R. L. Siegel, K. D. Miller, and A. , Cancer statistics, 2017, CA: A Cancer Journal for Clinicians, vol.91, issue.suppl 3, pp.7-30, 2017.
DOI : 10.1016/j.ypmed.2016.08.015

C. Adamson, O. O. Kanu, A. I. Mehta, C. Di, N. Lin et al., Glioblastoma multiforme: a review of where we have been and where we are going, Expert Opinion on Investigational Drugs, vol.26, issue.8, pp.1061-1083, 2009.
DOI : 10.1089/hyb.2006.25.125

M. S. Walid, Prognostic Factors for Long-Term Survival after Glioblastoma, The Permanente Journal, pp.45-48, 2008.

K. Maier-hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust et al., Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme, Journal of Neuro-Oncology, vol.40, issue.1, pp.53-60, 2007.
DOI : 10.1016/0360-3016(93)90351-U

K. Maier-hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust et al., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, Journal of Neuro-Oncology, vol.70, issue.2, pp.317-324, 2011.
DOI : 10.1158/0008-5472.CAN-10-1022

A. Amaro, E. L. Tannús, M. J. Vidoto, R. S. Martins, L. F. Santos et al., Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment, International Journal of Nanomedicine, vol.6, pp.591-603, 2011.

E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio et al., Fundamentals and advances in magnetic hyperthermia, Applied Physics Reviews, vol.85, issue.4, p.41302, 2015.
DOI : 10.1118/1.3106342

D. Caruntu, G. Caruntu, Y. Chen, C. J. O-'connor, G. Goloverda et al., Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Paper Molecular Systems Design & Engineering 10 | Mol, Syst. Des. Eng, vol.2, pp.629-639, 2017.

1. L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy et al., Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled additon of water in the polyol synthesis, 13. R. Hergt and S. Dutz, Magnetic particle hyperthermia? biophysical limitations of a visionary tumour therapy Manna and A. Lappas, Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters, pp.5527-5534, 2004.

D. Sakellari, K. Brintakis, A. Kostopoulou, E. Myrovali, K. Simeonidis et al., Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators, Materials Science and Engineering: C, vol.58, issue.16, pp.187-193, 2016.
DOI : 10.1016/j.msec.2015.08.023

E. Heinke, L. Olsson, N. Nilsson, P. Gehrke, . A. Svedlindh-17 et al., Size and property bimodality in magnetic nanoparticle dispersions: single domain particles vs. strongly coupled nanoclusters Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono-or Bisphosphonate-Anchored Dendronized Iron Oxide Nanoparticles Ultrasmall superparamagnetic iron oxide nanoparticle prelabelling of human neural precursor cells, Nanoscale Biomaterials, vol.9, issue.35, pp.4227-4235, 2014.

. Kabanov, Luteinizing Hormone Releasing Hormone- Targeted Cisplatin-Loaded Magnetite Nanoclusters for Simultaneous MR Imaging and Chemotherapy of Ovarian Cancer, Chemistry of Materials, vol.28, pp.3024-3040, 2016.

G. Ramniceanu, B. T. Doan, C. Vezignol, A. Graillot, C. Loubat et al., Delayed hepatic uptake of multi-phosphonic acid poly(ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging, RSC Advances Evaluation of High-Yield Purification Methods on Monodisperse PEG- Grafted Iron Oxide Nanoparticles, Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications, pp.63788-63800, 2012.

K. Kim, M. Lee, J. Kim, H. M. Lee, S. H. Hwang et al., Magnetically softened iron oxide (MSIO) nanofluid and its application to thermally-induced heat shock proteins for ocular neuroprotection Resch-Genger and I. Hilger, An in vitro characterization study of new near infrared dyes for molecular imaging, Biomaterials European Journal of Medicinal Chemistry, vol.101, issue.44, pp.165-175, 2009.

C. Germain-genevois, O. Garandeau, and F. Couillaud, Detection of Brain Tumors and Systemic Metastases Using NanoLuc and Fluc for Dual Reporter Imaging, Molecular Imaging and Biology, vol.12, issue.1, pp.62-69, 2016.
DOI : 10.1016/j.biochi.2014.08.012

C. Rome, H. Loiseau, J. Arsaut, V. Roullot, and F. Couillaud, Diversity of Contactin mRNA in Human Brain Tumors Minko, A structural definition of polymer brushes, Molecular Carcinogenesis Journal of Polymer Science Part A: Polymer Chemistry, vol.45, issue.45, pp.774-785, 2006.

W. Falcone and G. A. Waychunas, Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles, Physical Chemistry Chemical Physics, vol.15, pp.17303-17313, 2013.

V. Connord, P. Clerc, N. Hallali, D. Hajj-diab, D. Fourmy et al., Real-Time Analysis of Magnetic Hyperthermia Experiments on Living Cells Molecular Systems Design & Engineering Paper To access the final edited and published work see http, C7ME00061H Mol. Syst. Des. Eng, vol.2, issue.11, pp.629-639, 2017.

. Bacri, Interaction of Anionic Superparamagnetic Nanoparticles with Cells: Kinetic Analyses of Membrane Adsorption and Subsequent Internalization, Langmuir, vol.18, pp.8148-8155, 2002.

C. Blanco-andujar, D. Ortega, P. Southern, S. A. Nesbitt, N. T. Thanh et al., Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia, Nanomedicine, vol.11, issue.2, pp.2016-121
DOI : 10.1080/02656730110116713

H. Hillaireau, P. Couvreur, B. Kann, H. L. Offerhaus, M. Windbergs et al., Nanocarriers' entry into the cell: relevance to drug delivery Raman microscopy for cellular investigations ? From single cell imaging to drug carrier uptake visualization, Oh and J.-H. Park, Endocytosis and exocytosis of nanoparticles in mammalian cells, pp.2873-2896, 2009.

M. Levy, N. Luciani, D. Alloyeau, D. Elgrabli, V. Deveaux et al., Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, issue.16, pp.3988-3999, 2011.
DOI : 10.1016/j.biomaterials.2011.02.031

URL : https://hal.archives-ouvertes.fr/ineris-00963273

G. Baffou, H. Rigneault, D. Marguet, and L. Jullien, A critique of methods for temperature imaging in single cells, Nature Methods, vol.34, issue.9, pp.899-901, 2014.
DOI : 10.3109/03014460.2013.807878

URL : https://hal.archives-ouvertes.fr/hal-01059425

M. Domenech, I. Marrero-berrios, M. Torres-lugo, C. Rinaldi, C. Sanchez et al., Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields, ACS Nano, vol.7, issue.6, pp.5091-5101, 2013.
DOI : 10.1021/nn4007048

T. D. Anderson, J. Z. Dziubla, and . Hilt, The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity, Acta Biomaterialia, vol.25, pp.284-290, 2015.

K. Devanand, J. C. Selser-42, J. Le-coeur, P. Teixeira, S. Busch et al., Asymptotic Behavior and Long-Range Interactions in Aqueous Solutions of Poly Compression of random coils due to macromolecular crowding: Scaling effects Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies, Macromolecules 44. D. Mertz, O. Sandre and S. Bégin-Colin, Drug releasing nanoplatforms activated by alternating magnetic fieldsBBA) -General Subjects, pp.5943-5947, 1991.

. Fig, TEM micrograph and size distribution of monocore IONPs Molecular Systems Design & Engineering Paper To access the final edited and published work see http, C7ME00061H Mol. Syst. Des. Eng, issue.2, pp.629-639, 2017.