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Abstract. This work is devoted to the numerical analysis of saturated porous media, taking into account the 
damage phenomena on the solid skeleton. The porous media is taken into poro-elastic framework, in full-saturated 
condition, based on the Biot’s Theory. A scalar damage model is assumed for this analysis. An implicit boundary 
element method (BEM) formulation, based on time-independent fundamental solutions, is developed and 
implemented to couple the fluid flow and two-dimensional elastostatic problems. The integration over boundary 
elements is evaluated by using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular 
domain cells is followed to carry out the relevant domain integrals. The non-linear problem is solved by a 
Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation 
and to illustrate its efficiency. 

Introduction 
The study of porous materials is extremely relevant in several areas of knowledge, such as soil and rock 
mechanics, contaminant diffusion, biomechanics and petroleum engineering. The mechanics of porous media 
deals with materials where the mechanical behavior is significantly influenced by the presence of fluid phases. 
The response of the material is highly dependent on the fluids that flow through the pores. Biot [1] was the first to 
propose a coupled theory for three-dimensional consolidation, based on the Terzaghi’s studies on soil settlement 
[2]. This thermodynamically consistent theory is described in the book by Coussy [3], who improved significantly 
the knowledge on poromechanics. Cleary [4] presented the fundamental solutions to porous solids, representing 
the first contributions on integral equations dedicated to this kind of problems. Among others pioneers BEM 
works applied to porous media, the ones from Cheng and his collaborators [5-7] are well-known, using the direct 
BEM formulation. 

In the field of material mechanics, we note the modelling of nonlinear physical processes, as damage and 
fracture. Processes of energy dissipation and consequent softening have been extensively studied, so that one can 
count on a wide range of models already developed. Continuum Damage Mechanics (CDM) deals with the load 
carrying capacity of solids whose material is damaged due to the presence of micro-cracks and micro-voids. CDM 
was originally conceived by Kachanov [8], to analyze uniaxial creeping of metals subjected to high-order 
temperatures. Several authors studied and developed models related to CDM. Lemaitre and colleagues [9-10] 
contributed significantly to the field. In this work, we use the model of Marigo [11], who presented a scalar 
isotropic model for brittle and quasi-brittle materials. The first applications of BEM to damage mechanics 
reported in the literature are Herding & Kuhn [12] and Garcia et al [13]. Recently, we can cite the works of 
Sladek et al. [14], Botta et al. [15] and Benallal et al. [16]. These works include non-local formulations to treat 
strain localization phenomena and associated numerical instabilities. Some aspects on the numerical analysis of 
porous media experiencing damage are found in Cheng & Dusseault [17] and Selvadurai [18]. 

Due to the increasing complexity of models developed for engineering problems, robust numerical models 
capable to provide accurate results with the least possible computational effort are looked for. In this scenario, 
BEM appears as an interesting choice for obtaining numerical solutions in various engineering applications. 

In this paper, a non-linear set of transient BEM equations is developed, based on Betti’s reciprocity theorem, 
to deals with isotropic-damaged porous media. The description of porous solid is done in a Lagrangean approach. 
Marigo’s damage model is applied with a local evaluation of the thermodynamic force associated to damage. 

Regarding the BEM numerical procedure, the integration over boundary elements is evaluated by using a 
numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry 
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out the relevant domain integrals. A Newton-Raphson procedure is applied to solve the non-linear system, with a 
consistent tangent operator. This is done in the light of the procedure introduced by Simo and Taylor [19] for 
finite elements. 

Governing Equations 
The following free energy potential is considered, 
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where the constants M  and b  represent the Biot modulus and Biot coefficient of effective stress, respectively. In 
the case of saturated media, filled by an incompressible fluid, the Biot coefficient assumes unit value. In full-
saturated conditions, the lagrangian porosity �  measures the variation of fluid content per unit volume of porous 

material. The bulk density is described by � . d
jklmE  represents the isotropic drained elastic tensor. jk�  denotes 

the strains in the solid skeleton. Assuming isotropic case, the damage is represented by the scalar-valued internal 
variable D , which defines the internal state of the material, taking values between zero (sound material) and one 
(complete degradation). The initial porosity field is indicated by �� . 

The derivatives of free energy potential with respect to the internal variables lead to the associate variables, 
that are the total stress jk� , the pore-pressure p  and the thermodynamical force Y conjugated to D . 
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Using equations (2) and (3) the total stress tensor is written as 

� �jk jklm lm jklm lm 0 jkE DE p pb� 
 � 	 � 	 	 �  (5) 

from which it is seen that it includes three different contributions, being the first one the effective stress ef
jk� , 

acting on the grains of the solid matrix, and the second one the stress due to damage d
jk� . 

In addition to the state laws given above, it is necessary to define a damage criterion. In Marigo's model it 
takes the form: 

( ,D) (D)
 	 �F Y Y  (6) 

The term (D)�  represents the maximum value of Y reached during the loading history, and is adopted here in its 
simple linear form 0(D) D� 
 �Y A , where parameters 0Y  and A  are material dependent. The damage evolution 

becomes from the consistency condition ( ,D) 0
�F Y , resulting in: 
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D 
� �Y A  (7) 

The fluid flow through the porous space can be described by Darcy's law. Assuming a laminar flow, this law 
considers a linear relationship between the flow rate and the pressure gradient: 

k ,k kk p� �� 
 	 �� 
f  (8) 

In this simple version, it is assumed isotropic, with k k


�

 the scalar permeability coefficient, defined as a 

function of the intrinsic permeability k  and the fluid viscosity � . The fluid body force is represented by kf . 
The fluid mass balance equation, assuming no external fluid sources, is written as: 

� � � �f
f k ,k

d
0

dt
� � 


� �
�  (9) 

The following equilibrium and compatibility relations, added to appropriate boundary conditions complete the 
set of equations that describes the poro-elasto-damage problem, in quasi-static conditions: 

jk,k jb 0� � 
  (10) 

� �jk k, j j,k
1 u u
2

� 
 �  (11) 

Integral Equations 
In order to couple the behaviour of the solid and fluid phases, two sets of integral equations are derived. The first 
one is related to the elastostatics problem, for which a pore-pressure field is distributed over the domain, while the 
other equation refers to the pore-pressure itself. 

In order to obtain the integral equations one can use Betti’s reciprocity theorem, which can only be applied to 
elastic fields. Thus, in the case of elasticity, assuming the effective stress definition: 
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where s  and q  represent the source and field points, and *X is the fundamental solution for the variable X , from 
now on. The direction i  refers to the application of the unit load on the source point into the fundamental domain. 
In elastostatics, one applies the well-known Kelvin fundamental solutions. By applying the divergence theorem to 
equation (13), and considering the transient nature of the problem, one obtains the following integral equation for 
displacements on the boundary points S: 
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The stresses at internal points are obtained by differentiating equation (14), now written for internal points, and 
applying Hooke's law, which leads to 
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where ijkS , ijkD  and ijklR  are the derivatives of the fundamental solutions, and ijTL  are the free-terms coming 
from differentiation. 

The integral equation for the pore-pressure can be obtained in a similar way, defining the proportional flow 
vector pr

k k k ,kk kpf� 
 � 	 
 	  in order to apply Betti's Theorem 
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from what the divergence theorem leads to write: 
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� indicates the outward normal direction to the boundary. Assuming k,k� 
 	 ��  (see (9)) and, neglecting the 

body force kf ,we get: 
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For convenience, it is possible to take the derivative (q)��  from (3), so that the pore-pressure is given by the 
following equation: 
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Considering a finite time step n n+1 nt = t t� 	  and a corresponding variable increment n+1 nX = X X� 	 , one 
can integrate equations (14), (15) and (19) along the interval t� , leading to the following set of equations, in 
terms of the variable increments: 
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Algebraic Equations and Solution Procedure 
The numerical solution of the boundary value problem requires both the time and space discretizations. It should 
represent the system of equations in a discrete way along the linear boundary elements and into the triangular 
domain cells in order to obtain the approximate values of the variables of interest. One defines the number of 
boundary points by nN and the number of internal nodes by iN . The appropriate discretization of the integrals on 
(20)-(22), followed by some algebraic manipulations inherent to BEM, leads to the following system: 

� ��  � ��  � ��  � �� ��  dH u G T Q Q IK pb� 
 � � �� � �  (23) 

�  � ��  � ��  � ��  � �� ��  dHL u GL T QL QL IK pb�� 
 	 � � � � �� � �  (24) 

�  �  �  �  � ��  (i) (i) (i) (i) (i) (i)
1p HP p GP V QP p QP Tr

t t
b

M
� � � � � � � �
 	 � � � � ��� 
 � 
 � 
 � 
� �

 (25) 

The subscript (i)  refers to internal points. The influence matrices represented by � �  come from the integration 

of the fundamental solutions and its derivatives. The variables represented by �   are prescribed or unknown 
variables along the boundary or over the domain. After some arrangements, the system given above is written as 
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where �  Ns�  and �  Np  are vectors containing prescribed values and � �E  the drained elastic tensor. Finally, 

arranging the two equations in a single one, in terms of �  ��  only, leads to 

�  � � �  �  dE Ns Np QS� � � ��� 
 � � � ��� 
 � 
  (28) 

which contains the new terms: 
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Due to the presence of correction terms associated with damage, equation (28) is non-linear at each time 
increment, and can be written: 
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The solution is carried out by a Newton-Raphson’s scheme. An iterative process is required to reach equilibrium. 
Then, from iteration i , the next try i 1�  is given by �  �  �  i 1 i i

n n n
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 �� � ��� . The correction �  i

n��� is 

calculated from the first term of the Taylor expansion, as follows: 
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where the derivative 
�  � ��  
�  

i
n
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 is the consistent tangent operator. 

Numerical Example 
To illustrate the BEM formulation applied to poro-elastic media we first analyze the consolidation of a semi-
infinite plane, under a strip uniform load of width 2a . Due to the symmetry, we consider only the half-plane, as 
shown in Fig. 1. The load is applied instantaneously at t 0
 . An analytical solution was proposed by Schiffman 
et al. [20], in terms of an adjusted time factor ! , and the dimensionless values of pore-pressure, total and 

effective stresses: 
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Figure 1. Problem definition and internal cells mesh adopted 

 
From Fig. 2 one can observe the response on the point O(0,a/2) (see Fig.1). The results obtained with the 

proposed model and the ones presented in [20] are compared. In the early-time response, just after the loading, 
fluid flow is slow, inducing the highest pore-pressures. One should note the occurrence of Mandel-Cryer effect, 
which is characterized in this plane strain consolidation by an increase in the pore-pressure at early times 
compared to the initial pore-pressure. With time, the drainage process leads to an increase in effective stress field, 
accompanied by a proportional pore-pressure reduction, until its vanishing. 
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Figure 2. Normalized pore-pressures, total and effective stresses 

 
Poro-elastic column subject to damage. Let us consider another consolidation case. It consists on a soil layer of 
thickness equal to 10m, resting on a rigid impermeable base. A constant unit load is progressively applied on the 
top surface of the layer over 1000s, under drained conditions (Fig. 3). The response is compared for the poro-
elastic and elasto-damage behaviours, besides the coupled response. The results presented correspond to the 
bottom of the layer. The material parameters, assuming the layer made of Berea Sandstone, are defined as follows 
(Detournay & Cheng [21]): E 14400
 MPa, 0.2"
 , 0.79
b , 12250
M MPa, 131.9 x 10k 	
 m2 and 

9	� 
%� MPa·s. For the damage model, we adopt the parameters 7
0 10Y 	
 MPa and 52 x 10A 	
 MPa. The 

analysis involving damage are presented up to the limit load. 
 

draining surface

 
Figure 3. Problem definition and internal cells mesh adopted 

 
The strain behaves in a similar way for the poro-elastic and the elastic materials, increasing almost linearly up 

to the total time (Fig. 4). The difference between the two curves results from the fluid phase flow. Taking into 
account the damage, the contribution of the fluid is also significant, leading to a delay in the damage process (Fig. 
5b). 
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Figure 4. Strain evolution for all the considered behaviors 

 
In Fig. 5a, it can be observed that the elasto-damaged material has an intermediary behaviour between the 

porous media and the damaged porous media. In addition, it reaches the maximum load before the poro-elasto-
damaged material, with a higher deterioration level (Fig. 5b). 

It is interesting to note the augmentation of the pore-pressure in the presence of damage, beyond the threshold 
defined on the simple poro-elastic case. 

 

           
Figure 5. a) Effective stress field evolution b) Damage parameter evolution 

 
On the numerical stability, the presented model shown to be almost independent of the time step adopted, 

having been tested values from 0,001 up to 10s, without any observable changes on the response. 
It should be noted that, in the presence of damage, the response is represented only up to around 300s, which 

corresponds to the limit load as we have a load control. Besides, strain softening in the constitutive law causes 
localization phenomena, which leads to physically meaningless results and imposes difficulties on the numerical 
solution, requiring the use of regularization techniques. 
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Figure 6. Pore-pressure evolution 

 
 

Conclusions and Perspectives 
A BEM formulation to poro-elasto-damaged material was presented. The model has shown a reasonable level of 
coupling between the damage and the fluid seepage. The literature, on theoretical and experimental levels, poses 
several interesting questions, among which the variations that the damage state imposes on the poro-elastic 
parameters. Some developments in this way are being made in the presented model, in order to improve the solid-
fluid interaction. 
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