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Abstract: In this report, the fundamental limits of simultaneous information and energy trans-
mission in the two-user Gaussian interference channel (G-IC) with and without feedback are fully
characterized. More specifically, an achievable and converse region in terms of information and
energy transmission rates (in bits per channel use and energy-units per channel use, respectively)
are identified. In both cases, with and without feedback, an achievability scheme based on power-
splitting, common randomness, rate splitting, block-Markov superposition coding, and backward
decoding is presented. Finally, converse regions for both cases are obtained using some of the
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Résumé : Dans ce rapport, les limites fondamentales de la transmission simultanée d’information
et d’énergie dans le canal Gaussien a interférence (G-IC) avec et sans voie de retour sont
déterminées. Un ensemble des débits atteignables de transmission d’information et d’énergie (en
bits par utilisation du canal et en unités d’énergie par utilisation du canal respectivement) est
identifié. Pour les deux cas, un schéma d’atteignabilité basé sur power-splitting, common
randomness, rate splitting, block-Markov superposition coding, et backward decoding est présenté.
Finalement, une région converse pour les deux cas est obtenu en utilisant des techniques de
majoration dans la littérature pour les débits d’information et aussi un majorant pour le débit
d’énergie en utilisant la loi des grands nombres.

Mots-clés : Canal a interference, voie de retour, transmission simultanée d’information et
d’énergie
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1 Notation

Throughout this research report, sets are denoted with uppercase calligraphic letters, i.e., X.
Random variables are denoted by uppercase letters, e.g., X. The realization and the set of
events from which the random variable X takes values are respectively denoted by x and X.
The probability distribution of X over the set X' is denoted Px. Whenever a second random
variable Y is involved, Pxy and Py x denote respectively the joint probability distribution of
(X,Y) and the conditional probability distribution of ¥ given X. Let N be a fixed natural
number. An N-dimensional vector of random variables is denoted by X = (X1, Xo,..., Xn)"
and a corresponding realization is denoted by x = (z1,%2,...,2n5)" € XY . Given X =
(X1, X2,...,Xn)T and (a,b) € N?, with a < b < N, the (b—a+1)-dimensional vector of random
variables formed by the components a to b of X is denoted by X (44 = (Xa, Xay1,--- X))
The notation (-)™ denotes the positive part operator, i.e., (-)* = max(-,0) and Ex[-] denotes the
expectation with respect to the distribution of the random variable X. The logarithm function
is assumed to be base 2.

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 5

2 Gaussian Interference Channel with Energy Harvesting

Consider a Gaussian interference channel (G-IC) with a non-colocated energy harvester depicted
in Figure [T] without feedback and in Figure 2] with perfect channel-output feedback. Transmitter
i, with i € {1,2}, aims to execute two tasks: (a) an information transmission task and (b) an
energy transmission task.

2.1 Information Transmission Task

From the information transmission standpoint, the goal of transmitter ¢ is to convey an inde-
pendent message index W; € W; = {1,2,...,2V} to receiver i using N channel input symbols
Xi1,Xi2,...,X;n. The message index W is assumed to be uniformly distributed over W. The
channel coefficient from transmitter k& to receiver ¢, with k € {1,2}, is denoted by h; € Ry.
At receiver 7, during channel use n, input symbol X ,, is observed at receiver ¢ subject to the
interference produced by the symbol X, sent by transmitter j, with j € {1,2} \ {i}, and a
real additive Gaussian noise Z; , with zero mean and variance o2. Hence, the channel output at
receiver ¢ during channel use n, denoted by Y; ,, is:

Yin=hiiXin+hijXjn+Zin. (1)

In the case without feedback, at each channel use n, the symbol X;, sent by transmitter ¢
depends upon the message index W; and a randomly generated index €2 € IN independent of W;
and Ws. Let fi(ﬁ) : W; x N — R be the encoding function at channel use n, such that for all
n € {1,2,..., N}, the following holds:

Xim=fin (Wi, Q). (2)

In the case with feedback, the symbol X; ,, sent by transmitter ¢ depends upon the indices W; and
Q, but also upon all previous channel-outputs Y; 1,Y; 2,...,Y; n—q, with d € IN the feedback delay.
In the following, without any loss of generality, it is assumed that d is equal to one channel use.
More specifically, £} : Wy x N = R and for all n € {2,3,..., N}, f{N) : Wi x Nx R*' - R
are encoding functions such that:

Xia=f" (W, Q) and (3a)

Xi,n: i(,]'r\Lf) (Wi7975/i,17)/i,25 e aYi,n—l)' (Sb)
In both cases, with and without feedback, the random index €2 is assumed to be known by all

transmitters and receivers. Moreover, channel input symbols X; 1, X;2,...,X; y are subject to
an average power constraint of the form

N

1

N > Ex,, [X7,] <P (4)
n=1

where P; denotes the average transmit power of transmitter ¢ in energy units per channel use.
The decoder of receiver ¢ observes the channel outputs Y;1,Y;2,...,Y; v and uses a decoding

function ¢£N) :IN x RN — W, to get an estimate of the message indices:

Wi = o™ (Y51, Yia,....Yin), )

RR n°® 9102
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Figure 1: Two-user Gaussian interference channel with a non-colocated energy harvester at
channel use n.

where ﬁ/\l is an estimate of the message index W;. The decoding error probability of a codebook
of block-length N, denoted by Pgé), is given by

P = max {Pr (W1 # W), Pr [ # W] } . (6)

The signal to noise ratio (SNR) at receiver ¢ is denoted by

The interference to noise ratio (INR) at receiver 4 is denoted by

|12
INRZ _ |h'LaJ|2 P]
o°

, with j # i. (7b)

?

2.2 Energy Transmission Task

Let hs; € Ry be the channel coefficient from transmitter ¢ to the energy harvester (EH). The
symbols sent by the transmitters during channel use n are observed by the EH subject to an
additive Gaussian noise Z3, with zero mean and variance o3. More specifically, the channel

output at the EH during channel use n, denoted by Y3 ,,, is:
Y3, =h3 1 X1+ h32Xon + 23, (8)

From the energy transmission standpoint, the goal of both transmitters is to jointly guarantee an
average energy rate at the EH. Let B™Y) : RN — R be a function that determines the energy

RR n°® 9102
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Figure 2: Two-user Gaussian interference channel with channel-output feedback and a non-
collocated energy harvester during channel use n.

obtained from the channel outputs Y31,Y32,...,Y3 ny. In the following, this function is chosen

to be the average energy rate (in energy-units per channel use) at the end of N channel uses.
That is,

N
a1
B™M (Y31, Va2, Yan) = 5 D Vi (9)
n=1

which implies that the energy carried by a given channel output Y3, with ¢ € {1,2,...,N},
is Y327t. This assumption is very optimistic given the dependency of the delivered DC power on
higher order statistics of the channel input distribution [3, 4]. Nonetheless, from the fundamental
limits point of view, the assumption in @D has the justification of the assumption of perfect
channel output feedback, i.e., any more realistic model would induce fundamental limits that
would be more pessimistic than the results presented in the following sections.

The SNR of transmitter ¢ at the EH is denoted by

| lPPi
D8 78,

SNRy; = (10)

93
Note that the maximum average energy rate, denoted by Bpax, is:

Buax = 03 (1 + SNRs; + SNRsz + 21/SNR31SNRaz ) - (11)

which can be achieved in the asymptotic block-length regime when both channel inputs exhibit
a correlation coefficient equal to one. Hence, given an energy rate B € [0, Bmax|, the energy

RR n°® 9102
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shortage probability, denoted by PE([SV), is:

AN
P 2P [BM(Ys) < B]. (12)

2.3 Simultaneous Information and Energy Transmission

The system is said to operate at the information-energy rate triplet (R, Re, B) € Ri when both
transmitter-receiver pairs use a transmit-receive configuration such that: (i) reliable communi-
cation at information rates R; and Rp is ensured; and (ii) reliable energy transmission at energy
rate B is ensured. A formal definition is given below.

Definition 1 (Achievable Rates) The triplet (Ri, Ro, B) € R3 is achievable if for all i €
{1,2}, there exists a sequence of encoding functions fi(flv), i(g), ceey fi(yll\(,) and a decoding functions
QS(lN) and gng) such that both the average decoding error probability P](ng) and the energy-shortage

probability Péjsv) tend to zero as the block-length N tends to infinity. That is,

lim sup PI%) =0 and (13a)
N—o0

lim sup P]E:ISV) =0. (13b)
N —o00

Using Definition [T} the fundamental limits of simultaneous information and energy transmission
in the G-IC can be described by the information-energy capacity region, defined as follows.

Definition 2 (Information-Energy Capacity Region) The information-energy capacity re-
gion, denoted by EY in the case with feedback and £ in the case without feedback, corresponds to
the closure of all achievable information-energy rate triplets (Ry, R, B).

3 Main Result

The main result consists of a description of the information-energy capacity regions with feedback
EY and without feedback €. Such a description is presented in the form of an approzimation in
the sense of the definition hereunder.

Definition 3 (Approximation of a Set) Letn € IN be fized. A set X C R} is approzimated
by the sets X and X if X C X C X and Vx = (21,...,7,) € X then ((131 — &) (e —&)T, ...

7(1'71 - En)+) € &7 fO’/‘ some (517527' .. 7§n) € Rﬁ

3.1 Case without Channel-Output Feedback

The information-energy capacity region &, is approximated by the regions £ (Theorem , which
represents an information-energy achievable region, and £ (Theorem , which represents an
information-energy converse region.

3.1.1 An Achievable Region

The following theorem introduces an achievable information-energy region.

RR n°® 9102
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Theorem 1 The information-energy capacity region € contains the set £ C Ri of all rate tuples

(R1, Ra, B) that satisfy:

R < %log <1 + m) , (14a)
)
Ry+ Ry < %log <1 (- Alf’l SJFNAIZ; ;\I glf A2e)INRy )%1 (1 + T f’fﬂ;@ (14c)
Ri+ Ry < %log <1 +(1- A2€1 iNii 1J1r\1 SQ— A1e)INR, )%1 (1 TN il’iil;;{l (14d)
SRRt URINMERENL o o1

SIUPH IS S NSNS € NS
+% log (1 e :\:‘i’i\iigl) : (14f)

30 e (OB (13,880,
+% log (1 + T+ INR. fi?ﬁE;Q) (14g)
B < 03 (1+ SNRs; + SNR3; + 2¢/SNR31SNRsa v/ Aredae ) (14h)

with (Nip, Nie) € [0,1]% such that Xip + Nie < 1, for all i € {1,2}.

Proof: The proof of Theorem [I]is presented in Appendix [A] [ |

3.1.2 A Converse Region

The following theorem introduces an information-energy converse region.

Theorem 2 The information-energy capacity region € contains the set £ C ]R3+ of all rate tuples

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 10

(R1, Ro, B) that satisfy:

R < %log(l + B1SNR,), (15a)
Ry < %log(l + 8,SNRy), (15b)
Ri+ Ry < %log(l + B1SNR; + B2INRy) + %log (1 + %) , (15¢)
R+ Ry < %log(l + B2SNRy + B1INR2) + %log (1 n %) : (15d)
Ri+ Ry < %log (1 n B1SNR; + 5211111;111—;5{1f21NR11NR2>

N % log (1 " B2SNR, + Bllﬂj_};z;\rgllﬂleRllNR2> 7 (15¢)

2R + Ry < %log (1 + %) + %log(l + B1SNR4 + B2INR,)
+% log (1 n B2SNRo + ﬁllﬂ—\’l_l:;ZI—;,gllﬂglNRlINRg) 7 (156)

Ry +2Ry < %log (1 + %) + %log(l + B2SNRs + 81INR»)
+% log (1 n B1SNR; + ﬁ2111_\’1_};111_|1—\1§12ﬂ2INR11NR2) ’ (15g)

B < o2 (1 + SNRy; + SNRaz + 21/SNR31SNRaar /(1 — £1)(1 — 52)) ., (15h)

with (51,[32) S [0, 1]2,
Proof: The proof of Theorem [2]is presented in Appendix [ |

3.1.3 An Approximation to the Information-Energy Capacity Region

Using the inner region £ and the outer region &, described respectively by Theorem [I|and Theo-
rem [2] the information-energy capacity region £ can be approximated in the sense of Definition

Bl

Theorem 3 (Approximation of £) Let £ C R3 and € C R3. be the sets of tuples (Ry, Ra, B)
described by Theorem [ and Theorem 3, respectively. Then,

ECECE, (16)
_ B +
and for all (Ry, Rs, B) € & it follows that ((R1 —1/2)T, (Re — 1/2)T, (B - %) ) €é.

Proof: Note that for all (Ry, Ry, B) € &, and for all (R}, R}, B') € £, there always exists
a tuple (31, B2, Ale, A2e) such that:

RR n°® 9102
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B-B 2h3,1h3.27/ P Ps (\/(1 = B1)(1 = B2) — \/)\16)\28)
Bmax B 0§+h§,1pl +h§72pg+2|h3,1”h3,2|\/P1P2
< 2v/SNR31SNR32
~ 1+ SNRg3; + SNR3s + 24/SNR31SNR32
< 2v/SNR31SNR3»
~ 1+ 44/SNR3:SNR35
<1
-2
The proof that Ry — R} < 3 and Ry — R, < 5 is presented in [5]. This completes the proof.

3.2 Case with Perfect Channel-Output Feedback

The information-energy capacity region EF, is approximated by the regions EF (Theorem' and

EY (Theorem |5

3.2.1 An Achievable Region

The following theorem introduces an achievable information-energy region.

Theorem 4 The information-energy capacity region EF contains the set X C Ri of all rate

tuples (R1, R2, B) that satisfy:

1 L4 (1= Aie)SNRy + (1 — Age)INR; + 2p\/SNR11NR1
R; < = log
=2 1+ /\2pINR1
Ri<lio ( (1—(p+ Ale))INRg) Sl (1 + A1pSNR; + Ay INR,
2 1+ A, INR, 1+ Ay, INR,
Ry < 110 (1 + ]. — )\26 SNR2 + (1 — Ale)INRQ + 2[)\/ SNRQINRQ)
25508 1+ AlplNR2
1 1+ (1—(p+ AQQ))INRl) (1 + A2, SNR; + A, INR,
Ry < =1 ( L P P
259708 1+ Ao, INR; tgloe 1+ A, INR;
Loy (L4 ApSNRy + AQPINRl)
< —
R+ Ry < glo ( 1+ AgpINR;
PN <1 + (1 = X2e)SNRy + (1 — Ajo)INRy + 2p\/SNRQINR2>
908 1+ A, INR,
1 1+ X9,SNR; + A, INR;
< 71 ( 4 P )
Rt Ha < 5 log 1+ A\, INR;
+1 o (1 + (1 — A1e)SNR1 + (1 — Ao )INR; + 2p\/SN7R11NR1>
908 1+ AgpINRy

B < 0} (1+SNR3; + SNRsz + 2/SNR31SNRs2 (p + v/ Aredae) )
where (p, Nip, Aie) € [0,1]* and p+ Nip + Nie < 1, for all i € {1,2}.

Proof: The proof of Theorem []is presented in Appendix [C]

RR n°® 9102
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3.2.2 A Converse Region

The following theorem describes a converse region denoted by EF.

Theorem 5 The information-energy capacity region EF is contained into the set g € lRi,
which contains all rate tuples (R1, Ra, B) that satisfy:

1
Ry < 3 log (1 + B,SNR, + BoINR; + 2p\/,818NR1,621NR1), (18a)
L Bi( 1 - )SNR1 ) 1 ( 2 )
< — — _
1
Ry < 5 10g (1 + B2SNRsy + 51INRg + 2p+/ ﬂQSNRzﬂllNR2> (18C)
1 B2(1 — p?)SNRo ) 1 ( 5 )
< — — _
Ry < 5 log (1 +q T+ (1= p)INR, +3 log {14 B2(1 — p°)INRy |, (18d)
1 Bi(l—p )SNR1 ) 1 ( )
< =1 1 — I \/
Ri+ Re < 5 og ( + 1+ A1(1 — p)INR, + 5 log | 1 4+ B2SNRs + 51INRs + 2p+/B2SNR2 81 INRy |,
(18e)
1 Ba2(1 — p?)SNRy ) 1 ( )
<1 (1 Zlog (1 N INR; + 2p+/B1SNR, BoINR,; ),
R1+R2_2og +1+521— 2)INR, + 5 log + B1SNR; + B2INR; + 2p+/B1SNR 52INRy
(18f)
B < a§<1 + SNR3; 4 SNR33 + 24/SNR31SNR32(py/B182 + 1/ (1 — 1) (1 — 52))>, (18g)
with (ﬂhﬁ?ap) € [071]3
Proof: The proof of Theorem [f]is presented in Appendix ]

3.2.3 An Approximation to the Information-Energy Capacity Region

Using the inner region " and the outer region 5 described respectively by Theorem (4 I and
Theorem l the information-energy capacity region £ can be approximated in the sense of
Definition Bl

Theorem 6 (Approximation of £¥) Let & ¢ Rﬁ’r and € C Ri be the sets of tuples
(R1, Ra, B) described by Theorem and Theorem@ respectively. Then,

" ceF cE, (19)
=F . Bmax + F
and for all (R, Ry, B) € € it follows that | (R — )T, (Ry — )T, | B — 5 €é&y.

Proof: Note that for all (Ry, R, B) € £" and for all (R}, Ry, B') € £F, there always exists

RR n°® 9102
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a tuple (81, B2, Ate, Aze, p) such that:

B-B' _ 2hs,1h3 21 Ps (\/(1 —B(L = B2) + pv/BiB2 — p — \/)\16)\2e)
Bmax — 03+ h3 1 P1 + h3 oy Pa + 2h31h3 o/PL Py
< 2/SNR;3:SNR3>
~ 1+ SNRa; + SNR32 + 2¢/SNR31SNRaz
2v/SNR31SNR32

<

~ 14 4+/SNR3:SNR32
<L

-2

The proof of the inequalities Ry — R} < 1 and Ry — R, < 1 is presented in [6]. This completes
the proof. m

3.3 Maximum Energy Rate Improvement with Feedback

Consider the following sets of energy rates: B = {b € Ry : (Ry,Ra,b) € £}, B={b € R, :

(R1, Ra,b) € €}, Bp = {b € Ry : (Ry, Ro,b) € EF}, and Bp = {b € Ry : (R1, Ra,b) € € }. The

maximum improvement that can be achieved on the energy rate due to feedback can be shown

to be at most a factor of two. The following proposition shows this by providing upper bounds
max B max Bp

on the ratios =F and 2L
max B max B

Proposition 1 (Rate improvement with Feedback) The energy rate achievable in the two-
user G-IC with perfect channel-output feedback can be twice the energy rate achievable in the
two-user G-IC without feedback. That is,

B
1< max By

<2
maxB < 2 (20)

Any improvement beyond a factor of two is not feasible. That is,

1< maxBre (21)
max B

Before presenting the proof of Proposition [I} the following auxiliary result is presented

Proposition 2 For all (z,y) € [0,1]?, it holds that

VI a—ai-y <1 (2)
Proof: Given that (vz — /y)? =z +y — 2,/zy > 0, it holds that
T+Yy

Vry < 5 (23)
Using , it holds that
NG < a ;_ y, and (24)
2—(z+y
(1o —y) < 2780 (25)
Adding and yields the inequality in . This completes the proof. [ |

Proof of Proposition[I: The proof is divided into two parts. The first part presents the
proof of (20)). The second part presents the proof of

RR n°® 9102
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1. Proof of (20): Let max By be written in terms of (p, A1p, A2p, Ate, A2e) and let also max B
be written in terms of (p , A, Ag,s A1e, Age) such that:

sup EF . 1+ SNR3; + SNR3o + 2\/SNR318NR32 (p + \/)\le/\Qe)

(26)
sup B 1+ SNRg; + SNR3; + 21/SNR31SNRaz Aj Ay,

< 1+ SNR31 + SNR32 + 2\/ SNR318NR32 (p + Il’lfi}(()\le7 )\26)) (27)
- 1 + SNR31 + SNR32

2v/SNR3;SNR3,
<1 28
= T S SNRs, + SNRay (28)

SNR3; + SNRs»
<1 2
=i+ 1 + SNR31 + SNR32 ( 9)
<2. (30)

2. Proof of : Let max Br be written be written in terms of (p, 81,32) € [0,1]® and let
also max B be written in terms of (3, 85) € [0, 1] such that:

sup EF _ 1+SNR31+SNR32 + 2\/SNR318NR32 (p\/ﬁlﬁg—‘r\/(l — ,81)(1 — ﬁg))

s (31)
sup B 1+ SNRg; + SNRgs + 21/SNR51SNRaz(1 — 57) (1 — f5)
/SNTGSNRs,
<14 24v/SNR31SNR32 (32)
1+ SNRas; + SNR32 + 2\/SNR318NR32(1 —B1)(1 = Ba)
2v/SNR31SNR32
<1
SNR31 + SNR32
<1 34
- 1+ SNR3; + SNR32 (34)
<2, (35)
where follows from Proposition [2| This completes the proof.
|

4 Numerical Analysis

Consider the two-user G-1Cs with and without channel-output feedback depicted in Figure [If and
Figure |2| with parameters SNR; = SNRy = 20 dB, INR; = INR, = SNREl = SNR3; = 10 dB,
and 02 = 1. The corresponding achievable region £ and converse region £ are shown in Figure
In the case with feedback, the corresponding achievable region £ and converse region EF
are shown in Figure |4l Note the strict inclusions £ C € and EF ¢ g (Definition . Note also
that for all B < 21 energy units, the set of triplets &Y and the set of triplets EF are prisms
whose bases correspond to the inner and outer regions approximating the information capacity
region presented in [7] and [5] respectively. For all B > 21, the trade-off between information

transmission rates and the energy transmission rate becomes evident as both regions ¥ and ?F
monotonically shrink when B increases (Remark 3). The same observation can be made for the
case without feedback.

Figureshows the pairs (R, B) that are in the sets {(Ra, B) € R% : (r1, Ro, B) € £} (solid line)

and {(R2,B) € R% : (r1,R2, B) € EF} (dashed line), with 7y = 0 and r; = 3. Note that thanks
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2
= 60
<
<
®2 40
'g
=]
£ 20
g
=
2.0
Q0 0
2 2
R [bits/ch.use] 4 4 R, [bits/ch.use]

Figure 3: 3-D superposition of £ and &£, with parameters SNR; = SNRy, = 20 dB, INR; =
INR2 = SNRgl = SNR32 =10 dB, 0'% = 1.

to feedback, the information rate Ro can be increased one bit per channel use while keeping both
the information rate R, and the energy rate B invariant.

Figure |§| shows the set of pairs (R;, Ra) that are in the sets {(R1, R2) € Ri : (R1, Ra,b) € &}
(solid line) and {(Ry, R2) € R% : (R1, R, b) € ?F} (dashed line), with b = 21 and b = 35. Note
that thanks to feedback, both the information rates R; and Ro can be increased more than half
a bit per channel use while keeping the energy rate B constant.

Figureshows the ratio %X%F for different ratios of SNR at the EH, i.e., SNR3; = SNR3, =

SNR; SN% = SNR32 = SNR; and SNl% = SNRg32 = SNR, respectively. Note that the upper
bound in Proposition [1]is tight in the case in the symmetric case.

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 16

g60

=

<

O

© 40

‘g

=

> 20

g

=

2.0 0
RO

2 2
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Figure 4: 3-D superposition of EY and ?F, with parameters SNR; = SNRy, = 20 dB, INR; =
INR2 = SNR31 = SNR32 =10 dB and 0'32’ =1.

Appendices

A  Proof of Theorem [1]

This proof is divided into two parts. The first part consists of the proof of (14al)-(14g). The
second part consists of the proof of (14h]).

A.1 Proof of (14a)-(14g))

Codebook Generation: Fix a strictly positive joint probability distribution:
Pyu,v,s, 8, (v, u1,uz, 51, 52) = Py (v) Py, v (u1|v) Py v (ua|v) Ps, ju, v (s1]ut, v) Ps, ju, v (S2|ug, v), for
all (v,u1,ug,s1,82) € X1 NXa x (X1 X X2)%. Let R, Ri,c, Re.c, R1,p and Ra p be non negative

real numbers. Generate 2V7% i.i.d N-length codewords v(w) = (vi(w), ..., vy (w)) according to
N
Py(v(w) = [ Pr(omw)), (36)
m=1
with w € {1,2,...,2NEe} For encoder 1, for each codeword v(w), generate 2Vf1.c ijid. N-
length codewords w;(w,) = (u1,1(w,%), ..., ui,n(w,i)) according to
N
Py v (ui(w, )[o(@)) = JT Poyy (wr,m(w, )lom (@), (37)
m=1
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N
o

Ry =0

B [energy units/ch.use]
- NN W oW
o o o & o

—
o

(63}

0 1 2 3 4
R, [bits/ch.use]

Figure 5: Convex hulk of pairs (R, B) that are in the sets {(R2, B) € R% : (r1,Rs, B) € £}

(solid line) and {(R2, B) € R% : (r1,Rs, B) € EF} (dashed line), with r; € {0,3}. Parameters
SNR1 == SNR2 =20 dB7 INR1 = INR2 = SNR31 = SNR32 =10 dB7 and O'g =1.

with i € {1,...,2Nf1.c} For each pair of codewords u;(w,i) and v(w), generate 2V%1.7 ij.d.
N-length codewords s1(w,4,j) = (s1,1(w,%,7),.-.,s1,n5(w,i,7)) according to
N
Ps,ju,v (s1(w, . f)lur(w, 1), 0w)) = T Psyjonv (s1,m(w, 6, 4) [urm (@, 8), vm (w)), (38)
m=1

with j € {1,...,2NF1.r} For encoder 2, for each codeword v(w), with w € {1,2,...,2NEe}
generate 2Vf2.¢ ii.d. N-length codewords uz(w, k) = (ug1(w, k), ..., uz n(w, k)) according to

=

Puyiv (uz(w, F)[o(w) = || Poujv (ugm(w, k)[vm(w)), (39)

1

m

with k € {1,...,2VF2.0} For each pair of codewords uz(w, k) and v(w), generate 2V 2.7 ii.d.
N-length codewords sa(w, k,1) = (s2.1(w, k,1), ..., s2 n(w, k,1)) according to

N
PS2\U2V(82(W7 k, l)|u2(w7 k)7 'U(w>) = H PSQ\UzV(SQ,m(wa k, l)|u2,m(w’ k)? ’Um(w))v (40)

m=1
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Figure 6: The ratio S:f Br for different ratios of SNR at the EH, i.e., SNR3; = SNR3» = SNR;

SNR31 = SNR32 = SNR; and SNR“ = SNR32 = SNR, respectlvely Parameters SNR; = SNRy =
20 dB INRl = INR2 = SNR31 = SNR32 =10 dB and 0'3 =1.

with [ € {1,...,2NFr},

Encoding: Denote by (W;,Q) € {1,2,...,2NFictRir)l 1 2 2NEe} the message index
and the random message index of transmitter i. Let W; be represented by the message index
Wic € {1,2,...,2NEic} and the message index W; p € {1,2,...,2V P} Transmitter i sends

the codeword r; = Qi (’U(Q), ul(Q, Wi,C), Si(Q, Wi7c, Wi7p)> s where Gi : (Xl ﬂXg)N X XiN X Xl—N —

XN is a function that transforms the codewords v(Q), u;(Q, W, ¢), and s;(Q, W; ¢, W; p) into a
unique N-dimensional channel input vector x;.

Decoding: Given the channel output y,, receiver 1 estimates the unique tuple (£2, W1 c, W1 P)
that satisfies:

('U(Q)7 'LLl(Q, /W\I,C)a 81(Q7 /WI,C, /WI,P)) u2(97 W\Q,C)? yl) S T\E'][\],;E,S)'IU2Y17 (41)

where  are assumed to be perfectly known by both transmitters and receivers. The set
T‘%fsl Uy, represents the set of jointly typical sequences of the random variables V, Uy, S1, Uz,
and Y7, with € > 0. Finally, receiver 2 follows a similar decoding scheme.

Error Probability Analysis: an error might occur at receiver 1 if the indices Wi ¢ and Wi p
are not decoded correctly given that (2 is known by both transmitters and receivers. These errors
might arise for two reasons: (i) there does not exist a tuple (Q W, s Wi .p), for at least one W, C
that satisfy , or (i1) there exist several tuples (€2, WLC, WL p), for at least one Wg,c that si-
multaneously satisfy . From the asymptotic equipartion property (AEP) [8], the probability
of an error due to (i) tends to zero when N grows to infinity. Consider the error due to (i¢) and
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Figure 7: The ratio HII:X Be for different ratios of SNR at the EH, i.e., SNR3; = SNR32 = SNR;

SNR“ = SNR32 = SNR; and SNR“ = SNR32 = SNR, rebpectlvely Parameters SNR; = SNRy =
20 dB INR; = INRy = SNR31 = SNR32 =10 dB, and o2 = 1.

define the event E;j; that describes the case in which the codewords v(2), u1 (3, 2), s1(4, j, ), and
uy(k, ) are jointly typical with a given y,. Assume now that the codeword to be decoded corre-
sponds to the indices (3, j, k) = (1,1, 1). This is without loss of generality due to the symmetry of

the code. Note that no error is declared when codewords <'v(Q)7 u1(Q,1),81(2,1,1), u2(, l;;)),

where k # 1, are the only jointly typical sequences with the received sequence y;. This is due to
the fact that receiver 1 is interested only on the indices ¢ and j. Then, the probability of error
P, due to the event (i7), can be bounded as follows:

N
PI(DE):Pr U U Eijk
(i,4)£(1,1) k=1

< Z Pr [Eijk} + Z Pr [Eijk] + Z Pr [E”k]
i#1,5#41,k#1 i=1,j#1,k=1 i#1,5#1,k=1
+ > PriEgl+ >, PriEgl+ > PrEigl. (42)

i#1,j=1,k#1 i#1,j=1,k=1 i=1,j#1,k#1
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For all i € {2,3,...,2NF1.c} the following holds

Pr[(Ei1)]=Pr {(V, Uy, 81,U2, Y1) € TS0 v, (432)
- Z Py, s, v (u1, s1|v) Py,y, v (u2, y,|v) Py (v), (43b)
(vﬂn,Sl,u27y1)€7—xyz\lzféluzyl
< ‘Tégizwﬂl 2~ NHULSIVI+HH U M V)+H(V)=3¢) (43¢)
<9~ NHULSV)+HU2 Y1|V)+H(V)=H(V,U1,51,U2,Y1) —4e) (43d)
— o= N(H(U1,81|V)+H Uz, Y1|V)—H(U1,51,U2,Y1|V) —4e) (43e)
—9—N(I(U1,813U2,Y1|V)—4e) (43f)
— 9= N(I(U1,513Y1|U2,V)+I(U1,513U2| V) —4e) (43g)
o= N(I(U1,51:%1|U2.V) ~4¢) (43h)
:2—N(I(X1;Y1\U27V)—4€)) (43i

where (43f]) follows from the fact that, for any three random variables X, Y, and Z it holds that

I(X;Y|2)=H(X|Z)+ HY|Z) - H(X,Y|Z); (44)

and follows from the fact that X; = 0;(S;, U;, V). Note that the probability operator Pr[.] in
applies with a probability distribution Pyy, s,u,y, that factorizes as Py Py, s, v Pu,y,|v
given that all the codewords s; and wu; are independent from the given channel output y;.

For all j € {2,3,...,2NF1.r}  the following holds:

Pr(Eljl):Pr{(V7 U1, 81,U2 Y1) € Ton % vy, (45a)

= > Ps,u,v(s1u1,v) Py, u,u,v (Y [un, e, v) Pu,u,v (un, ug, v) (45b)
N,e)

(
(”7“173117!1)67-\/(}1 S1U Y

S‘T\EJ[\JI;ES)‘leYl o= N(H(S1|V,U1)+H(Y1|[V,U1,Us)+H(V,U1,Us)—3e) (45¢)
<9~ N(H(S1|V.U0)+H (Y| V,UL,U2)+H(V,UrUz) = H(V,Us,81,Uz, Y1) ~4e) (45d)
—9—N(H(S1|V,U1,U)+H (Y1|V,U1,U2) = H(S1,Y1|U1,Uz,V ) —4e) (45e)
— o= NI(81:Y1|Us,Uz,V)~4e) (45£)
o NIV [U1 U V) —de) (45g)

where follows from ; an follows from the fact that X; = 6;(S;,U;, V). Note that
the probability operator Pr[.] in (45al) applies with a probability distribution Py, s,u,y, that
factorizes as Pgs,|u,v Py, ju,u,vPu,u,v given that the codeword s; is independent from the
given channel output y;.
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For all i € {2,3,...,2NF1.c} and j € {2,3,...,2VF1LP]) the following holds:

Pr(E;j)=Pr {(v, Uy, 81,U2, Y1) € TS % v, (46a)
= > Pu,s,v(u,81(v) Pu,y, v (w2, 41 [0) Py (v), (46b)
("7u17317u27y1)6T\511\;;€;1 Us Yy

<9~ N(H (U181 [V)+H(Uz,Y1|V)+H (V)= H(V,U1,51,Us,Y1) ~4e) (46¢)
—o—N(H(UL,S:1|V)+H(Uz,Y1|V)—H(Us,51,U3,Y1|V)—4e) (46d)

— 9= N(I(U1,815U2,Y1|V) —4e) (46¢)
—9~NU(U1,51:Y1|U2,V)+1(U1,51;U2|V) —4e) (46f)
—9—N(I(U1,513%1|Us,V)~4e) (46g)

—o~ NUI(X1:1|U2,V)~4e) (46h)

where follows from (44)); an follows from the fact that X; = 0;(S;,U;, V). Note that
the probability operator Pr[.] in (46a)) applies with a probability distribution Py, s,u,y, that

factorizes as Py Py, s, v Pu,y,|v given that all the codewords s; and u; are independent from
the output of the channel output y;.
For all i € {2,3,...,2VNF1.c} and k € {2,3,...,2VF2.0} the following holds:

Pr(E;,)=Pr [(V, U1, 51,Us, Y1) € TS v, (47a)
= Z Py, s,u, v (U1, 81,u2|v) Py, v (y,|v) Py (v), (47b)
(orur 01wz ) €T o

3‘7-\5];165)1%3/1 9=N(H(U1,51,U2|V)+H(Y1|V)+H(V)~3e¢) (47¢)

<9~ N(H (UL, S1,U2|V)+H Y1 [V)+H (V)= H(V,U1,51,U2,Y1)—4e) (47d)

— 9= N(H(U1,81,Us|V)+H(Y1|V)—H(Y1,U1,51,U2|V)—4e) (47e)

— 9~ N(I(81,U1,U2;Y1|V) —4e) (47¢)
—9~NU(X1,U2Y1|V)~4e) (47g)

where follows from ; an follows from the fact that X; = 6;(S;,U;, V). Note that
the probability operator Pr[.] in (47al) applies with a probability distribution Py, s,u,y, that

factorizes as Py, s,u,|v Py, v Pv given that all the codewords s1, u; and wuy are independent
from the given channel output y;.
For all i € {2,3,...,2Nr} and j € {2,3,...,2NR2.c} the following holds:

Pr(E;;)=Pr [(V, U1, 81,U2 Y1) € Tor %oy, (48a)
= > Pu,s,iv(u1,81(v) Pu,y, v (U2, 41 [v) Py (v), (48b)
(V81,62 9) €TV 2 1y v,
<9~ NHULSV)+H (U2, Y1 |[V)+H (V) —H(V,U1,51,U2,Y1) ~4e) (48c¢)
:27N(H(U1,S1 [V)+H(Us2,Y1|V)—H(U1,51,U2,Y1|V)—4e) (48d)
—9—NUI(U1,51;U2Y1|V) ~4e) (48¢)
:2—N(I(U1,Sl;Y1 |U2,V)+I(U;1,S1;U2|V)—4e) (48f)
—9— NI (U1,81;Y1|U2,V)—4e) (48g)
:27N(I(X1;Y1\U2,V)746), (48}1)
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where (48¢) follows from (44)); and (48] follows from the fact that X; = 6;(S;, U;, V). Note that
the probability operator Pr[.] in (48a)) applies with a probability distribution Py, s,u,y, that

factorizes as Py Py, s, v Pu,y,|v given that all the codewords s; and u; are independent from
the output of the channel output y;.

For all i € {2,3,...,2Nfuel € {2,3,...,2NVFr} and k € {2,3,...,2VF2.¢} the following
holds

N,e

Pr(E;j,) =Pr [(V, U1, 81,U2 Y1) € Tor %oy, (49a)

= Z Py, 5,0, v (w1, 1, u2|v) Py, v (y,|[v) Py (v), (49b)
(v,u1,81,u27yl)€7—‘§1§]f§1 Usvy

(v)
< ’T‘}gigleYl 9—n(H(U1,51,U2|V)+H(Y1|V)+H(V)~3¢) (49¢)
< 9= N(H(U1,81,Us|V)+H(Y1|V)+H (V)= H(V,U1,81,Us,Y1)—4e) (49d)
— 9~ N(H(U1,81,Ua|V)+H(Y1|V) = H(Y1,U1,51,U2|V)—4e) (49¢)
:27N(1(51,U1,U2;Y1|V)746) (49f)
:27N(I(X1,U2;Y1|V)746), (49g)

where follows from ; an follows from the fact that X; = 6;(S;,U;, V). Note that
the probability operator Pr[.] in (49al) applies with a probability distribution Py, s,u,y, that
factorizes as Py, s,u,|v Py, |v Pv (v) given that all the codewords s1, u; and uy are independent
from the given channel output y; .

Using , , 7 , , and in , the following holds:
Pl()];:/) < 9N(Ric—I(X1;Y1|U2,V)+4€) 9N (R1p—1(X1;Y1|U1,U2,V) +4e)
+2N(Rlc+Rlp_I(X1;Y1|U27V)+4€) + 2N(RIC+R20_I(U27X1;Y1|V)+46)

+2N(R1P+R2c*I(U2,X1;Y1 |U1,V)+4e) + 2N(R1P+R1C+R2c*I(U2;X1;Y1 |V)+46). (50)

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence in
general, from , reliable decoding holds under the following conditions:

Ryp < ay, (51a)

Rip + Ric < dy, (51b)

Rip + Rac < eq, (51c)

Ryp + Ric + Rac < 1, (51d)
—Ry, <0, (51e)

—Ry. <0, (51f)

Ry < ag, (51g)

Rap + Roe < do, (51h)

Rop + Ric < ea, (51i)

Rip + Ric + Rac < g2, (51j)
~Rap <0, (51K)

“Rp. <0, (511)
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where
a=I(Yy; X1|U, Us, V), (52a)
d1=I1(Y1; X1|U2, V), (52b)
e1=1(Y1; X1,Us|U, V), (52¢)
g1=1(Y1; X1, Us|V), (52d)
as=I(Yy; Xo|Uy,Us, V), (52e)
do=1(Y3; X2|U1, V), (52f)
eo=1(Yy; X2, U |Us, V), and (52g)
g2=1(Y2; X5, U |V). (52h)

The proof continues by applying a Fourrier-Motzkin elimination process on .
Set Rip = Ry — Ric, Rap = R2 — Rac and eliminate Ry,, Ra, from the set of inequalities (51)) to
obtain

Ry — Rye < ay, (53a)

R, < dy, (53b)

Ri — Ric+ Roc < eq, (53c)
Ry + Rae < g1, (53d)

—Ri + R <0, (53e)
—R1. <0, (53f)

Ry — Ra. < ag, (53g)

Ry < ds, (53h)

Ry — Roe + Ry < e, (531)
Ry + Rye < g2, (53j)

—Ro + Ro. <0, (53k)
—R. <0. (531)

Collect the inequalities in that do not include R;. to obtain:

Ry <dq, (54a)

Ry + Rye < g1, (54b)
Ry — R < as, (54¢)
Ry < da, (54d)

—Ry + Ry <0, (54e)
—Ra. < 0. (54f)

Also, collect the inequalities in that include R;. with positive coefficients to obtain:

RQ — RQC + Rlc S €9, (55&)
Ry + Ric < go, (55b)
—Ry + Ry, <0. (55¢)

Furthermore, collect the inequalities in that include R, with negative coefficients to obtain:
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—R,.<0, (56a)
Ry — Ry.<ay, (56b)
Ry — Ric + Rac<eq. (56¢)
Eliminate R;. by summing each inequality in with to obtain:

Ry — Ry < es, (57a)
Ry < go, (57b)
—-R1 <0, (57¢)
Ry + Ry — Rac < a1 + e, (57d)
Ri+ Rz < a1 + g2, (57e)
0<ay, (571)
R1+ Ry < e + eq, (57g)
Ri + Ry + Rac < e1 + go, (57h)
Roe < eg. (571)

Collect the inequalities in and that do not include Rs. to obtain:
0<ai, (58a)
Ry < djy, (58b)
Ry < do, (58¢)
Ry < g9, (58d)
—R; <0, (58e)
Ry + Ry < ay + ¢go, (58f)
Ry + Ry < ej +es. (58g)

Note that (58a)) is redundant due to the positivity of mutual information. The inequality (58d))
is redundant with respect to (58¢|), given that:
ga=1(Y2; Xo, U1|V)
=I1(Ya;Ur|V) + 1(Y2; X2|U1, V)
=dy + I(Y2; Uh|V)

>ds. (59)
Collect the inequalities in and that include Rs. with positive coefficients to obtain:
Ro. < e, (60a)
Ry + Rac < g1, (60b)
Ry + Ry + Rac < €1 + go, (60c)
—Ry + Re. < 0. (60d)
Collect the inequalities in and that include Rs. with negative coefficients to obtain:
—Ry.<0, (61a)
Ry — Rac<as, (61b)
Ry — Rac<ea, (61c)
Ri + Ry — Rac<aj + es. (61d)
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The inequality (61c) is redundant with respect to (61bf), as shown hereunder:

ea=1(Ya; Xo,U1|Us, V)
=1(Y2; U1|U2, V') + 1(Yo; X2|U2, U1, V)
=az + I1(Y2; U1|Us, V)
>as. (62)

Eliminate Rs. by adding each inequality from to each inequality to obtain inequalities
not including Ro.:

0<e, (63a)

Ry < g1, (63b)

Ry + Ry < ey + g2, (63c)
—Ry <0, (63d)

Ry < as + e, (63e)

Ry + Ry < az + g1, (63f)
Ri + 2Ry < as +e1 + go, (63g)
0<as, (63h)

Ri+ Ry <ay+ey+eq, (631)
2R + Ry < a1 + ez + g1, (63j)
2Ry + 2Ry < ay+ ez +e1 + g, (63k)
Ry < ay + es. (631)

Note that (63a) and (63h]) are redundant due to the positivity of mutual information. The
inequality (63b)) is redundant with respect to (58b]), as shown hereunder:

g1=I1(Y1; X1,U2|V)
=I(Y1;Us|V) + I(Yy; X1|Us, V)
=dy + 1(Y1; Uz|V)
>d,. (64)

The inequality (63c) is redundant with respect to (581), since

e1=I1(Y1; X1, Us|U1, V)
=1(Y1;U2|Ur, V) + I(Y1; X1|Uy, Us, V)
=a1 + I(Y1; Us|U, V)
>ay. (65)

Note also that the inequality (63i]) is redundant with respect to (58g)). Furthermore, the inequality
(63K) is redundant with respect to (58f) and (58g). Hence from and (63)), the system of
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inequalities in can be simplified as folllows:

Ry <dy, (66a)

Ry < ay + es, (66Db)

Ry < da, (66¢)

Ry < as + e, (66d)

R+ Ry < a1 +go, (66e)
Ry + Ry < az + g1, (661)
Ry + Ry < e+ e, (66g)
2Ry + Ry < a1 + g1 + e, (66h)
Ri1+2Rs < as + g2 + €. (661)

Finally, following the result of [9], the inequalities and can be dropped. Let k € {1,2}
be fixed. Consider the following Gaussian input distribution for transmitter k:

V ~ N(O, 1); Uk ~ ./\/(0, >\kc)§ Sk ~ N(O, /\kp), (67)

where X = VPiSk + VPoUr + V Are PV and ()\kp, ke, )\ke) € [0, 1]3 and Agp + Age + Ake < 1.

By symmetry, it suffices to prove (14al), (14c), (14¢]) and (14f). The choice of the Gaussian input
distribution in yields:

I(X1;Y1|U2, V)=h(Y1|U2, V) — h(Y1| X1, U2, V)
1 1
=3 log <27T€Var[Y1\U2, V]) ~5 log <27reVar[Y1|X1, Us, V])

1
=5 log (2776 (o7 + A3 (1= Me)PL — h3 1 AopP2) )

1
—3 log (27re(0% + h%’l)\gppg))

1 (1- Ale)SNR1>
=3 log (1 + 15 2, INR; /) (68a)

I(Xy, Us; Yi|[V)=h(Yi|V) — h(Y2| X1, Us, V)
1 1
=3 log (2776Var[Y1\V]) —5 log <27TeVar[Y1\X1, Us, V])

1
=3 log (2776(0% + hil(l — )P+ h§,2(1 — /\QEPQ))

1
—5 log (27re(af + hg,lxzppg))

1 <1 + (1 Aie)SNR; + (1 — )\ge)INRl)
T % 1+ A2, INR;

; (68b)
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I(X2; Y2 |Uy, Uz, V)=h(Y2|U1, U, V) — h(Y2|U1, Uz, X2, V)
1 1
=5 log (27reVar[Y2|U1, Us, V]) —5 log <27TeVaur[Y2|U17 Us, Xo, V])

1
25 log <27T€(0’g + h§,2/\2ppg + h%71A1pP1))

1
~5 log <27re(ag + h§,1A1PP1)>

1 A2pSNR, )
=-log |14+ —F2———
2 Og< T, INR, ) (68c)

I(X1,U; V1|U1, V)=h(V1|U1, V) — h(Y1|U1, Uz, X1, V)
1 1
=5 log (27reVar[Y1|U1, V]) ~5 log (27reVar[Y1|U1, Us, X1, V})

1
=3 log (271'6(0% + hil)\lpPl + hiQ(l — )\26)P2)>

1
~3 log (27re(a% + hiQ)\gpPg)>

1 14 A,SNRy + (1 — )\ze)INRl)
=21 ( P , 68d
g %8 1+ Mgy INR; (68d)
I(X2,U1; Y2 |Us, V)=h(Y2|Us, V) — h(Y2|Us, U1, X5, V)
1 1
=3 log (27reVar[Y2|U2, V]) ~3 log (27reVar[Y2|U2, Uy, Xo, V})
1
=5 log (27re(o—f + B3 g AopPo + 34 (1 — Ale)P1)>
1
—; log (27re(a§ + h§,1A1PP1)>
1 1+ ApSNRy + (1 — Ale)INRg)
=_1 ( P
g %8 1+ A\, INR; ’ (68c)

which proves (14a)), (14c) and (14€). Finally, using (68c|), (68d]) and (68e]), the proof of (14

follows immediately .

A.2 Proof of ((14h))

The choice of the channel input in guarantees that the random variables Y3 1,...,Y3,, are
independently and identically distributed. For all n € {1,2,...,N}, Y3, follows a zero-mean
Gaussian distribution with variance B given by

B=E [Yg,]
=E [(h3,1X1,n + h32Xo. + Z3,n)2]
=h3,E [X7,] + h3.B [X3,] + 2hs 1hs o [X1 5 Xo 0] + 03
=h3 1Py + h3 o P + 2h3 1hs oI [ X1 X2 0] + 03

§h§71P1 + h§72P2 + 2R3 1h3 2/ MePidac P + 03

By the weak law of large numbers, it holds that

: M) _ p -
ngnooPr(|B B|>0)=0. (69)
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Consequently,
lim Pr(B™ >B) =0 and (70a)
N—o00
lim Pr(B™ < B) =0. (70Db)
N—o00

From (70b)), it holds that for any energy rate B which satisfies 0 < B < B

lim Pr(B™ < B) =0, (71)

N—o00

This proves ([14hl) and completes the proof of Theorem

B Proof of Theorem [2

Fix an information-energy rate triplet (Ry, Ro, B) achievable with a given coding scheme (Defini-
tion . Denote by X1 and X5 the channel inputs resulting from transmitting the independent
message W7 and W5 using such a coding scheme. Denote by Y1 and Y5 the corresponding
channel outputs. The bounds (15a) and on R; and R are trivial and can be obtained by
removing the interference from the other user and calculating the point-to-point capacity:

N
NRl < Z h(Yl,n|X2,n) - Nh(Zl) + O(N) and (72)
1

n

M=

NR2 < h(}é,n|X1,n) - Nh(ZQ) + O(N)7 (73)

Il
-

n

where w tends to zero as N tends to infinity. Define the following random variables:

Ty = ho1 X1, + Zop, (
Ty = h12Xon + 21, (
Ui = ho1 X1, + Zs ., and (76
Uz = hy2Xop + Zi,m (

where, Zi and Zé are real Gaussian random variables with zero mean and variances o7 and o2,
respectively, independent of each other and of (X7, Xo, Z1, Zs). Let T'; and T2 be the vectors:
T1 = (T171,T1,2,...,T17N) and (78)
T2 = (Tg,l,TQ)l,...,T27N). (79)
The outer bound is established by using a genie aided argument. For all j € {1,2}, by Fano’s
inequality, it follows that
NR;j=H(M;)
<I(Mj; Yj) + o(N)
<I(X;;Y;) + o(N). (80)
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Using the definition of mutual information, yields:

I(Xl,Yl):h(Yl) — h(Yl‘X1> (81&)
=h(Y1) — h(T2|Xy) (81b)
=h(Y1) — h(T2) (81c)

N
<3 h(Yi) — h(Ts) (81d)

Consider the genie-aided channel in which a genie provides U; and Xy to receiver 1, then

I(X1;Y ) can be upper bounded as follows:

I(X1;Y)<I(X1;Y,,Uq, X59)
=I(X1;Uqp) + I(X1; Xo|Uy) + I(X1;Y1|U1, X)
=h(U1) — h(U1|X1) + M(Y1|U1, X2) = M(Y1|X1,U1, X2)
=h(T1) — h(U1|X1) + h(Y1|U1,X2) — h(Y1]X1,U1, X2)
_h(T1) — h(U+|X1) + h(Y1|Ur, Xa) — h(T5| X>)
N
<h(T1) = h(Z3) + > h(Y1a|Usn, Xa0) — h(Z1)
n=1

N
=h(T1) = Nh(Zy) + Y h(Y1,n|U1 ., Xa.n) = Nh(Z10),
n=1

where (82f) follows from the fact that conditioning does not increase the entropy.

(82a)
(82b)
(82¢)
(82d)
(82e)

(82f)

(82g)

Consider the genie-aided channel in which a genie provides U to receiver 1, then I(X1;Y 1) can

be upper bounded as follows:

I(X1;Y1)<I(X1;Y1,Uq)
:I(Xl;Ul) +I(X1,Y1|U1)
=h(U1) — h(U1|X1) + (Y 1|U1) = h(Y1[ X1, Uy)
=h(T1) — h(U1|X1) + h(Y1|U1) — h(T2)
N
<h(T1) = h(Ts) = h(Z5) + > h(Y1u|U1n)
:1N
=h(T1) — W(T>) — Nh(Zy) + Z h(Y1,n|Un).

where (83¢) follows from the fact that conditioning does not increase the entropy.

Consider the genie-aided channel in which a genie provides X to receiver 1, then I(X1;Y 1)

can be upper bounded as follows:

I(X1;;Y1)<I(X1;Y41,X5)
=I(X1; X2)+1(X1;Y1|X2)
=h(Y1|X2) — h(Y1|X 1, X5)
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By symmetry, similar bounds can be established for I(Xs;Y2), namely,

I(X»; Ya) gi h(Yan) — (T, (85a)

I(Xq;Ys) <h(T3) — Nh(Z;) + ZN: h(Yan|Uzny X1.0) — Nh(Z1), (85b)
n=1

[(X2;Y2)<h(Ts) — h(T1) — Nh(Zy) + XN: h( ) (85¢)

I(X4;Y5)< ﬁ: h(Yan|Xon) — Nh(Z1). (85d)

The key idea of the proof is to consider a linear combination of the inequalities in -,

-l (85al), (85d), and (85d), where all the terms on h(T';) and h(Tg) are removed
Addlng 81d)) and 1 i and plugglng 1nto yields the first bound on sum rate:

N(Ry + Ry) < Zh (Y1) + Z h(Yon|Usm, X1m) — Nh(Za) — NW(Z;) +o(N).  (86a)

n=1

Adding (82g) and (85a)) and plugging into yields the second bound on sum rate:

N(Ri + Ry) < Zh (Ya,n) + Z h(Y10|Utny X2,0) — Nh(Z1) — Nh(Zy) +o(N).  (86b)

n=1

Adding (83f) and (85¢) and plugging into yields the third bound on sum rate:

N
N(Ri +Ry) < Z (YinlUin) + Y 2(Yan|Unn) — Nh(Zy) — Nh(Zy) + o(N).  (86c)

n=1

Adding (81d)), (82g) and (85¢) and plugging into yields the first bound for the weighted sum
rate:

N(2R; + Ry)<

M=

3
Il

N N
h(Yin) + > h(Yin|Usn, X2n) Z (Yo,n|Ua,n)
1 n=1 n=1
—N (M(21) + h(Z

Adding (85a)), (83f) and (85b) and plugging into yields the second bound for the weighted
sum rate :

2) + h(Zy) + h(Zy)) + o(N). (86d)

N N N
N(Ry +2Ry)<Y h(Yam) + > h(Yon|Uzn, X1.0) Z (Yi.n|U1n)
n=1 n=1
+ h(Z

—N (h(Z) 2) + h(Zy) + h(Zy)) + o(N). (86¢)
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Hence, the information rates can be upper bounded as follows:

N
NR <3 h(YinlXan) - NB(Z)) +o(N), (87a)

3
Il
=

M=

NRQ g h(Y27n|X1,n) — Nh(ZQ) + O(]V)7 (87b)

3
Il
_

] =

N
N(R +Ry) <5 h(Yi,) Z h(Yo,u|Usn, X1,0) — Nh(Za) — Nh(Zy) +o(N),  (87c)

3
I
—

W(Y1,0|Ut s Xo,0) — NI(Z1) — Nh(Zy) +0o(N),  (87d)

Mz
Mz

N(Ry + Rs) < h(Ya) +

n=1

3

3
Il
—-

Mz

N
N(Ry + Rs) < h(Y1,n|U1,n) Z (Yo nlUap) — Nh(Zi)—Nh(Z;)—i—o(N), (87e)

=1 N
N(2Ry + Rp) <Y h(Yin) + Y h(Yin|Uin, Xom)
h(Zy) + h(Z ;. 2) + h(Z)) + h(z2)) c:(N) (87f)

N N
N(Ri +2Ry) <Y h(Yan) + Z h(Yan|Usns X1n) + Z (YinU1n)
n=1 n=1

|
A&MZ = i[=

)+ h(Z) + h(Z,)) + o(N). (87g)

Using assumption (13b)), for any n > 0 there exist Ny(n) such that for any N > Ny(n) it holds
that
Pr[BN) < B] <. (88)

Equivalently,
Pr[BM > B] >1-n. (89)

From Markov’s inequality [10], the following holds:

BPr [B™ > B] <E[B™)]. (90)
Combining and yields
B(1-n) <E[BM), (91)
which can be written as
(B —dy) < E[BM)], (92)

for some dn > 0 (for sufficiently large N).
In the following, for all n € IN, the bounds in and are evaluated assuming that the
channel inputs X; ,, and X5 ,, are arbitrary independent. Define the following parameters:

JAN
i = E[X;n], (93)
’Yz2,n é Var[Xi,n]v (94)
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forn € {1,...,N} and for i € {1,2}. The input sequence must satisfy the input power constraint
in (4), which can be written, for i € {1,2}, as

EZN:E[X_z]: liyz + ii,ﬁ <P (95)
nn:l o Nn:l s Nn:l o o

Using these assumptions the following holds:

h(Y;n) <

s

log (27reVar[Yi7n])

log

/N

27T6(02 + hzz,i’}/i%n + h123732,n))7 (96&)

h(}/i,n |Ui,7la Xj,n) < 27reVar[Ym |Ui,n7 Xj,n])

—
@)
o

N

1
2re|Covih i Xin + Zin, Uinll ) ~5 log (27reVar[Ui,n])

sz%z’nh?’i i U%Vinhii - 0120]2) + 1 10g(27rea.202.)
2 1

N~ NI~ N~ N~ N
—
o
[F]
A/

J

—
o
0Q

/N

2 2 2
Vimhji+ 05

hszfw
1 a2 1
=—log| 1+ ———— | += 10g(27rea?0?-), (96b)
2 1+ hi Vi 2
0.2
J
MY lUs) < 3 log (2meVar(YealUs) )

2me |Cov [V n, Uzn”) - %log <27reVar[Ui7n])

2..21,2 2.2 2 2 2 2 2 2 2
a5V hii + 0l R RS Vi Y e 0705

N
N~ N~ N
—
@]
o
TN TN TN

i 1
— gl 202 ot ’ ) + 5 log(2meoias)
iV T
1 h?,b’;?n + h?,j;sz',n + 'Y'iz,n’yigh‘g,jh?,i 1
<-log| 1+ -2 L %% + = log(2mec?a?), (96c)
2 1+ Yin'G,4 2 J
Finally, plugging in , it yields:
N 2 72
1 Yinh
NB <) glog (1 + U) +o(N), (972)
n=1 1
N 2 72
1 Y5, P
NRy <) glog (1 + 0) +o(V), (97b)
n=1 2
h2 42
N 2 N 2,272,n
h Yn h n 1 o2
N(R; + Ro) <Y log [ 14 —5" + 2Van ) S Slog| 14+ —2 + o(N),(97¢)
— o9 01 — 2 1 1,272,n
n=1 n=1 + J%
h2 72
N 2 2 2 2 N 1,171,n
h Y2,n h Mn 1 o}
N(Ri + Ry) < Y _log (1 y 222 Bl ) +Dglog | 1+ ——m—— | +o(IV)(97d)
—1 0'2 0'2 oyt 1 + 2,121,71
93
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2 2 2 2 2 2 32 ;2
h1,1"/1,n h1,272,n 'Yl,n"/2,nh1,2h2,1
2 + 2 + p

N
1 (o8 g 0'202
N(R1 + Rs) gzilog 1+ — 1_:_%"%1 — (97e)
n=1
h3 7a h3 h3 ,h3
N 2,§'§z,n + 2,;%/1,", + ’Yl,n’)’z[r%LUé 251
+Z§10g 1+ s h12 +o(N),
n=1 + -
hi 1y
N 1,171,n N 2 9 2 9
1 o2 hi 171, hi 573,
N(2Ry + Ry) < ) 5 log 1+ﬁ +) log (1+ ) (97)
n=1 14 n=1 1 1
2
h‘Z : h2 2 2 h h‘Z
N 1 2‘(27'2272,71 + 2,(17'22Yl,n + 'Yl,w'Yza%zoé 215 1
+Z§10g 1+ e +O<N)7
n—1 1 + 2 n% 1,2
h2 .
N M N 2 2 2 2
1 72 h3 97 ha 1
N(Ri+2R) <Y Slog | 1+ ——2—— |+ log 1+ 2220 4 2100 ) (97g)
2 hl 272 n o2 02
n=1 1 + n=1 2 2
h‘Z h2 2 2 h h‘Z
N 1 1,(17'1271,77/ + 1,(2);27/2,71, + 'Yl,n’YzU;éoé 221
+Z§10g 1+ s h21 + o(N).
n=1 + -
The expectation of the average received energy rate is given by
N
1
BBV =B |5 ¥,
n=1
1N 1N
— i, (N NENRIFEACS DERTR)
n=1 n=1
+2h31hs 2— Z H1nh2,n- (98)

Using Cauchy-Schwarz inequality, the energy rate in can be upper-bounded as follows:

N N
1 1
E [B(N)] < o3+ h3, (N E (Vi + B ) +h3 (N E :(7§,n +“§,n)>

n=1 n=1
o 1/2 L 1/2
2 2
+2h3 1h3 2 (N ; M17n> (N ; /J’27n> : (99)

Combining and yields the following upper-bound on the energy rate B:

N N
1
B<a3 +h3, <N > (ia+ uf,&) ( Z Von + 10 >

n=1

1 N 1/2 N /
+2h371h3,2 <N Z ﬂ%,n) (N Z /L27.,L> +ON- (100)

n=1 n=1
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In order to obtain a single-letterization of the upper-bound given by constraints and ([100)),
define also

N
Al .
/’CE = N T;Mz t 1€ {1a2}v (101)
Al N
2 2 2 .
Vi = N Z’}/i,na (S {172}, (102)

n=1
Using these notations, the input power constraint in (153 can be rewritten as
V2442 < P, with i€ {1,2}. (103)

By the concavity of the mutual information, applying Jensen’s inequality to the bounds in
yields in the asymptotic blocklength regime:

1 h
Ri < =log (1+71 “), (104a)
2 01
1 2h2
Ry < 5 log (1 + 2 22, (104b)
g3
h3 275
B2 A2 p2.A2 1 222
Ri+Ro<log| 1+ 1’1271 + 1’2272 + =log| 1+ # , (104c¢)
09 01 2 14+ 1272
h3 vf
h3 h3n?\ 1 =
R1+R2<10g< L 2272 n 2’1271>+210g 1_~_% ; (104d)
2 0'2 1_|_ 21 1
h2 2 h2 2 2 h2 h2
1 1(,;1%')’1 4 1&2%72 + 71726%102 2,1
Ri+ Ry < 3 log | 1+ (104e)
1 + 1 221
2
h2 2 h 2h2 h2
.\ 110 : . 2{,72%72 4 2(,71;1 + V1’720%1U§ 2,1
2 & 1+ ’72 nh 2 ’
h? 171
1 7 h h2 2
R+ Ry < =log | 1+ —2— | +1log 1+ —= i + L2h (104f)
2 14+ h2,1271 0‘1 01
92
1 h%{,fz;% + h%;;/f + 'Yf"/%fﬁa,ghg,l
+*10g 1+ 2 2 192 ,
2 14+ Y3 hi 2
1
h% 275
1 = h2 ’72 h2 ,y2
Ri+2Ry < log | 14 — 22— | +log [ 14+ 252 + 21 (104g)
2 14+ 1,2272 g5 05
97
1 hil?’ﬁ + hizz"/g + 'Yf"/%fﬁa,ghg,l
+*10g 1+ 1 1 172
2 V%hg,l ’
and the upper-bound on the energy rate (100) yields
B <03 +h3,(77 + 1d) + b3 2(v3 + 13) + 2hs 1hs o pa || (104h)
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To sum up, it has been shown so far that, in the limit when IV tends to infinity, any information-
energy rate triplet (Ry, Ro, B) € £ can be bounded by the constraints in for some 71, 7o,
11, po satisfying . Let R(v1, Y2, ft1, 2) denote the set of information-energy rate triplets
satisfying for some 71, 2, t1, o such that is true. Thus, it holds that

£C U R(v1,72, 41, H2)- (105)
02 +uiPy
03+ < Py

In this union, it suffices to consider u; > 0, po > 0, and 1, 2, i1, and us that saturate the
input power constraint (i.e., (103)) holds with equality). Thus,

e 2 2 2 2

& - U R(’71772aulau2) - U R(717727/117M2)‘ (106)
0K +pui<Py ol+ui=P
03 +u3< P2 Y3 +u3=P;

Let 8; € [0,1] be defined as follows:

: P, — 12
%: P-Ml’ i€ {1,2}. (107)

>

Bi

With these notations, any region R (v, 3, i1, fi2) in the union over all (p1, pi2, 71, 72) that satisfy
v? + p2 = Py and 72 + pu3 = P,, can be rewritten as follows:

1 Blplh% 1
1
1 PR3
R, < -log <1 + M : (108b)
2 o5
h3 5B2P>
B2, 3Py h2,BsP 1 22—
Ri+ Ry <log| 1+ 1’151 ! + 1"252 2 + = log 1Jr0272 , (108c¢)
0'% 0'% 2 1+ hi ,B2P2
of
h3 B P
h3,02P;  h3 B1Py 1 2
Ry + Ry <log (1 + 2,20—2 + 2,10—2 + 5 log| 1+ hgilﬁlPl s (108d)
2 2 1+ 27102
2
h?,lﬂlpl hizﬁZPQ ,3162P1P2hf72h§’1
]- 0'2 + 0'2 + 0'20'2
Ri+ Ry < ilog 1+ s 1 N 2 (108e)
1+ P 2
2
h3 ,B2Ps | h3,B1P1 | B1B2PiPahi 5h3 4
1 5 + == + PP R
- 93 93 9193
+ 9 log 1 + ) N 52P2h%72 )
of
h? 61 P
1 ez h2.B1P1  h?,5,P
2R; + Ry < jlog | 1+ —ziome | +log <1+ LR | a0l (108f)
1+ 2,1(73 g1 g1
. 1 1 hg,zaﬁgsz i h;lfglpl + /31/3213;1;26}5.2@,1
+= 0g + 2 )
2 B2P2hi
1 _|_ U’;’ 1,2
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1 Byl h3.8:P2  h3. B P
o2 217 1
R+ 2Ry < = log 1—1—% +log |1+ 2’22 + 2’12
2 1+ 1,2P2P2 o3 03

3
91

> (108g)

hi | B1 P hi ,B2P2 | B1BaPLPahi 4h3
2

Lo (1 gtz + o702
+§ 0og + I+ ﬁll:;;%,l )
B <o3+h3, Pi+h3,P+ 2h3,1h3,2\/(1 = B1)Pi(1 = B2) Pz, (108h)

for some (1, B2) € [0,1]2. Hence, such a region contains all information-energy rate triplets
(R1, Ra, B) satisfying the constraints of Theorem [2| and this completes the proof of Theorem

C Proof of Theorem {4

This proof is divided into two parts. The first part consists of the proof of (17a)-(17f). The
second part consists of the proof of (17g]).

C.1 Proof of ((17a])-(171)

Codebook Generation: Fix a strictly positive joint probability distribution:

Pyuu,v,8,8, (0, u, ut, ug, 51, 82) = PV(U)PU|V(U|U)PU1|UV(U1|'UfaU)PUglU,V(U2|U7U)

Ps, v v (21|u, u1,v) Ps,juu,v (s2]u, uz,v), for all (v,u,ur,us, z1,72) € &1 N Ay x (&1 N Ay) x
(X1 x Xz). Let Rg, R1 ¢, Re,c, R1,p and Ry p be non-negative real numbers. For transmitter

1, generate 222 ii.d N-length codewords v(w) = (vi(w),...,vy(w)) according to
N
Py(v(w)) = [] Pv(om(@)), (109)
m=1
with w € {1,2,...,2N%#} For each codeword v(w), generate 2N(1.c+R2c) jjid. N-length
codewords u(w, s,r) = (ur(w, s,7),...,un(w,s,r)) according to
N
PUlV(u(w’ S, T)|U(UJ)) = H PU\V(um(w’ S, T)|Um<w))7 (110)
m=1
with s € {1,...,2Nf.c}andr € {1,...,2NR2.c}, For transmitter 1, for each codeword u(w, s, 1),
generate 2Vf1.¢ iid. N-length codewords w;(w,s,r, k) = (u11(w,s,7,k),..., ui n(w,s, 7 k))

according to

N
PUI‘UV(ul(w,s,r, k)|u(s,r),v(w)) = H PUI‘UV<ul7m(w,s,r,k)|um(w,s7r),vm(w)), (111)
m=1

with k € {1,...,2NF1.c}. For each tuple of codewords (v(w), u(w,s,r),u1(w, s,r, k)), generate
2NELP iid. N-length codewords s1(w, s, 7, k,1) = (s11(w,s,7,k,1),...,s1 n(w,s,7 k1)) accord-
ing to

Ps,\u,uv (sl(w7s,r, k,D)|ui(w, s, k),u(s,r)w(w)) =
N
H P51|U1UV (SLm(W,S,T,k,l)"ltl,'m(w,sﬂ", k),um(w,s,r),vm(w)), (112)

m=1
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with [ € {1,...,2NfurY
For encoder 2, for each codeword u(w, s, 1), generate 2V2.¢ i.i.d. N-length codewords us(w, s,7, q)
= (ug1(w,s,7,9),...,u21(w, s,7,q)) according to

N
PU;\UV(U’Z(Q 5,7, q)|u(s T H PU2|UV(U2,m(w7Svrvq)|u?”n(wvs,r)vvm(w)>v (113)
with ¢ € {1,...,2VF2.0} For each tuple of codewords (v(w),u(w,s,r),us(w,s,r,q)), gener-
ate 2VF2.2 1id. N-length codewords sa(w,s,7,q,2) = (s2.1(w,8,7,¢,2),...,82.n(w,8,7,¢,2))

according to

PSQ\UzUV(S2(wa s, 7,4, z)|u2(w, S, T, Q)7 U(OJ, S, 7"), 'v(w))
N

= H P5'2|U2UV(52,m <wa s, 7,4, Z)|U27m(w, S, T, q)7 UM(W7 S, T)v Um(w)) ) (114)
m=1
with z € {1,...,2NF2r}
Encoding: Consider Markov encoding over T' blocks. Let W(t) be the message index transmit-
ted during block t. Let ¢ also be represented by the message index W( € {1,2,...,2NRic}

and the message index W( p € {1,2,...,2NBirY The message index Q is known by both

transmitters and receivers. At encodlng step t, with ¢t € {1,2,...,T}, transmitter 1 sends the

codeword m(lt) =0 (v(t)(Q(t)), u (Q(t), Wl(fgl), WQ(tc_l)) , U (Q(t), Wl(fc_l), W;El), Wl(t)c),

s1 (O, Wi wits witl, wit) ) where 0 1 XN x (X UX)N x Xy x XN — AN is a func-
tion that transforms the codewords v(Y)(Q), u (Q(t), Wl(fgl), Wz(t(;l)> , Ul (Q(t), Wl(,t(;l), WQ(ZD, Wl(t();),
and s; (Q(t) Wl(tgl) Wz(tc_l) Wl(%, Wl(tI)J) into the N-dimensional vector :cgt) The indices Wl(oc)v =

W(T)—s and W(O) W(Ig—r and the pair (s*,7*) € {1,2,...,2NFc} x {1,2,... 2NR2c}
are pre—deﬁned and known by both receivers and transmitters. ’Iiransmltter 2 follows a similar
encoding scheme.

Decoding: Both receivers decode their message indices at the end of block 7" in a backward
decoding fashion. At each decoding step ¢, with ¢ € {1,2,...,T}, receiver 1 obtains the indices

(Wl(’T(;t% WQ(’TC%), Wl(}Tpf(t*l)U from the given channel output y;.

The tuple (ng”,@% 2 Wl(j;g (= 1))> is the unique tuple that satisfy:

(U(Q(w), w (90, WD DYy (90, W0, W0, w (L=

51 (00, W0 L0, WL 0 prE0) Ly, (00, 70 T, Wi (),

T—(t—1)) Ne)
i’ ) € T\EUU1S1U2Y1 (115)

where W1( c ~=D) and WQH;(FU) are assumed to be perfectly decoded in the previous decoding

step t — 1. The set 7'(1(\][[2 s,U,y, represent the set of jointly typical sequences of the random

variables V,U,Uy,S1,Us, and Y7, with € > 0. Finally, receiver 2 follows a similar decoding
scheme.
Probability of Error Analysis: An error might occur during encoding step ¢ > 2 at transmitter
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1 if the index Wétc_ Y is not correctly decoded. Without any loss of generality, let Wz(tc_ D — 1 and
WQ(tg Y = 1. Define the event Ej, that describes the case in which there exists another message

index k # 1 that satisfies: <U(Q<t>),u (O, WS W), (90, WP Wit wiiGY),
t—2 t—2 t—1 t—1 t—2 t—2 Ne .
s1 (O, W' WS Wi Wiy (00, witSP wiis? k))e T sty With ¢ €

{2,3,...,T} and Wz( o ?) is assumed to be perfectly decoded in the previous block ¢ — 1. Then,
the probablhty of event E}, can be bounded as follows:

Pr(Ek):Pr[(V, U, U1, 5.,U2. Y1) € Tot) sivmvs (116a)

= Z Py (v)Pyu, s, v, v(u ui,s1,Ysv) Py, v (uzlv), (116b)

(N
(v,u u1,817yl)€TvUU151U2Y1

‘ y{szaswm 9= N(H(U,U1,51,Y1|V)+H(Uz2|V)+H(V)—4e) (116¢)
<9 NHUUL S Y1|[V)+H (U |V)+H(V) = H(UUL,Us, 51, Y1) —4e) (116d)
—o—N(H(U,U1,81,Y1|V)+H(Uz|V) = H(U,U1,Uz,81,Y1|V) —4e) (116e)
o= N(I(U,U1,81,Y1;U2|V) —4e) (116f)
— o~ N(I(U,X1,Y1;U2|V)~4e) (116g)
9~ NU(YiiUal X1 V.U)~10) (116h)

where follows from ; and ((116h)) follows from the fact that X; = 6;(U, U;, S;, V). Note
that the probability operator Pr[.] in (116a)) applies with a probability distribution Pvyu, x,u,v,
that factorizes as Pv Py v, x, v, |vPu, v given that all the codewords us are independent from
the given channel output y,;. The error probability becomes arbitrarily small (as N goes to
infinity) if

Rgc SI(UQ,}G‘XMU,V) (117)

An error might occur during the (backward) decoding step ¢ if the indices W1(:2* 2 W(T Do
W(T ¢=1) are not decoded correctly given that the indices W( ) and W T (t 1)) were
correctly decoded in the previous decoding step t—1. These errors mlght arise for two reasons: (1)

there does not exist a tuple (W(T ? W(T ? W1(7;9 (¢= 1))) that satisfies , or (i) there exist

several tuples <W1(7;t) Wé%*t) W(Tf(tfl))> that simultaneously satisfy m From the asymp-

totic equipartition property [§], the probability of error due to (i) tends to zero when N grows to
infinity. Consider the error due to (i7) and define the event Ej,; that describes the case in which
the codewords v(QM), u (AW, s,7) ,uy (Q(t) 8,7, W(Tf(t 2 ) (Q(t) 8,7, W( ~=1) l) and
Us (Q(t) S, T, W( S 1))) are jointly typical with ygT (t ) during decoding step ¢t. Assume now
that the codeword to be decoded at decoding step ¢ corresponds to the indices (s, r, 1) = (1,1,1).
This is without loss of generality due to the symmetry of the code. Then, the probability of error
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due to (i¢) during decoding step ¢, can be bounded as follows:

Pr U Esrl

(s,mD)#(1,1,1)

S Z Pr [Esrl] + Z Pr [Esrl] + Z Pr [Esrl]

s#1,r#1,l#1 s#1,r#1,l=1 s#1,r=1,l#1

+ Z Pr [Esrl] + Z Pr [Esrl] + Z Pr [Esrl]
s#1,r=1,l=1 s=1,r#1,l#1 s=1,r#1,l=1

+ Y PriBEal, (118)
s=1,r=1,l#1

For all s € {2,3,...,2NF1.c} the following holds
Pr[E,1]=Pr [(V, U,U1,81,U2, Y1) € Tovi) s.vave (119a)

= > Pv(v)Puu, s, vav(u,u1, 81, u20v) Py, v (yyv),  (119b)

(v,u,u1,81 ,u2,y, ) ETSE)

VUU;81UsYy
‘7—‘51{\]/5)151%1/1 9= N(H(U,U1,Uz,51|V)+H (Y1|V)+H(V)—4e) (119¢)
<9~ NHUULU2, 81 [V)+HY [V)+H(V) = H(U,U1,U2,51,Y1,V) ~4e) (119d)
:27N(H(U,U1,U2,Sl I\V)+H(Y1|V)—H(U,U1,U32,51,Y1|V)—4e) (1196)
— 9= N(I(U,U1,Uz,81;Y1|V)—4e) (119f)
:2—N(I(U7U2,X1;Y1|V)—4e), (119g)

where (1191 follows from (|44 , and follows from the fact that X; = 0,(U,U,, S;, V). Note
that the probablhty operator Pr[.] 19 i applies with a probability distribution Pyuyu,s,u,y,
that factorizes as PVPU’UI,SI,UQ"VPYI‘V given that all the codewords u,uq,s;, and us are
independent from the output of the channel output y, . For all » € {2,3,...,2Vf2.c} the
following holds

PI'[EITl]:PI' |:(V, U, Ul, Sl, U2, Yl) € 7-(1(\][[;331 UsY: (1203.)

= Z Py (v )PU,Ul,Sl,Ug\V(uaula31;u2|v)PY1\V(yl‘v)v (120b)

(N, €)
(v,u u17317u27yl)€TVUU151 Uy Yy

<‘7—VUU1S1U2YI 9—N(H(U,U1,U2,8:1|V)+H (Y1 |V)+H(V)~de) (120c)
<9~ N(H(UU1,Us,81 V) + H(Y1 |[V)+H(V)=H(U,U1,U3,81,Y1,V) ~4e) (120d)
:27N(H(U7U1,U2,S1 [V)+H(Y1|V)—H(U,U,Uz2,5:,Y1|V)—4e) (1206)
—9~N(I(U,U1,U2,51;¥1|V) —4e) (120f)
:2—N(I(U,U2,X1;Y1\V)—4s). (120g)

where (1201 follows from (|44 , and follows from the fact that X; = 0,(U,U,, S;, V). Note
that the probablhty operator Pr[.] 20 i applies with a probability distribution Pyuyu,s,u,y,
that factorizes as PVPU’UI,SI,UQ"VPYI‘V given that all the codewords u,u1,s;, and us are
independent from the output of the channel output y,. For all s € {2,3,...,2Vf1.c} and
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r€{2,3,...,2NF20} the following holds
Pr[Esrl]:Pr{(V, U,U.,5,Us. Y1) € Tiot) sivuvs (121a)

= > Py(v)Puu, s, vav(u,ur, 81, u2/v) Py, v (yy|v),  (121b)

(N
(v,u u1,317u27y1)ETVUUISIU2Y1

’ ‘%1281 . 9= N(H(U,U1,Us,51|V)+H (Y1|V)+H(V)—4e) (121c)
<9~ N(H(U,U1,Uz,81|V)+HY1|V)+H(V)=H(U,U1,U2,51,Y1,V) ~de) (121d)
:27N(H(U,U1,U2,SI|V)+H(Y1 |V)—H(U,U1,U2,51,Y1|V)—4e) (1216)
—9—NI(U,U1,U2,51;¥1|V)—4e) (121f)
:2—N(I(U,U2,X1;Y1|V)—4e)) (121g)

where follows from ; and follows from the fact that X; = 6;(U, U;, S;, V). Note
that the probability operator Pr[.] applies in with a probability distribution Pyyu,s,u,y,
that factorizes as Py Py u,,s, u,|v Py;|v given that all the codewords wu,u;,s;, and uy are
independent from the output of the channel output y;. For all s € {2,3,...,2VNF1.c} and
1€{2,3,...,2NF.r} the following holds

PI‘[ESU]:PI' {(V, U, U, S.,Us, Yl) S T‘SggislUﬂﬁ} (122&)

= Z Py (v)Pyu, s, U, v(u, w1, 81, us|v) Py, v (y|v), (122b)

(v,u,u1,81,u2,9,) ETNT)

VUU,S1UsYy

‘ ‘%5351%“ o= N(H(U,U1,Uz,51|V)+H (Y1 |V)+H(V)~de) (122¢)
<9~ NHUULU25|V)+HMIV)+H(V)=H(UU1,U2,51,Y1,V) ~4e) (122d)
:2—N(H(U,U1,U2,Sl\V)+H(Y1\V)—H(U,Ul,Uz,Sl,Yl|V)—4e) (1226)
—9~NUI(U,U1,U2,515Y1|V)~4e) (122f)
:27N(I(U,U27X1;Y1|V)74e), (122g)

where (122f) follows from (|44 , and follows from the fact that X; = 0,(U,U,, S;, V). Note
that the probablhty operator Pr[.] 22 i applies with a probability distribution Pyuyu, s,u,y,
that factorizes as PVpU,Ul,Sl,UlePYﬂV given that all the codewords w,w,s1, and us are
independent from the output of the channel output y;.

For all r € {2,3,...,2NF2c} and | € {2,3,...,2VF1r} the following holds

Pr[E),]=Pr {(v, U,U.,5,U2 Y1) € Tiot sivuv: (123a)

= Z Py (v)Pyu,,s, U, v (U, u1, 81,u2|v) Py, v (Y |[v), (123b)

(v,u,ug, Sl7u27yl)€TvUU151U2Y1

<‘TVUU151U2Y1 9= N(H(U,U1,Us,S1|V)+H(Y1|V)+H (V) —4e) (123c¢)
<9~ N(H(UULU2,8:|V)+ HY V) +H(V)=H(U,U1,Us,51,Y1,V) ) (123d)
—o—N(H(UU1,U2,8|V)+H(Y1|V)=H(U,U1,Uz,51,Y1|V)~4e) (123e)
—o~N(I(U,U1,U2,51;1|V) ~4e) (123f)
9 NUUU2 XaiYa[V)—de) (123g)
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that the probablhty operator Pr 1123a)) applies with a probability distribution Py yu,s,u,y,
that factorizes as PVPU7U17517U2|VPY1|V given that all the codewords w,ui,s1, and uy are
independent from the output of the channel output y;.

For all s € {2,3,...,2Nfe) e {23 ... 2NF20) and | € {2,3,...,2VF1r} ] the following
holds

where (123f]) follows from (44 and follows from the fact that X; = 6;(U, U;, S;, V). Note
23

Pr[E,,|=Pr {(V, U,U1,51,Us, Y1) € Tonts suvnys (124a)

= > Pv(v)Puu, s, vav(u,u1, 81, u2lv) Py, v (yy|v),  (124D)

(v,u u17317u2vy1)6TvUU151U2Y1

’TVUUlsleYl 9= N(H(U,U1,Uz,51|V)+H (Y1 |V)+H(V)~4e) (124c)
<9~ NHUULU2,81[V)+HY [V)+H(V) = H(UU1,U2,51,Y1,V) ~4e) (124d)
—9—N(H(U,U1,Us,81|V)+H(Y1|V)=H(U,U1,Uz,51,Y1|V) —4e) (124e)
—9—NI(U,U1,Uz,51;Y1|V)—4e) (124f)
—9-NUUU2,X3;Y1[V)—de) (124g)

that the probability operator Pr 124a)) applies with a probability distribution Py yu,s,u,y,
that factorizes as PVPU1U17317U2|VPY1|V given that all the codewords w,ui,s1, and uy are
independent from the output of the channel output y;.

For all [ € {2,3,...,2NVF1.PY the following holds

where (124f) follows from (44] and follows from the fact that X; = 0;(U,U,, S;,V). Note
24 ;

Pr[E}y]=Pr {(V, U,U.,8.,U2. Y1) € Topt) sivay: (125a)

= Z Py (v)Pyu, U,y v (u,ui, uz, Yy, |v)Ps, v (s1]|v), (125b)

(v,u,u1,81,u2,y,) ETN)

VUU,S1UgY]

N,e — —4e
‘ ‘gUUisleyl o= N(H(U,U1,U2,Y1|V)+H(S1|V)+H(V)~4e) (125c¢)
<9~ NHU,U,U2,Y1|V)+H (S1|V)+H(V)—H(U,U1,U3,51,Y1,V) —4e) (125d)
—o—N(I(S1;U,U1,U2,Y1|V) —4e) (125¢)
:2—N(I(X1;Yl‘U,Ul,UQ,V)—46), (125f)

that the probability operator Pr[.] in (1 applies with a probability distribution Pyvuu,s,u.y,
that factorizes as Pv Py v, u,, y1|VPS1 v given that the codewords s; is independent from the
output of the channel y,. Plugging (119)) into (L18]) yields:

where (125€)) follows from (44)); and (125f) follows from the fact that X; = 6;(U,U;, S;,V). Note
25%)

P < 2N(R10+R20+R2P—I(U,X1,U2;Y1IV)+4€) 2N(R10+R2c—I(U,X1,U2;Y1‘V)+46)
e X +
+ 2N(R1C'+R1p7[(U,X1,Uz;YlV)+46) + 2N(31071(U,X1,U2;Y1|V)+46)
+ 2N(R2C+R1P—I(U,X1,U2;Y1|V)+4E) + ZN(RQC—I(U,Xl,UQ;Yl|V)+4€)
+ 2N(R1P—I(X1;Y1‘U,Ul,Uz,V)-‘réle). (126)

RR n°® 9102



Simultaneous Information and Energy Transmission in the Interference Channel 42

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence in
general, from (117)) and (126]), reliable decoding holds under the following conditions:

Roc < I(Ug; Y1| X1, U, V), (127a)
Rip < I(X1;Y1|U1, Us, U, V), (127b)
Ric 4+ Roc + Rip < I(U, X1, U Y1|V), (127¢)
Ric < I(Uy;Ya| X0, U, V), (1274d)
Rop < I(X2;Ya|Uy, Us, U, V), (127e)
Ric + Roc + Rop < I(U, X, Uy; Ya|V). (127f)

The proof continues by applying a Fourrier-Motzkin elimination process on (127)). Set Rip =
Ry — Ric, Rap = Ry — Roc. Eliminate R1p, Rop from the inequalities in (127]) to obtain:

Roc < aq, (128a)

Ry — Ric < ag, (128b)
Ry + Roc < as, (128¢)
Ric < by, (128d)

Ry — Roc < ba, (128e¢)
Ro + Ric < bs, (128f)
—Ric <0, (128g)
“Ri+Ric <0, (128h)
“Ryc <0, (1281)

—Ry + Ry <0. (128j)

Collect the inequalities in (128)) that do not include Ry among the above inequalities to obtain:

Roc < an, (129a)
Ri + Rac < as, (129b)
R2 - RQC S bg, (1290)
—Roc <0, (129d)
—Ry + Roe < 0. (1296)
Collect the inequalities in (128)) that include R;¢c with positive coefficients to obtain:
R1C S b1, (1303.)
Ry 4+ Ric < b, (130b)
—Ri+ Ric <0. (1300)
Collect the inequalities in (128)) that include Ri¢c with negative coefficients to obtain:
Ry — Ric < ag, (131a)
—Ric <0. (131b)
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Eliminate Rj¢ by adding each inequality from (130)) and each inequality from (131]) to obtain:

Ry < by + as, (132&)
Ry < bg, (132b)
Ry + Ry < b3 + ao, (1320)
Roc < ay, (132e)
Ri + R 9¢ < as, (132f)
—Ro + Roc <0, (132g)
Ry — Ry < b, (132h)
—Rye <0. (132i)
Collect the inequalities in (132)) that do not include Ra¢ to obtain:

Ry <b; + az, (133&)
Ry < b3, (133b)
R2 + R1 S b3 + as, (1330)
—Ry <0. (133d)

Collect the inequalities in (132) that include Roc with positive coefficients to obtain:
RQC S ai, (1343.)
—Ry + Rac <0, (134D)
Ri+ R oc < as. (134C)

Collect the inequalities in (132)) that include Ry with negative coefficients to obtain:
Ry — Roc < b, (135a)
—Rye <0. (135b)

Eliminate Roc by adding each inequality in (134)) with each inequality in (135) to obtain:

Ry < as, (136a)
Ry < b1 + as, (136b)
Ry < b3, (136¢)
Ry < ay + b, (136d)
Ry + Ry < b3, (136e)
Ry + Ry < ag + bs. (136f)

The proof of Theorem [4| continues as follows, let k € {0,1} be fixed and consider the following
Gaussian input distribution for transmitter k:

V ~ N(07 1); U~ N(O,p); Uk NN(O,)\kC); and Sk ~ N(O, )\kp)7 (137)

where X, = VP.U + \/Pkap + VPUk + VAre PV and (p, )\kp7>\kca>\ke) S [0, 1]4 and p+
Aip + Ake + Age < 1. By symmetry, it suffices to prove (L7a), (17b]) and (17¢)). The choice of the
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Gaussian input distribution in (136)) yields:

I(U, )(Vl7 UQ;Y1|V) = h(Y1|V) - h(Y&IU, Xl,UQ,V)

1 1

3 log (27reVar[Y1|V]) ~3 log (27reVar[Y1|U, X1, Us, V])
1

= 5 log (27re(a§ + (1= Ae)Prhiy + (1 - AQS)PQh%’Q))

1
-5 log <2we(o% + AgpP2h§’2)>

S (1 + (1= A1.)SNRy + (1 — Ao )INR, + 2p/SNR,INR;
T2 1+ A2, INR;

), (138a)

which proves (17a). With the same power setting in (137]), the following holds

I(Uh}/QIUa X27V) = h(}/2|U7 X27V) - h(}/2|Ua X27 UlaV)

1 1
3 log (ZWeVar[Y2|U, Xo, V}) ~5 log (27reVar[Y2|U, X, Uy, V])

1
3 log (27re (US +(1—-(p+ )\1e))P1h§,1) )

1
- Zlog (27re(a§ + AlpPlhg’l))

2
1 1+(1 —(p+/\1€))INR2)

=1 ( ,and 138b
2 %% 1+ A, INR, o (138b)

](XlaY1|U7 U17 UZaV) = h(Y1|U7 U17 U2a V) - h(Y1|U7 Ula U27X13V)

1 1
3 log (27reVar[Y1|U7 Uy, Us, V]) —5 log (QﬁeVar[YﬂU, Uy, Us, X4, V]),

1
5 log (zm(a% + ApPihi | + AQ,,PthQ))

1
-5 log (271’6(0’% + )\2pP1h%,1)>

1 (1 + A1pSNR; + )\gpINRl)

=)
2 %% 1+ Xy INR,

This proves (17b)). Finally, using (138b]) and ((138¢|), yields the proof of ([17€].

(138¢)

C.2 Proof of (17g)

The choice of the channel input in (137) guarantee that the random variables Y3 ;,...,Ys , are
independently and identically distributed. For all n € {1,2,...,N}, Y3, follows a zero-mean
Gaussian distribution with variance B given by

B=E[Y{,]
=E [(h3,1 X1, + h32X20 + Z3.0)°]
=h3,E [X7,] +h3,E [X3,] 4 2hs1hs 2B [ X1 Xon] + 03
=h3,P1 + h3 2P + 2h31hs o [X1 0 Xo 5] + 03

< h%,lPl + h§72P2 + 2h31h3 2y PiPa(p + \/Areae) + 03, (139)
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By the weak law of large numbers, it holds that

lim Pr[B™Y) < B| =0. (140)

n—oo

From (140)), it holds that for any energy B which satisfies 0 < B < B, it holds that

lim Pr[B™) < B] =0 (141)

n— oo

This proves (17g) and completes the proof of Theorem

D Proof of Theorem [5l

Fix an information-energy rate triplet (R, Ro, B) achievable with a given coding scheme (Defi-
nition . Denote by X and X5 the channel inputs resulting from transmitting the independent
messages (W1,Q) and (Ws, Q) using such coding scheme. Denote by Y'; and Y5 the correspond-
ing channel outputs. Define the following random variables:

Sl = hg’le + ZQ and (142)
Sy = h12Xo + 71, (143)

where, Z; and Z5 are real Gaussian random variables independent of each other with zero means
and variances o? and o3, respectively. Using assumption ([13al), considering Fano’s inequality
and following similar steps as in [6], it can be shown that the information rates R; and Ry must

satisfy the following inequalities

M=

NR, h(Yin) = h(Z1.0)] + o(N), (144a)
NR, < i[h(i@,nnxm) — W(Zan) + B(Yi | Xams S1.0) — B(Z10)] + 0(N),  (144b)
NR, < XN:[h(ng) — (Zap)] + o(N), (144c)
NR, < i[h(YLnﬂXM) — (Z1) + B(Yan|X1m, S2n) — B(Zam)] +0(N),  (144d)

N(Ry + Rs) < i[h(}ﬁmwm, Xo.n) = W(Zin) + (Vo) — h(Za)] + o(N), (144e)

N(Ry + Ry) < XN:[h(YmsM, X1.0) = h(Zan) + B(Yi ) — B(Z10)] + o(N). (144f)

Using assumption ([13b]), for any 1 > 0 there exists Ny(n) such that for any n > Ny(n) it holds
that
Pr(B™) < B) <n. (145)

Equivalently,
Pr(B™) > B) >1-n. (146)
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Using Markov’s inequality, the probability in can be upper-bounded as follows:
BPr(B™ > B) <E[BW). (147)
Combining (146) and . 147) yields:
B(1-n) <EBM], (148)

which can be written as
(B - ™) < BB™, (149)

for some 6(¥) > 0 (for sufficiently large N). The bounds in (T44) and (T49) are evaluated
assuming that the channel inputs X, ,, and Xs ,, are arbitrary correlated random variables with

A
tin = E[X; ], (150)
72, & VarlX; ], (151)
An 2 Cov[X1nXon), (152)

for all n € {1,...,N} and for all i € {1,2}. The input sequence must satisfy the input power
constraint which can be written, for ¢ € {1,2}, as follows:

1 ) 1L, 1L,
N;E [in] = <N;%,ﬂ> + (an_:lum> < P (153)

Using this asumptions, the following holds:

h(Y1n) < %log (27reVar[Y1,n])

1
=3 log (27re(hf 171 nt hl 272 T 2h11h1 2N, + 0’%)), (154a)
1
h(Yan|Xon) < 3 log (27reVar Y5 5| Xo, n])

1 % 2 1 2 1 2

=3 log | 27e | 73, (71 WVen—An) ) ) = B log (2mevs3 ,,) + By log(2meoy)
1 ( A2 h3 1) 1 )

== 1—&—7” 1— 52— = | + = log(2meos), 154b
2 ! ( 71,7173,77,) U% 2 ( 2) ( )
1

h(Y1,n| X2, S1.n) < 3 log (2meVar[Y1 | X2,n, S1,n])

(71 n’YQ n )‘31)

1 2
< 3 log | 1+ % — + ~log(2meo?)
’Y%,n + (’Y%,nq@zm - /\%) ;gl
A2 h3
1 i (1-728) 1 ,
=—log| 1+ L= 5 + = log(2meoy). (154c¢)
2 14 ~2 (1 _ A2 ) h3a 2
Min 3. ) o
Given (X3, S1.n), the variance of Y7 ,, is upper-bounded by
Var[Y17n|X27n, Sl,n] < KYl,n - KYLH(Xz,n,Sl,TL)K(_)(lzm,slm)K;lm(Xg,n,Sl,n)a (155)
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where

Ky, , = U%nhil + Ug,nh?,z + 22X\, ke 1hi g + 03,
Ky, o (Xam,S10) = [Anh11 + 512793 0 ho1hi 177, + Anha,1hy 2], and

7227n /\nhQ,l

B (Xzn,810) = L\nhz,l 'Y%mh%,l + 1)’

Finally, the bounds in (144]) can be rewritten as follows:

N 2 2 2 2
1 Piavin  MoYan  2hi1hi o),
NR < ~1 1 == . 1 N), 156
1 ;20g< T T g T T o), (156a)
N 2
L A2 h3 1
Y e
n=1 n 12n
N 1 712 (1 _ A2 ) h?,l
n 2 2 o2
+> glog| 1+ el T | 4 o(N), (156b)
2 _ A% 2,1
n=1 1 +'71’n (]. ’Y% n'an) 0'%
N 2 2 2 2
1 h39%n  h317in | 2hoohai),
NR, < Z 2 Jog 2,2 22, L2 21, 4 222 22,1 1) +o(), (156¢)
2 93 03 03
N 2
1 A2 h3 4
NRy < “log(1+42, [1- 22— :
n; 2 < B ¥oia) ot
A2 h3
N 1 Vg,n (1 - 72 :;g ) ;gz
+> glog | 1+ ol —— | 4 o(N), (156d)
2 _ AZ 1,2
"= Lo (1 58 )
N 2 2 2 2
1 h39%n  h317%in | 2hoohai),
N(Rl + R2) < Z 5 log ( 2,(2)-527 + 27251, + 2,20-%2,1 +1
n=1
N 2 )‘)21 ) h? 1
1 71,71 ( 2 2 o2
+3° glog| 1+ Sl T | 4 o(N), (156¢)
2 _ AZ 2,1
n=1 1 + ’}/17,” (1 'Y% ’Y% ) O_;
N 2 .2 2 A2
1 hiyvin N 2h11h1 2\
N(Ri+Ry) <> 2log( 1’2?” + 1’2_32’" I 1)
n=1 1 1 1
2
N 2 1 — — )\i ) h2:2
1 727n ( PR 52
+3° slog | 1+ ”1'”;" | o). (156¢)
n=1 1+ ’ygm (1 n ) 01%2

— T A2
Y1220

The average received energy rate is given by

N N n
1 1 1
33| et (D0t i) i (ke

n=1 n=

E

1
LN
+2h3,1hs 2 (N ;()\n + Ml,nﬂz,n)> . (157)
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Using Cauchy-Schwarz inequality, the expected value on the energy rate in (157)) can be upper-
bounded as follows:

1 N
N Z }/32,n

n=1

N N
1 1
E LI O SE IV R) FEEH E5 9/ AVER)

n=1 n=1

L 1/2 L 1/2
() (W) )
n=1 n=1

Combining (149) and (158 yields the following upper-bound on the energy rate B:

N N
1 1
RN COVE RV R) FUEH C5 DERTER)
n=1

n=1

1 N
+2h31h3.0 ’N;An

2|

| X 1/2 L& 1/2
2 2
+ (N ;ul,n> (N ;ug,n> 1o (159)

In order to obtain a single-letterization of the upper-bound given by constraints (156 and

(1159)), define also

1 N
+2h3 1h3.0 ’N;)\n

N
2 A 1 2 .
wy = N;Mi,nv i€ {12}, (160)
A1 N
2 & 2 .
7= ;'yn ie{1,2}, (161)
N
()
n=1
= n= /7 162
|71||72\ ( )

With this notation, the input power constraint in (153) can be rewritten as

V2 +ui <P, ie{l,2}. (163)
Note that
2 2
N 2 1— Ai ) & 2 1— 2 h
1 1 %,n( T2 ) o2 1 % (1=0%) 5
N > glog | 1+ %’ﬁ;’: | Sglog| 1+ |- (164)
n=1 L+97, (1—72 e ) 2y 1+92(1—p?) %
,mn 'y,n J J

The proof of (164)) is obtained using the fact that for all (o, 8) € R, log (1 + 11?%) is a
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concave function on x, then it follows that

2 h2 .
N 2 1— AL iLi
1 1 %n( VA7 ) o2
72 710g L+ ]2 ; 2
h?
Ni=2 147, (1_ 'ijzfn) "2
N i,
11 1 %Zn:l 712,71 (1 ) o2
< ; log + A2 h?
2 1—&—%25:1%,71( - lzﬂ;]zn) UJ
1N 2 GvZNf )i
1 NZn:l Yin (1 IS 2% 2/172 o?
< 5108; 1+ (165)

2 h? .
1 1 N_ 2 <17 (N Zn:l)‘”) ) g
+ Zn_l Yin En Zi’:lﬁyn% Zi:’:lﬁm o2
2 1 2 hfl

1 v (1-0%) o2
=3 log | 1+ e ) (166)
L+97 (1-p?) 5
J

2

where (165)) follows from the fact that n € {1,2,..., N}, o2 (1 — — )‘"2 ) is a concave function

nn Y1,n7V2,n
on 7?2 o 2 o and Ay; and for all (o, B) € ]R+, 1+Br is an increasing function on x. By the
concav1ty of the mutual information, applying Jensen’s inequality and (164)) in the bounds (156)
yields, in the limit when N — oo,

1 M hions h3 1 hi 27773
R <=1 ’ : 204 ——=——= ], 167
! 2 i) (T% + cr% tip 0‘11 (1672)
2 2 hiy
1 K2, 1 Vi1 —p%) s
R, < =log ( 21y T(1- )) +=log| 1+ Y , (167b)
? %2 ’ LR — )28
1 h2 ,_Y2 h2 0,2 h h 2.2
Ry < 2log< P eyt gy | PR j’jvm : (167¢)
2 2 2
2 2 h% 2
1 h% 2 72 (1 - P ) c7'é
Ry <3 log (1 + 5 (1—p%) log | 1+ ; 2? - (167d)
! 1+75(1=p?) i
2 2 12 .2 2 12 2.2 2(1 _ Q)hil
ot Ro< Sog (12202 Moy [Haale0ie ) 1y RO TP ) e
2 op lop 05 2 1+ 712(1 — ) z2é1
2 2 h% 22
it By < Mo hiid Pians , Mahtantrs ) 1 tog (14 1= (1676
1 2 X 5 T R a )
2 U% 0% J‘f 2 1+’y(1—p)i§2
77

and the upper-bound on the energy rate (100) :

B < o3 +h3,(0F 4 11) + 39075 + 13) + 2ha 1 hao (|l [nllval + [ llpe]).  (167g)

In the limit when N tends to infinity, any information-energy rate triplet such that (Ry, Re, B) €
EF satisfies (167) for some 71, Y2, p1, po satisfying (163) and for some p € [-1,1]. Let
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RY (1,72, 11, 12, p) denote the set of information-energy rate triplets satisfying (167)), for some
Y1, Y2, H1, to such that (163)) is true and for some p € [—1,1]. Thus, it holds that

e U RO ). (168)
0Ky +pi< Py
0<Y3+us< P,
—1<p<1
In this union, it suffices to consider 0 < p < 1 because for any —1 < p < 1, RY(v§,743, 12, 13, p)
g RF(V%)V%) /J,%,/J/%, |p|) Thus,

e |J RIOEAEmmep) € | RYOE S s 2, p)-

0<Yi+p <Py ViHui=P
0<Y3+1u3< P, Y3+n3=P;
~1<p<l 0<p<1

Let B; € [0,1] be defined as follows:

= —, ie{1,2}. (169)

Using , any region R(7y1, Y2, i1, 42, p) in the union over all (uy, 2, v1,72) that satisfy 72 +
Ph s 4+ p3 = P2 and 0 < p < 1, can be rewritten as follows:

1 h? P, h? P. h2  h2 PP
R < tlog 171521 . 172522 2—1—2,0\/ 11 1,2ﬁiﬂ2 LERY (1708)
2 g1 01 o1
2 h?l
1 B1Pi(1 —p?)—2
mo<gls 3 AR ol 1t — . (7ob)
L+ BiPL(1 - p?) 2
L (132BaPe B3P ) PP
R, <- ( 2252 2 2,1521 1 +2p\/ 2,2 2,1%52 1 2)7 (1700)
2 03 op
2 h§2
1 1 Ba Py (1—P)Té
Ro <§ 2 ,82P2 (17 ) +§log 1+ 22 ,  (170d)
L+ BaPy (1= p?) =22
h3 262 hi PP h2 ,h PP
R1+R2< ( 22/82 2 21/31 1+2p\/ 2,2 21ﬂ162 119
prPy (1 —p?
1+ B8P (1—p
R1+R2<§10 1’1(;62114_ 12522 \/11 121212
1
2
1 BaPy (1 — p?) 22
glog{ 1+ I (170f)
L+ Py (1— p2) S

B < 03+h3  Prth3, Py + 2hy 1hao(|pl/BiPiBaPat\/ (1 — B1)(1 — B2) PiPy),  (170g)
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for some (f1, B2) € [0,1]? and p € [0,1]. Hence, using the definitions in (7)) and (L0), the region
(170) contains all information-energy rate triplets (R, Ro, B) satisfying constraints , which
completes the proof of Theorem 5}
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