6,     
 =1.34, 

    
  =1.45,     

 = 3.49) and 50% censoring for both X and Y. 

With respect to the BLVs, the gain is almost negligible when the OEL is exceeded in 10% of 

the airborne measurements (BLV1). The gain is more important for BLV2 (2.5% excess of 

OEL) and is most important for BLV3 (0.1% excess of OEL). In the latter case, the mean 

ratio of RMSEs is most important for 50% censoring for both X and Y (1.10). Again, scenario 

4 shows the highest gain in efficiency. 

We didn’t observe any noteworthy differences on the posteriors when using Half-Cauchy 

non-informative priors compared with non-informative gamma distribution (observed on the 

main scenario – data not shown). Moreover, influence of the informative priors was very 

slight even when the prior was very different from the true values.   

 

Chromium exposure in electrolytic plating workers 

The studied dataset comprised 166 pairs of urinary and airborne chromium measurements, 

CrU (in µg/g creatinine) and CrA (in µg/m3) respectively. This dataset contained a large 

number of measurements below the respective LOQs. 

Figure 2 provides a schematic view of the distribution of these measurements. At the bottom 

left, the figure shows that measurements below the LOQ for both CrU and CrA represent 

20% of the dataset. At the upper left, we have data below the LOQ for CrA and above LOQ 

for CrU, which represent 34% of the dataset. As mentioned above, 54% of airborne 

measurements were below LOQ and would thus have been excluded using standard 

statistical methods, although for many of them, urinary chromium measurements were 

available. Note that we considered LOQs and not LODs as the data were only available in 

this format. 

Table 2 shows the descriptive results of our data set. One can notice that the airborne 

exposure is quite high, with 69 measurements (42%) above the present French OEL=1 

µg/m3 but also 4 (2%) above the American TLV®= 50 µg/m3, which was the French OEL at 

the time of the study. 

The two statistical methods give similar estimates for the urinary GSDs and for within-worker 

airborne exposure GSD but not for between-worker GSD (Table 3). It must however be noted 

that the analysis of the airborne exposure data were not part of the reference MLE model but 

were modelled independently and were therefore not influenced by the urinary data. 
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The main differences are however in the estimate of the slope and in the intercept 

(corresponding to an exposure of 1 µg/m3 which happens to be the current OEL). 

The most striking result is that incorporating the data with atmospheric measurement below 

the LOQ results in a significantly steeper slope. This difference in slope is illustrated in Figure 

3, which includes virtual measurements below the LOQs sampled randomly from the model. 

Note that the estimate of the slope is not only steeper but has a smaller standard error (in 

relative terms) using the proposed Bayesian method while the intercept has a similar 

precision in both methods. 

Note that if the OEL used is 1 µg/m3 (current French OEL), the corresponding BLV is 

7.0 µg/g creatinine for the reference MLE model and 5.1 µg/g creatinine for the proposed 

Bayesian method when using informative prior on standard deviation of airborne exposure. 

With non-informative prior on standard deviation of airborne exposure, the proposed 

Bayesian method gave a similar BLV. If we use 50 µg/m3 TLV®, the corresponding BLV is 

17.1 µg/g creatinine for the reference MLE model and 23.6 µg/g creatinine for the proposed 

Bayesian method with informative prior on airborne exposure standard deviation, and 25 

µg/g creatinine with non-informative priors (data not shown). Very similar values were 

obtained although with a slightly larger confidence interval when discarding the two least 

exposed companies (circles and diamonds in Figure 3).  
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DISCUSSION 

 

In this paper, we proposed a statistical method based on Bayesian theory making use of 

measurements below the LOD for both dependent (biological) and independent (airborne 

exposure) data, in the context of repeated measurements per worker. The simulation of 

realistic settings showed that the proposed method is uniformly more efficient than the 

candidate alternative we considered (reference MLE method) that did not make use of a data 

with airborne measurements below the LOD. This efficiency gain was most important for 

unbalanced data, it increased with the percentage of airborne measurements below the LOD. 

With 50% censoring on airborne measurements, the RMSE of the estimated BLV decreased 

by up to 31% using the proposed Bayesian method. When the method was applied on a real 

biomonitoring data set with 54% airborne measurements below the LOQ, the slope was 

steeper and had a smaller standard error when incorporating these data using the proposed 

Bayesian method leading to different BLV estimations depending on the OEL used. 

 

For the slope parameter, the simulation study shows a decrease of the RMSE with the 

proposed Bayesian method compared to reference MLE method, whatever the level of the 

variability parameters. However, the results are less clear-cut for the intercept of the relation; 

although RMSE is always lower with proposed Bayesian method, the gap with reference 

MLE method is less than for the slope estimation. This might be because, with 30 or 50% 

censoring, the LOD is close to the middle of the airborne measurements and the intercept is 

thus well known in any estimation method.  

Simulations were also run with lower percentage of censoring (10% - data not shown), on X 

and Y. In this case, there is still a gain using the proposed Bayesian method, but is not large 

enough to justify the added complexity of its use. 

For derived BLV, the gain is lower, especially for BLV1 and BLV2, corresponding to OEL 

defined by the theoretical percentages 10% and 2.5% of exceeding them, respectively. The 

lower gain could be explained by the fact that, as for the intercept, these values of OEL 

correspond to observed data which lead to a better stability of response, whatever the 

method used. BLV3 corresponds to 0.1% excess and thus involves some extrapolation that 

is more sensitive to slope estimation. 

We checked (data not shown) that when discarding all censored data for airborne 

measurements, Bayesian model and MLE method gave very similar results. We can 

therefore safely conclude that the observed gain in RMSE is due to the inclusion of these 

censored data. On the other hand, when discarding all censored data (airborne and 

biological), we observed a rather important bias in all estimated parameters. 
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Our proposed Bayesian method is a rather complex model, integrating random effects in 

order to quantify the variability both between and within subject. This type of model has been 

proposed already 20 years ago (Kromhout, Symanski, and Rappaport 1993) but we are not 

aware that the proposed extension to biomonitoring data has ever been used even without 

consideration of data censoring. Indeed, in actual biological data, while the between-subject 

variability is often lower than the within-subject variability, we think that this is due to 

differences in day-to-day within-subject exposure. For any given airborne exposure level, we 

think that the between-subject variability in data is greater than the within-subject variability if 

inhalation is the predominant route of entry into the organism. When analysing historical data 

for metals (mostly unpublished), collected by our laboratory in a mixed model including the 

airborne exposure, the variance component for subject was indeed greater than the within-

worker variance component adjusted on airborne exposure. The reason might be that the 

subject-specific physiological parameters like height, weight, BMI and metabolism vary 

widely between subjects, whereas within a given subject, the urinary excretion, adjusted on 

creatinine, depends mostly on the airborne exposure. Thus this between-subject variability 

cannot be ignored when analysing biomonitoring data, involving repeated measurements by 

subject. On the opposite, for the airborne exposure model, within-subject variability, due to 

day-to-day differences is usually greater (e.g. 77% of the 165 situations considered in 

(Kromhout, Symanski, and Rappaport 1993)) than the between-subject variability which 

depends mostly on subject-specific work practices. 

In our model, we did not consider subject-specific random slopes although this might be the 

reality. It would have added complexity to our already complex model and might not be 

applicable to real data because of the low number of available data per subject. 

However, the proposed Bayesian method has some limitations. 

First, to run this method, we need a large number of measurements, to be able to estimate 

the different parameters of variability. 

Second, our proposed Bayesian method has been only compared with the mixed-effect tobit 

model fitted using MLE (Jin et al. 2011). Several analyses of left-censored occupational 

exposure data have been developed in literature, like substitution methods, β-substitution 

methods(Ganser and Hewett 2010), Kaplan-Meier methods, multiple imputation based 

model, even Bayesian method (Huynh et al. 2014; Huynh et al. 2016). However, while β-

substitution methods have been found optimal for parameter estimation in (Huynh et al. 

2014) when considering only airborne exposure measurements, none of these methods 

(except the Bayesian) can be directly extended for the purpose of establishing the 

relationship between two left-censored variables. Moreover, none of these methods (except 

(Jin et al. 2011)) take into account non-independence in repeated measurements by subject. 
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The only method that can be directly extended to this context is the mixed-effect tobit model 

fitted using MLE we refer to as the reference MLE model. 

Third, measurements are often made on a single week, and we have to be sure that the half-

life of the substance is short, (less than a few hours), to possibly interpret biological 

measurements to reflect the airborne exposure of the same day. In this case only, does a 

regression approach make sense. If the half-life of the substance were greater, the biological 

measurements would be autocorrelated.  

Fourth the random effects model for the log transformed urinary concentrations is probably 

not in accordance with underlying physiological mechanisms. It is precisely at low air/urinary 

levels that the assumed model might provide a poor representation. In particular, the urinary 

concentration for many, if not most, substances will be an additive combination of 

occupational and non-occupational (background) sources (such as diet and environmental 

exposures). Thus as airborne exposures approach zero, the urinary concentrations do not, 

but instead approach a ‘background’ or non-occupationally exposed level. The assumed 

model on a log-scale does not share this behaviour. Additionally, in the proposed model, the 

between-worker random effects for the (log) biological monitoring values translate to 

multiplicative random effects on the natural scale. Whilst this makes sense for the portion of 

the between-worker effect that is biological, e.g. weight and metabolism, another component 

in the between- worker variation are variations in the non-occupational sources of exposure, 

which (on the natural scale) are additive. It was beyond the scope of this paper to include 

these aspects in our model or in our simulations. In our opinion, what our model most 

importantly adds, is that when the airborne measurements are below LOD, but the urinary 

measurements are quantified, we can make use of these data. Data points where both 

measurements are below LOD will have less influence on the results although limited 

simulations showed that suppressing them would lead to an attenuation of the slope between 

air and biological monitoring. Thus the issues mentioned in this paragraph may not 

predominate especially when we consider LOQs instead of LODs. 

Fifth, the assumption of linearity on the log scale, between the two variables, is strong, it 

cannot be checked on the data below the LOD and it is possibly not realistic for all 

substances. This must be judged for each practical case, when trying to derive a BLV from 

existing OELs. An added complexity might be to acknowledge, that the slope for a single 

substance may differ according to the industrial process that might generate aerosols with 

different physical and chemical properties, which might influence the biological exposition. 

Finally, our simulation study, like all simulation studies, was conducted in a simplified setting. 

For example, we did not consider the above-mentioned additive components and only one 

Homogenous Exposure Group was considered; in practice, as in our real example, this is 

rarely the case.  
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As a last point, we consider our practical example. This example was mainly illustrative, but 

we can discuss some specifics of this data set. The main hypotheses on which this model is 

based are reasonable. Indeed, the main half-life time is 4.5 hours and the linearity 

assumption on the log scale fits our data in the range of data above LOQ. However, one 

limitation could be the assumption of linearity when the airborne exposure is more than an 

order of magnitude lower than the LOQ. It is probably not reasonable to assume that so 

small airborne Cr VI exposures would imply level of urinary chromium between 0.05 and 1 

µg/g creatinine. Indeed, as mentioned previously, when airborne exposures approach zero, 

the urinary concentrations approach a non-occupationally exposed level. This is why we 

commented on the reanalysis excluding the two least exposed companies. Figure 3 shows 

that the model fit is more reasonable in this case. So that the very similar estimation results 

were obtained, validate our method.  

Finally, we can compare our estimated BLVs of 5.1 µg/g creatinine to the value (1.8 µg/g 

creatinine) published by the French Agency for Food, Environmental and Occupational 

Health & Safety (ANSES) on the basis of the French recommended OEL 1 µg/m3. On the 

other hand, the ACGIH defined a BEI of 25 µg/L (about 18 µg/g creatinine) based on the 50 

µg/m3 TLV, which is close to our estimate of 23.6 µg/g creatinine. One point to be mentioned 

is that our censored data are reported as below LOQ rather than below LOD. From a 

statistical point of view, this does not change anything, if all we know is that some 

measurements are below a given value. 
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Figure 1: Distribution of the slope estimation in the simulated data sets of the main scenario, 
with balanced and unbalanced data patterns 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic overview of urinary and airborne measurements in the workplace of 

electrolytic plating workers, above and below respective LOQ 
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Figure 3: Scatterplot of urinary chromium vs airborne chromium measurements and 

regression lines for the reference and proposed methods. Black symbols represent 

measurements above LOQ for urinary and airborne chromium. Dark grey symbols 

represent urinary measurements above LOQ and model based random samples below 

LOQ for airborne chromium. Light grey symbols are model based random samples of 

measurements below LOQ for urinary and airborne chromium. Different symbols 

correspond to different companies. Black dashed lines correspond to the French OEL 

and TLV®.
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SCENARIO % Censure X % Censure Y     
      

      
      

           
                                       

1 
Balanced  
Data (*) 

30 
30 

3.49 1.45 1.34 2.66 

1.015 1.213 1.005 1.010 1.026 

50 1.027 1.399 1.005 1.014 1.053 

30 
50 

1.028 1.170 1.018 1.023 1.037 

50 1.049 1.344 1.032 1.041 1.078 

1 
Unbalanced 
Data (**) 

30 
30 

3.49 1.45 1.34 2.66 

1.177 1.305 1.057 1.090 1.153 

50 1.384 1.614 1.125 1.178 1.310 

30 
50 

1.193 1.249 1.089 1.105 1.145 

50 1.376 1.549 1.132 1.170 1.286 

2 

30 
30 

3.49 1.45 1.00 2.66 

1.011 1.273 1.009 1.019 1.042 

50 1.021 1.379 1.004 1.014 1.052 

30 
50 

1.031 1.122 1.029 1.033 1.044 

50 1.048 1.371 1.031 1.040 1.078 

3 

30 
30 

3.49 1.45 1.65 2.66 

1.023 1.107 1.017 1.019 1.027 

50 1.002 1.361 0.987 1.000 1.044 

30 
50 

1.027 1.162 1.021 1.027 1.043 

50 1.040 1.293 1.022 1.032 1.068 

4 

30 
30 

3.49 1.45 1.34 1.60 

1.052 1.364 1.039 1.046 1.068 

50 1.051 1.547 1.035 1.049 1.097 

30 
50 

1.137 1.314 1.137 1.144 1.163 

50 1.130 1.665 1.121 1.139 1.194 

5 

30 
30 

3.49 1.45 1.34 4.65 

1.005 1.124 1.000 1.004 1.016 

50 1.014 1.235 0.998 1.004 1.030 

30 50 1.003 1.050 1.004 1.007 1.015 



21 
 

50 1.018 1.153 1.004 1.007 1.023 

6 

30 
30 

2.03 1.45 1.34 2.66 

1.009 1.187 1.006 1.024 1.062 

50 1.042 1.348 1.005 1.028 1.093 

30 
50 

1.026 1.116 0.995 1.001 1.023 

50 1.039 1.280 0.999 1.022 1.087 

7 

30 
30 

4.95 1.45 1.34 2.66 

1.027 1.169 1.021 1.022 1.029 

50 1.039 1.364 1.031 1.038 1.064 

30 
50 

1.096 1.197 1.105 1.110 1.122 

50 1.118 1.367 1.116 1.123 1.145 

8 

30 
30 

3.49 1.3 1.34 2.66 

1.016 1.184 1.018 1.023 1.034 

50 1.028 1.239 1.019 1.021 1.033 

30 
50 

1.074 1.104 1.077 1.079 1.083 

50 1.088 1.222 1.091 1.097 1.111 

9 

30 
30 

3.49 1.70 1.34 2.66 

1.014 1.286 1.004 1.020 1.059 

50 1.042 1.487 1.003 1.022 1.088 

30 
50 

1.017 1.190 0.994 1.004 1.036 

50 1.027 1.471 0.999 1.034 1.126 
(*) Pattern with 20 subjects each with 11 measurements for both airborne and biological measurements 

(**) Pattern with 80 subjects, with 1 measurement for 50 subjects, 2 measurements for 20 subjects and 5 measurements for 10 subjects 

 

Table 1: Description of explored scenarios, (defined by censoring on X and Y, and by variability parameters), and results of the comparison 

between the two methods for each scenario, on variables of interest:      
 , β , BLV1, BLV2 and BLV3.
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Number of 

measurements 

Number of 
measurements 

per workers 
Median Quartile 

Measurements 
above LOQ 

Measurements 
above French 

OEL 

Measurements 
above TLV® 

 
n mean(min-max) 

 
25th 75th n (%) n (%) n (%) 

Urinary chromium 
166 2.5 (1 – 5) 1.85 0.37 14.75 133 (80%)  

 [ µg/g creatinine] 
 

 Airborne 
chromium 166 2.5 (1 – 5) <LOQ <LOQ 7.23 77 (46%) 69 (42%) 4 (2%) 

 [ µg/m
3
] 

         

 

Table 2: Description of urinary and atmospheric chromium measurements 
 

 

Reference MLE model Proposed Bayesian Model 

 

Estimate 95 % CI Estimate 95 % CI 

Intercept 
[µg/g creatinine] 

1.95 1.63 2.26 1.62 1.41 1.85 

Slope 0.23 0.10 0.36 0.39 0.29 0.49 

    
  1.88 1.46 2.43 1.68 1.36 2.19 

    
  1.30 1.23 1.38 1.43 1.35 1.54 

    
  1.57 1.19 2.06 1.71 1.20 2.50 

    
  2.03 1.77 2.34 2.1 1.85 2.50 

 
Estimate 
(95 % CI) 

Urinary measurements 
above BLV 

N (%) 

Estimate 
(95 % CI) 

Urinary measurements 
above BLV 

N (%) 

BLV estimation 
[µg/g creatinine] 
French OEL = 1 µg/m3 

7.0 
(5.1-9.8) 

69 (41%) 
5.1 

(4.1–6.4) 
78 (47%) 

BLV estimation 
[µg/g creatinine] 

TLV® = 50 µg/m3 

17.1 
(11.4-25.9) 

32 (19%) 
23.6 

(15.1 – 33.9) 
15 (9%) 

    
 is the between-worker geometric standard deviation of urinary chromium data 

    
  is the within-worker geometric standard deviation of urinary chromium data 

    
  is the between-worker geometric standard deviation of airborne exposure chromium 

data 

    
  is the within-worker geometric standard deviation of airborne exposure chromium data 

 

Table 3: Estimated parameters and BLVs using French OEL or TLV® according to the two 

methods 
 

 

 


