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ABSTRACT: Converging evidence suggest that the medial prefrontal cortex (MPFC) is involved in 
feedback categorization, performance monitoring and task monitoring, and may contribute to the 
online regulation of reinforcement learning (RL) parameters that would affect decision-making 
processes in the lateral prefrontal cortex (LPFC). Previous neurophysiological experiments have 
shown MPFC activities encoding error likelihood, uncertainty, reward volatility as well as neural 
responses categorizing different types of feedback, for instance distinguishing between choice errors 
and execution errors. Rushworth and colleagues have proposed that the involvement of MPFC in 
tracking the volatility of the task could contribute to the regulation of one of RL parameters called 
the learning rate. We extend this hypothesis by proposing that MPFC could contribute to the 
regulation of other RL parameters such as the exploration rate and default action values in case of 
task shifts. Here we analyze the sensitivity to RL parameters of behavioral performance in two 
monkey decision-making tasks, one with a deterministic reward schedule and the other with a 
stochastic one. We show that there exist optimal parameters values specific to each of these tasks, 
that need to be found for optimal performance and that are usually hand-tuned in computational 
models. In contrast, automatic online regulation of these parameters using some heuristics can help 
producing a good, although non-optimal, behavioral performance in each task. We finally describe 
our computational model of MPFC-LPFC interaction used for online regulation of the exploration rate 
and its application to a human-robot interaction scenario. There, unexpected uncertainties are 
introduced by the human introducing cued task changes or by cheating. The model enables the robot 
to autonomously learn to reset exploration in response to such uncertain cues and events. The 
combined results provide concrete evidence specifying how prefrontal cortical subregions may 
cooperate to regulate RL parameters. It also shows how such neurophysiologically inspired 
mechanisms can control advanced robots in the real-world. Finally, the model’s learning mechanisms 
that were challenged in the last robotic scenario provide testable predictions on the way monkeys 
may learn the structure of the task during the pre-training phase of the previous laboratory 
experiments. 

 
 

INTRODUCTION 
The Reinforcement Learning (RL) theory has been widely and successfully used to describe neural 

mechanisms of decision‐making based on action valuation, and on learning of action values based on 
reward prediction and reward prediction errors (Houk et al., 1995; Sutton and Barto, 1998). Its 
extensive use in the computational neuroscience literature is grounded on the observation that 
dopaminergic neurons respond according to a reward prediction error (Schultz et al., 1997), that 
dopamine strongly innervates the prefrontal cortex and striatum and there modifies synaptic 
plasticity (Humphries et al., 2010; Reynolds et al., 2001), and that prefrontal cortical and striatal 
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neurons encode a variety of RL‐consistent information (Daw et al., 2006; Khamassi et al., 2008; 
Samejima et al., 2005; Sul et al., 2010). 

 
However, RL models rely on crucial parameters (e.g. learning rate, exploration rate, temporal 

discount factor) that need to be dynamically tuned to cope with variations in the environment. In 
most computational neuroscience work, experimenters explore the parameters space and find a set 
of parameters which work for a specific task (Chavarriaga et al., 2005; Daw et al., 2005; Frank, 2005; 
Khamassi et al., 2005). In contrast, animals are able to adjust their behavior to many different 
situations, show gradual adjustment of their learning characteristics along familiarization with the 
task (Luksys et al., 2009), and are able to re-explore their environment in response to drastic 
changes. If one postulates that the brain implements RL‐like decision‐making mechanisms, one needs 
to understand how the brain regulates such mechanisms, in other words how it “tunes parameters”. 
Kenji Doya has formalized such principles of regulation of RL parameters in a Meta‐Learning 
theoretical framework, proposing computational solutions to learn which set of parameters is 
appropriate to control learning during a given task (Doya, 2002). Here we argue that accumulating 
evidence suggest that the medial prefrontal cortex might play a key role in detecting task changes 
and variations of the agent’s own performance and in consequently adjusting parameters of learning. 
We illustrate the need for dynamically adjusting RL parameters in two decision-making tasks where 
we previously recorded monkey MPFC activity (Amiez et al., 2006; Quilodran et al., 2008) by 
performing simple simulations of a classic RL algorithm that show that different values of the 
parameters are required to produce optimal performance in different phases of the tasks. Then we 
present the computational model that we have proposed (Khamassi et al., 2011) to describe how 
MPFC may interact with LPFC to regulate decision-making based on the history of feedback and thus 
based on the RL parameters that appear to be required in the present context. We simulate this 
model in the two monkey decision-making tasks to extract concrete predictions on expected 
simultaneous MPFC and LPFC neural activities. We finish by illustrating the functioning of the model 
in a human-robot interaction game to show its performance when coping with real-world 
uncertainties and to make further predictions on how monkeys may learn the structure of the 
studied decision-making tasks during the pre-training stage. 

 

THE MPFC AS A REGULATOR OF DECISION-MAKING 
Prefrontal cortical mechanisms underlying the regulation of decision‐making have been largely 

studied in terms of “cognitive control” (Badre and Wagner, 2004; Botvinick et al., 2001; Mars et al., 
2011; Miller and Cohen, 2001), a high-level of behavioral regulation in new and challenging situations 
where behavioral routines need to be modified or reorganized, and is hypothesized to involve 
interactions between subdivisions of the prefrontal cortex (PFC), especially the medial and lateral 
PFC. 

Within the medial frontal cortex, the anterior cingulate cortex (ACC), and in particular area 24c, 
has an intermediate position between limbic, prefrontal, and premotor systems (Amiez et al., 2005a; 
Paus et al., 2001). ACC neuronal activity tracks task events and encodes reinforcement‐related 
information (Amiez et al., 2005a; Procyk et al., 2001). Muscimol injections in dorsal ACC induce 
strong deficits in finding the best behavioral option in a probabilistic learning task and in shifting 
responses based on reward changes (Amiez et al., 2006; Shima and Tanji, 1998). Dorsal ACC lesions 
also induce failures in integrating reinforcement history to guide future choices (Kennerley et al., 
2006). These data converge toward describing a major role of ACC in integrating reward information 
over time, which is confirmed by single‐unit recordings (Seo and Lee, 2007), and thereby in 
decision‐making based on action‐reward associations. This function contrasts with that of the 
orbitofrontal cortex, which is necessary for stimulus‐reward associations (Rudebeck et al., 2008). 

 
In addition, the ACC certainly has a related function in detecting and valuing unexpected but 

behaviorally relevant events. This notably includes the presence or absence of reward outcomes and 
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failure in action production, and has been largely studied using event‐related potentials in humans 
and unit recordings in monkeys. The modulation of phasic ACC signals by prediction errors, as 
defined in the reinforcement learning framework, supports the existence of a key functional 
relationship with the dopaminergic system (Amiez et al., 2005b; Holroyd and Coles, 2002). In the 
dopamine system, the same cells encode positive and negative reward prediction error (RPE) by a 
phasic increase and a decrease in firing, respectively (Bayer and Glimcher, 2005; Morris et al., 2006; 
Schultz et al., 1997). By contrast, in the ACC, different populations of cells encode positive and 
negative prediction errors, and both types of error result in an increase in firing (Matsumoto et al., 
2007; Quilodran et al., 2008; Sallet et al., 2007). Moreover, ACC neurons are able to discriminate 
choice errors (choice‐related RPE) from execution errors (motor‐related RPE, e.g. break of eye 
fixation; Quilodran et al., 2008). These two error types should be treated differently because they 
lead to different post‐error adaptations. This suggests that while the dopaminergic RPE signal could 
be directly used for adapting action values, ACC RPE signals also relate to a higher level of abstraction 
of information, like feedback categorization. In line with this, Alexander and Brown recently 
proposed that ACC signals unexpected non-occurrences of predicted outcomes (Alexander and 
Brown, 2011). Although their model cannot account for ACC correlates of positive prediction errors – 
putatively signaling unexpected occurrences of non-predicted outcomes – (Matsumoto et al., 2007; 
Quilodran et al., 2008) nor for the implication of ACC in action valuation (MacDonald et al., 2000; 
Kennerley et al., 2006; Rushworth and Behrens, 2008; Seo and Lee, 2008), their model elegantly 
explains a large amount of reported ACC post-feedback activity and highlights its role in detecting 
relevant events for behavioral regulation. 

 
A third important aspect of ACC function was revealed by the discovery of changes in neural 

activity between exploratory and exploitative trials (Procyk et al., 2000; Quilodran et al., 2008), or 
between volatile and stable rewarding schedules (Behrens et al., 2007). Kolling et al. (2012) have 
recently found that ACC encodes the average value of the foraging environment. This suggests a 
more general involvement of ACC in translating results of performance monitoring and task 
monitoring into a regulatory level. 

 
Koechlin and colleagues have proposed that ACC might regulate the level or rate of cognitive 

control in LPFC as a function of motivation based on action cost‐benefit estimations (Kouneiher et al., 
2009). The temporality of activations of the two structures appears consistent with the hypothesis 
that at times of instructive events performance monitoring (mainly ACC) is followed by adjustment in 
control and selection (in LFPC). Temporality was studied both by unit recordings in non‐human 
primates (Johnston et al., 2007), and by EEG studies in human (Silton et al., 2010). The former study 
showed that the effect of task switching appear earlier in ACC than in LFPC (Johnston et al., 2007). 
The EEG study revealed phasic and early non‐selective activations in ACC as opposed to a late LPFC 
activation correlated with performance. However, Silton and colleagues underlined that when task 
relevant information is taken into account, late ACC activity appears to be influenced by earlier 
activation in LPFC (Silton et al., 2010). Data from our laboratory show that after relevant feedback 
leading to adaptation, advanced activation is seen in ACC before activation of LPFC at the population 
level for high gamma power of LFP (Rothé et al., 2011). 

 
Rushworth and colleagues have recently highlighted the presence at the level of ACC activity of 

information relevant to the modulation of one of the reinforcement learning parameters: the 
learning rate α (Behrens et al., 2007). Their study is grounded on theoretical accounts suggesting that 
feedback information from the environment does not always have the same uncertainty and will be 
treated differently dependent on whether the environment is stable or unstable. In unstable and 
constantly changing (‘volatile’) environments, rapid behavioral adaptation is required in response to 
new outcomes, and so a higher learning rate is required. In contrast, the more stable the 
environment the less reward prediction errors should influence future actions. In the latter situation, 
more weight should be attributed to previous outcomes and the learning rate should remain small. 
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These crucial variables of volatility and uncertainty correlate with the BOLD response in the ACC at 
the time of outcomes (Behrens et al., 2007). Experimental controls in these studies allowed these 
signals influencing the learning rate to be identified independently from signals representing the 
prediction error. This suggests that variations in ACC activity reflect the flexible adaptation of 
parameter α (i.e. the learning rate) based on task requirements, and that previous reports of ACC 
activity encoding reward prediction errors might be a consequence of such a meta-learning function 
(Matsumoto et al., 2007; Quilodran et al., 2008). In line with this interpretation, as we mentioned 
above, the RPE-like activities that we have recorded in the ACC appear to participate to a feedback 
categorization process with a high-level of abstraction, and thus encode specific events that are 
relevant for various adaptations in the context of a task (Amiez et al., 2005; Quilodran et al., 2008). 

 
Here we will argue that observed changes between two distinct modes of activity in ACC between 

exploratory and exploitative trials (Procyk et al., 2000; Quilodran et al., 2008) can be modeled by a 
mechanism regulating the exploration parameter β. As we will see, this points out to a general role of 
ACC in dynamically regulating various reinforcement learning parameters based on task events and 
measures of the agent’s own performance. 

 

COMPUTATIONAL PRINCIPLES OF META‐LEARNING 
Reinforcement Learning (RL) is a research field within computer science that studies how an agent 

can appropriately adapt its behavioral policy so as to reach a particular goal in a given environment 
(Sutton and Barto, 1998). Here, we assume this goal to be maximizing the amount of reward 
obtained by the agent. RL methods rely on Markov Decision Processes. This is a mathematical 
framework for studying decision‐making which supposes that the agent is situated in a probabilistic 
or deterministic environment, that it has a certain representation of its state (e.g. its location in the 
environment, the presence of stimuli or rewards, its motivational state), and that future states 
depend on the performance of particular actions in the current state. Thus the objective of the agent 
is to learn the value associated to performance of each possible action a in each possible state s in 
terms of the amount of reward that they provide. Such state-action value or quality is noted Q(s,a). 
In a popular class of RL algorithms called Temporal‐Difference Learning, which has shown strong 
resemblance with dopaminergic signaling (Schultz et al., 1997), the agent iteratively performs actions 
and updates action values based on a Reward‐Prediction Error:  

),(),(max. 11  tttatt asQasQr=             (1) 

where rt is the reward obtained at time t, Q(st-1,at-1) is the value of action at-1 performed in state st-

1 at time t‐1 which lead to the current state st, and “γ.max Q(st ,a)” is the quality  of the new state st, 
that is, the maximal value that can be expected from performing any action a. The latter term is 
weighted by a parameter γ (0 ≤ γ < 1) called the discount factor, which gives the temporal horizon of 
reward expectations. If γ is tuned to a high value, the agent has a behavior oriented towards 
long‐term rewards. If γ is tuned to a value close to 0, the agent focuses on immediate rewards 
(Tanaka et al., 2004; Schweighofer et al., 2007). 

The reward prediction error δt constitutes a reinforcement signal based on the unpredictability of 
rewards (e.g. unpredicted reward will lead to a positive reward prediction error and thus to a 
reinforcement; Sutton and Barto, 1998). Action values are then updated with this reward prediction 
error term:  

   
ttttt α+saQsaQ .,, 1111               (2) 

where α is a second parameter called the learning rate (0 ≤ α ≤ 1). Tuning α will determine 
whether new reinforcements will drastically change the representation of action values (case where 
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α is close to 1), or if instead an action should be repeated several times before its value is 
significantly changed (case where α is close to zero). 

Once action values are updated, an action selection process enables a certain exploration-
exploitation trade‐off: the agent should most of the time select the action with the highest value 
(exploitation) but should also sometimes select other actions (exploration) to possibly gather new 
information, especially when the agent detects that the environment might have changed (Ishii et al., 
2002). This can be done by transforming each action value into a probability of performing the 
associated action a in the considered state s with a Boltzmann softmax equation:  
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,.exp
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            (3) 

where β is a third parameter called the exploration rate ( 0 ≤ β ). Although it is always the case 
that the action with the highest value has a higher probability of being performed, exploration is 
further regulated in the following way: when β is set to a small value, action probabilities are close to 
each other (e.g. flat probability distribution) so that there is a non-null probability of selecting an 
action whose value is not the greatest (exploration). When β is high, the difference between action 
probabilities is increased so that the action with the highest value is almost always selected 
(exploitation). 

Clearly, these equations devoted to action value learning and action selection rely on crucial 
parameters: α, β, γ. Most computational models use fixed parameters, hand‐tuned for a given task or 
problem (Chavarriaga et al., 2005; Daw et al., 2005; Frank et al., 2005; Khamassi et al., 2005). 
However, animals face a variety of tasks and deal with continuously varying conditions. If animal 
learning does rely on RL as suggested (e.g. Luksys et al., 2009; Samejima et al., 2005), there must 
exist some brain mechanisms to decide, in each particular situations, which set of parameters is 
appropriate (e.g. when an animal performs stereotypical behavior in its nest, or repetitive food 
gathering behavior in an habitual place, learning rate and exploration rate should not be the same as 
those used when the animal discovers a new place). Moreover, within a given task or problem, it is 
more efficient to dynamically regulate these parameters, so as to optimize performance (e.g. it is 
appropriate to initially explore more in a new ‘task’ while the rule for obtaining rewards is not yet 
known, to explore less when the rule has been found and the environment is stable, and to 
re‐explore more when a rule change is detected). 

The dynamic regulation of parameters is referred to as meta‐learning by Kenji Doya (Doya, 2002). 
Meta‐learning is a general principle which enables to solve problems of non‐stationary systems in the 
machine learning literature, but the principle does not assume specific methods for the regulation 
itself. We invite readers interested in particular solutions to refer to methods such as ‘ε‐greedy’ 
which chooses the action believed to be best most of the time, but occasionally (with probability ε) 
substitutes a random action (Sutton and Barto, 1998), upper‐confidence bound policies ‘UCB’ which 
selects actions based on their associated reward averages and the number of times they were 
selected so far (Auer et al., 2002), EXP3‐S for Exponential‐weight algorithm for Exploration and 
Exploitation which is also based on a Boltzmann softmax function (Cesa-Bianchi et al., 2006), 
uncertainty‐based methods awarding bonuses to actions whose consequences are uncertain (Daw et 
al., 2006), and reviews of these methods applied to abruptly changing environments (Garivier and 
Moulines, 2008; Hartland et al., 2006). 

Although mathematically different, these methods stand on common principles to regulate action 
selection. Most are based on estimations of the agent’s performance, which we will refer to as 
performance monitoring, and on estimations of the stability of the environment across time or its 
variance when abrupt environmental changes occur, which we will refer to as task monitoring. The 
former employs measures such as the average reward measured with the history of feedback 
obtained by the agent, or the number of times a given action has already been performed. The latter 
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often considers the environment’s uncertainty, which in economic terms refers to the risk (the 
known probability of a given reward source), and the volatility (the variance across time of this risk). 

 

 
Figure 1. Simulation of a meta-learning algorithm. Adapted from (Schweighofer and Doya, 2003). A change in 

the task condition from short-term reward to long-term reward at timestep #200 produces a drop in average 

reward obtained by the agent and thus results in the adaptation of the exploration parameter β.  

 
A simple example of implementation of a meta‐learning algorithm was proposed by Schweighofer 

and Doya (2003) where an agent has to solve a non‐stationary Markov decision task also used in 
human fMRI experiments (Schweighofer et al., 2007; Tanaka et al., 2004). In this task, the agent has 
two possible actions (pressing one of two buttons). The task is decomposed in two conditions: a 
short‐term condition where one button is associated with a small positive reward and the other 
button with small negative reward; a long‐term condition such that a button with small negative 
rewards has to be pressed on some steps in order to obtain much larger positive reward in a 
subsequent step. The authors used a reinforcement learning algorithm where parameters were 
subject to automatic dynamic regulation. The general principle of the algorithm is to operate such 
regulation based on variations in the average reward obtained by the agent. Figure 1 schematizes a 
sample simulation. The agent learned the short‐term condition, starting with a small parameter β 
(i.e. large exploration level), which progressively increased and produced less exploration as long as 
the average reward increased. At mid‐session, the task condition was changed from short‐term 
condition to long‐term condition, resulting in a drop in the average reward obtained by the agent. As 
a consequence, the parameter β varied allowing more randomness in the agent’s actions (due to a 
small β value), thus allowing the agent to quickly discover the new appropriate contingencies of the 
task. After some time, the agent learns the new task condition and converges to a more exploitative 
behaviour (large β value) so as to reduce errors due to exploratory behavior while the environment is 
now known and stable. 

This type of computational process appears suitably robust to account for animal behavioral 
adaptation. The meta‐learning framework has been formalized with neural mechanisms in mind. 
Doya proposed that the level of different neuromodulators in the prefrontal cortex and striatum 
might operate the tuning of specific parameters for learning and action selection (Doya, 2008). We 
will argue below that the meta‐learning framework indeed offers valuable tools to study neural 
mechanisms of decision‐making and learning, especially within the medial and lateral prefrontal 
cortex. This framework offers formal descriptions of the functional biases observed in each structure 
and also provides explanatory principles for their interaction and role in the regulation of behavior. In 
the next paragraph, we describe the computational model of the MPFC-LPFC system that we have 
proposed. Then we simulate it on two particular decision-making tasks on which we previously 
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recorded MPFC activity. We show that dynamically regulating RL parameters during these tasks 
based on some heuristics can produce a higher performance than keeping these parameters fixed 
during the whole task. 

 

METHODS: COMPUTATIONAL MODEL 
In (Khamassi et al., 2011) we have proposed a neurocomputational model for the interactions 
between MPFC and LPFC involved in behavioural regulation during probabilistic and deterministic 
reinforcement learning tasks performed by monkeys (Figure 2). The model largely relies on 
reinforcement learning principles allowing an agent to adapt its behavioral policy by trial-and-error 
so as to maximize reward (Sutton and Barto, 1998). Based on the greater anatomical projections of 
the dopaminergic system to MPFC than to LPFC (Fluxe et al., 1974) and based on previous 
neurophysiological recordings, we made the assumption that action values are learned and stored in 
the MPFC through dopaminergic input (Amiez et al., 2005; Holroyd and Cole, 2002; Kennerley et al., 
2006; Matsumoto et al., 2007; Rushworth et al., 2007) – although this does not exclude that these 
values are learned and stabilized in conjunction with the striatum (Samejima et al., 2005) through 
cortico-basal loops (Alexander et al., 1990). These values are transmitted to the LPFC which selects 
the action to perform with a certain exploration-exploitation trade-off determined by the current 
setting of the β parameter (Equation 3).  

 

 
 Figure 2. Computational model. Visual input (e.g. targets seen on a screen or objects on a table) is sent to the 
Posterior Parietal Cortex (PPC). The Anterior Cingulate Cortex (ACC) stores and updates the action value 
associated with choosing each possible object. When a reward is received, a reinforcement learning signal is 
computed in the Ventral Tegmental Area (VTA) and is used both to update action values and to compute an 
outcome history in ACC (COR: correct neuron; ERR: error neuron) used to modulate the desired exploration 
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level β*. Action values are sent to the Lateral Prefrontal Cortex (LPFC) which performs action selection. A 
winner-take-all ensures a single action to be executed at each moment. This is performed in the cortico-basal 
ganglia loop consisting of Striatum, Substantia Nigra Reticulata (SNr) and Thalamus (Thal) until the Premotor 
Cortex (PMC). Finally, the output of the PMC is used to command the robot and as an efferent copy of the 
chosen action sent to ACC. 

 
In addition, the model keeps track of the agent’s performance and the variability of the 

environment to adjust behavioral parameters. Thus the MPFC component monitors positive and 
negative feedback (Holroyd and Coles, 2002; Brown and Braver, 2005; Sallet et al., 2007; Quilodran 
et al., 2008) and encodes the outcome history (Seo and Lee, 2007). Thus, in addition to the projection 
of dopaminergic neurons to MPFC action values, dopamine signals also influence a set of MPFC 
feedback categorization neurons (Figure 2): error (ERR) neurons respond only when there is a 
negative δ signal; correct (COR) neurons respond only when there is a positive δ signal. COR and ERR 
signals are then used to update a variable encoding the outcome history (β*):  

 

0<tift-  ERR(t)

0tifttCOR
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where η+  and η- are updating rates, and 10 *   . Such a mechanism was inspired by the 

concept of vigilance employed by Dehaene and Changeux (1998) to modulate the activity of 
workspace neurons whose role is to determine the degree of effort in decision-making. As for the 
vigilance which is increased after errors, and decreased after correct trials, the asymmetrical learning 
rates (η+ and η-) enables sharper changes in response to either positive or negative feedback 
depending on the task. In the present model, these parameters have been tuned to capture global 
behavioral properties and changes in reaction times of monkeys’ behavior during a problem-solving 
task (Khamassi et al., 2011): small progressive changes after errors; sharp changes once the correct 
answer is found to promote exploitation. 

 
The adjustment of behavioral parameters based on such outcome history follows meta-learning 

principles (Doya, 2002; Ishii et al., 2002) and is here restricted to the tuning of the β parameter which 
regulates the exploration rate of the agent. Following previous machine learning models, the 
exploration rate β is adjusted based on variations of the average reward (Auer et al., 2002; 
Schweighofer and Doya, 2003) and on the occurrence of uncertain events (Daw et al., 2006; Yu and 
Dayan, 2005). In short, a decrease of the outcome history – denoting a drop of performance – results 
in a decrease of β (more exploration); an increase in the outcome history – denoting an improvement 
in performance – results in an increase of β (more exploitation). The resulting parameter modulates 
action selection within the lateral prefrontal cortex, consistent with its involvement in the 
exploration-exploitation trade-off (Cohen et al., 2007; Daw et al., 2006; Frank et al., 2009). In 
addition, the repetitive occurrence of particular uncertain events that turn out to be systematically 
followed by a drop of performance (e.g., abrupt cued and initially unknown changes in the task 
condition) can be learned as requiring a reset of β to its initial low value β0 (i.e., the model restarts to 
explore each time it detects such events). In order to learn that particular cues or objects require a 
reset of exploration, the model associates so-called “meta-values” to each cue and object involved in 
the task. These meta-values are initialized to zero. Each time the presentation of a cue/object is 
followed by a decrease in the reward average, the corresponding meta-value is decreased according 
to the following equation:  

     t+toMtoM ii .,,   (5) 
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where M(oi,t) is the meta-value associated to cue/object oi at time t, ω is an update rate and θ(t) 

is the estimated reward average at time t. 

When the meta-value associated with any object is below a certain threshold T (empirically fixed 
to require approximately 10 presentations before learning in the robotic simulations presented in the 
third result section), subsequent presentations of this object to the model automatically trigger a 
reset of the exploration level β(t) to its initial value β0; The rest of the time, the exploration level is 
determined by the current outcome history β*(t): 
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where T is the chosen threshold and f(.) is a sigmoid function transforming the outcome history 
(between 0 and 1) into an appropriate exploration level (between 0 and 10). 

 
This part of the model provides a normative way of regulating the exploration level without 

specifying the precise underlying physiological mechanism. Interestingly, although the precise 
molecular and cellular mechanisms in the prefrontal cortex underlying shifts between exploration 
and exploitation are not yet known, there is however accumulating evidence that differential levels 
of activation of dopamine receptors D1 and D2 in the prefrontal cortex may produce distinct states of 
activity: a first state entertaining multiple network representations nearly simultaneously and thus 
permitting “an exploration of the input space”; a second state where the influence of weak inputs on 
PFC networks is shut off so as to stabilize one or a limited set of representations, which would then 
have complete control of PFC output, and would thus promote exploitation (Durstewitz and 
Seamans, 2008). Other models have been proposed to regulate the exploration-exploitation trade-off 
in action selection via a neuromodulation of extrinsic and inhibitory synaptic weights between 
competing neurons in the prefrontal cortex (Krichmar, 2008). A strong common point between these 
two types of models is to produce an alternation between a state with a high entropy in the action 
probability distribution (exploration) and a state with a low entropy in the action probability 
distribution (exploitation), which principle is here abstracted through the use of Boltzmann’s softmax 
function (Equation 3). 

 

RESULTS (I): DETERMINISTIC TASK 
In (Khamassi et al., 2011), this model was first simulated on a deterministic problem solving task 
performed by monkeys (Quilodran et al., 2008) so as to reproduce monkey behavioral performance. 
In this task, 4 targets are presented on a touch screen at each trial. Monkeys have to find by trial-
and-error which target is associated to reward (search phase). Once the correct target is found (first 
rewarded trial of the problem), monkeys have to repeat this choice during 3, 7 or 11 trials (repetition 
phase). Such variability of the duration of the repetition phase was imposed to prevent monkeys 
from expecting the end of this phase and thus from behaving differently. After the end of the last 
repetition trial, a Signal to Change (SC) is presented on the screen which indicates the beginning of a 
new problem: the rewarding target is changed and the animal has to perform a new search. Animals 
have been well pre-trained on this task and analysis of the behavior of 4 monkeys (Khamassi et al., 
2011) shows that they choose the previously rewarded target after less than 20% of SC presentation, 
and rather re-explore other possible targets in more than 80% of the times. 

 
We previously found that our computational model can well reproduce global properties of 

monkey behavior in this task (number of errors, average duration of each phase...). Here we want to 
show that using some metal-learning principles – i.e. employing different exploration parameters βS 
and βR for the search and repetition phases – can produce a better performance on this task than 
employing a single constant exploration parameter for the two phases. To do so, we made 
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simulations of a simple Q-learning model (using Equations 1, 2 and 3 described above) on a sample 
sequence of 286 problems (corresponding to 1724 trials) performed by a monkey and explored the 
ability of combinations of parameters α, βS and βR (with γ=0) to either maximize the likelihood that 
the model makes the rewarded choice at each trial (reward maximization) or maximize the likelihood 
that the model reproduces monkey’s choice at each trial (fit maximization). We tested different 
parameter sets in the following way: 

 

 α: from 0.1 to 1.0 with 0.1 steps, 

 βS: 0, then from exp(-2.3) to exp(5.7) with exp(0.1) steps (i.e. 2990  S ), 

 βR: 0, then from exp(-2.3) to exp(5.7) with exp(0.1) steps (i.e. 2990  R ). 

 
Figure 3 shows the performance for both reward maximization (left) and fit maximization (right) 

obtained by the model as a function of combinations of the two exploration parameters (βS and βR). 
The figure shows that the best performance is obtained with different exploration levels between 

search and repetition: 0100  S  and 10 1010  R . In other words, a low exploration 

parameter βS is required during search (i.e. more exploration), and a higher exploration level is 

required during repetition ( SR   , i.e. more exploitation). In contrast, a model which uses the 

same exploration level during the two phases (βS = βR) would be situated on the diagonal of the 
plotted matrix and would thus not be in the region were reward is maximized. Interestingly, since the 
monkey had been well pre-trained and its behavior was stereotypical and nearly optimal, the 
combination of exploration parameters that maximize the fit is very close to the combination of 
parameters that maximize reward, with a slightly smaller required βS to accurately fit monkey’s 
behavior (Figure 3). 

 

 
Figure 3. Effect of different combinations of parameters on the model’s performance during the 

deterministic task of (Quilodran et al., 2008). (Left) performance (likelihood) of the model in maximizing 
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reward during the sampled problems of the task.  (Right) performance (likelihood) of the model in fitting 

monkey’s choices during the sampled problems of the task. Bottom charts show the % of correct trials 

corresponding to the likelihood (Top charts) obtained with each combination of parameters. 

 
These results illustrate that enabling a dynamic regulation of the exploration parameter β and 

using some heuristics (e.g. using a small β during the search phase, after perceiving the Signal to 
Change, to promote exploration; increasing β after the first rewarded trial to promote exploitation 
during the repetition phase) can be relevant to solve such deterministic decision-making task. In 
addition, our neurocomputational model having been built so as to respect anatomical constraints 
and to reproduce global properties of monkey behavior in this task (Khamassi et al., 2011), we can 
generate a list of experimental predictions that have to be tested by future simultaneous 
neurophysiological recordings of the medial and lateral prefrontal cortex during this task: 

 
1. We should find feedback categorization neurons (Matsumoto et al., 2007; Quilodran et 
al., 2008) and neurons encoding the outcome history (Seo and Lee, 2007) mainly in the 
medial prefrontal cortex (MPFC) which is hypothesized to be involved in performance 
monitoring. 
2. The desired exploration level extracted from the current performance estimation should 
modulate the decision process – putatively through a mechanism similar to the softmax 
function (Equation 3; Krichmar, 2008) – in the lateral prefrontal cortex (LPFC). Thus 
exploration-based modulation should effect only on LPFC action probability neurons and not 
on MPFC action value neurons. In the model, we made the choice to keep original action 
values (that is, not altered by the exploration-based modulation) in the MPFC so as to have 
part of the system properly perform the reinforcement learning algorithm without 
perturbation, so as to ensure convergence. 
3. There should be a higher global spatial selectivity – which reflects the degree to which 
neurons discriminate choices of spatial targets on the touch screen (Procyk and Goldman-
Rakic, 2006) – in LPFC than in MPFC due to the decision-making process based on the 
softmax function (which increases the contrast between action values when β is high). 
4. There should be an increase of spatial selectivity in LPFC but not in MPFC during the 
repetition period. Such increase of spatial selectivity in LPFC neurons in the model is due to 
the higher β parameter used in the softmax function during the repetition phase than during 
the search phase so as to produce correct robust performance during repetition. 

 

RESULTS (II): PROBABILISTIC TASK 
We then tried to generalize the above mentioned model by testing it on a more probabilistically 
rewarded decision-making task developed by (Amiez et al., 2006). In this task monkeys were also 
facing a touch screen and had to find which one of two targets had the best rewarding rate. However, 
in this case, the reward distribution was stochastic rather than deterministic. The reward probabilities 
were as follow: target 'A' was rewarded by 1.2 ml of juice 70% of the trials and by 0.4 ml the rest of 
the time; conversely target 'B' was rewarded 0.4 ml in 70% of the trials and 1.2 ml the last 30% trials 
(Figure 4A). Thus, although each “problem” in this task also comprised a search phase and a 
repetition phase, a single rewarded trial was not sufficient to find out the best target. Monkeys had to 
sample several outcomes for each target before being able to estimate each target’s value. As a 
consequence, there was no sharp change between search and repetition phases but trials were 
categorized as repetition trials a posteriori: the monkey had to choose the same target for five 
consecutive trials followed by selection of the same target for the next five trials or five of the next six 
trials. At the end of the repetition period a new problem started, like in the deterministic version of 
the task. However, if after 50 trials the monkey had not entered the repetition phase, the problem 
was considered as failed, it was aborted and a new problem started. The exact same behavioral 
protocol and behavioral measures were used to evaluate the model's performance in the task. 
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In addition to analyzing the influence of the parameters α and β on the performance of the model, 

we also enabled the model to reset its Q-values at the beginning of each problem, in response to the 
presentation of the Signal to Change, and looked at the influence of different initial Q-values (namely 
‘Qinit’ parameter) on the exploration process. Since the transition from the search phase to the 
repetition phase is not as clear as for the deterministic task, instead of using two separate exploration 
parameters (i.e. βS and βR), we compared a version of the model with a single fixed β and a model 
using the dynamic regulation of β based on measurement of the outcome history β* (Khamassi et al., 
2011; Equations 4-6). Finally, the performance was measured both in terms of the number of trials 
required by the model to find the best target and the optimal target ratio, that is the number of 
successful (non-aborted) problems. 

 

 
Figure 4. Simulation of the model on the probabilistic task of (Amiez et al., 2006). (A-Left) Probability of 

getting a large or small reward when choosing target A or B. (A-Right) Typical problem decomposed in search 

and repetition phases. (B) Compared performance of monkeys and models with and without the meta-learning 



13 
 

mechanism to dynamically regulate the exploration parameter β. The optimal target ratio is the percentage of 

successfully completed problems. (C) Regions of the parameters space that produce optimal performances on 

this task. (D) The performance also depends on the initial Q-values to which targets are reset at the beginning 

of each new problem and which also influence the level of exploration. 

 
A naive test on the stochastic task with the optimal parameters used with the deterministic task 

and a fixed exploration level – that is without the β*-based mechanism for dynamic exploration 
regulation (α = 0.9, β = 5.2, Qinit = 0.4) – elicited a mean number of search trials of 13.3 ± 12.3 with 
optimal-target ratio 87% which represents poor performances compared to monkeys' performances 
(see “Model no- β*” on Figure 4B). The adaptation of the parameters with an exploration rate β 
regulated based on the outcome history (Khamassi et al., 2011) was more successful (see “Model β*” 
on Figure 4B). Roughly, the optimal α is between 0.4 and 0.6, and the optimal Qinit between 0.6 and 
0.8 (Figure 4C). With α = 0.5 and Qinit = 0.6 the mean number of search trial is 5.5 ± 6.2 and the 
optimal-target ratio is 99% which is similar to the monkeys' performances (Amiez et al., 2006). 
Interestingly, optimization of the model in the stochastic task led to a lower learning rate (α = 0.5) 
than optimization of the model in the deterministic task (α = 0.9; Khamassi et al., 2011). This 
illustrates the necessity in probabilistic reward schedules to slowly integrate outcome information 
and to repeat several times rewarded actions before being confident of one’s own behavior (Behrens 
et al., 2007). 

 
In addition, the optimization including the exploration level showed that parameters α and β both 

had relatively comparable effects across performance indicators. α and β described a rather stable 
performance space as long as β was not too small (β > 5) and α was between 0.2 and 0.9 (Figure 4D). 
In the stochastic task, the regulation of β based on the outcome history elicits values close to 10, the 
highest values possible for β in these simulations, hence corresponding to the values where β is 
optimal for this stochastic task. This was in part due to the nature of this task in which only 2 targets 
were available, decreasing the search space. So the best strategy was clearly exploitative. 

 
Further analyses showed that the two indicators of performance had opposite tendencies with 

respect to the initial Q-values. As shown in Figure 4D, low initial action values elicited few optimal-
target choices but short search phases. Conversely, high initial action values induced a high 
percentage of optimal response choices but a too lengthy search period. Thus there appears to be a 
trade-off between minimizing the length of search phase and maximizing the chance to complete the 
problem. An average initial Q-value can balance these two effects so as to have a relatively good 
performance with the two indicators. Further analyses revealed that the initial Q-value is highly 
correlated to the search period length (correlation coefficient is 0.99 with p-value < 10e-14). 

 
These results show the importance of the reset of Q-values when a new problem started in the 

stochastic task. The initial Q-values should not be smaller than the smallest possible reward (0.4), 
otherwise the model persists in selecting the target it chose at the first trial of a problem. Hence, with 
low initial Q-values the strategy was clearly not exploratory and the optimal target was chosen only 
half of the time. However we observed high search phase lengths when the Q-values were reset to 
high values, especially when higher than the highest possible reward (1.2). Because the action values 
were high, they required more trials to converge especially when the learning rate was low. We can 
consider that initial Q-values between the lowest and highest reward possible have more chances to 
elicit good performance than the rest of the parameter space. Interestingly, electrophysiological data 
from the medial prefrontal cortex (MPFC) recorded during this stochastic problem solving task 
showed that neurons in this region encode the 'task value', i.e. the expected value of the most 
rewarded option (0.96 = 0.7*1.2 + 0.3 *0.4; Amiez et al., 2006). The expected value indeed falls 
between the range of values to which the model should be reset for optimal performance. These data 
reinforce the idea that MPFC participates in the extraction of information from the environment to 
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regulate RL parameters, but also that MPFC sets the action values used as reference to initiate 
exploratory behavior. 

 

RESULTS (III): HUMAN-ROBOT INTERACTION GAME 
Finally, in (Khamassi et al., 2011) we tested our neurocomputational model on a robotic platform to 
test its ability to cope with real-world uncertainties (Figure 5-left). Instead of having to choose 
between 4 targets on a touch screen, the iCub humanoid robot had to perform a simple human-robot 
interaction game so as to find, among a set of 4 cubes on a table, which cube had a circle on its 
hidden face (corresponding to the reward). The monkeys visual system was simplified so as to a priori 
recognize four different shapes: the alignment of the cubes corresponding to a GO signal (Figure 5A-
B); the circle corresponding to the reward (Figure 5C); a wooden board which was initially set as a 
neutral object (i.e. null initial meta-value; Figure 5D); and human’s hands on the cubes also initially 
set as neutral (Figure 5F). Since we focused on the dynamic regulation of decision-making without 
taking into account motor control aspects, the robot simply had to point out the chosen cube and the 
human then grasped and flipped the cube so as to show the robot its hidden face. 

 
The first interesting result is that the neurocomputational model enabled the robot to cope with 

the intrinsic perceptual uncertainty generated by such type of human-robot interaction: if it failed to 
perceive the outcome of a trial due to the human’s movements or due to an inability to recognize a 
shape, the robot would simply adapt its choice with reinforcement learning processes until finding 
the correct cube; if the robot had not found the circle after having chosen each possible cube, it 
would simply continue to explore until finding it; if the robot had mistakenly recognized a circle under 
the wrong cube, it would simply choose it again, recognize that it’s an error, and then continue to 
explore other cubes (Khamassi et al., 2011). 

 
 

 
Figure 5. Human-robot interaction scenario used to test the ability of the model to cope with real-world 

uncertainties. (Left) The model is tested on the iCub humanoid robot that has to learn to choose the rewarding 

cube among a set on a table. (Right) Illustration of the visual perceptions of the robot during different task 

events. The alignment of the cubes indicates a GO signal. The circle under the correct cube is the rewarding 

signal. The wooden board and the human’s hands on the cubes are initially set as neutral signals to which the 

model will progressively learn to associate a reset of exploration. 

 
 
The second experiment that we did was to use the initially neutral objects as ‘Signals to Change’ 

(SC) similar to the previous monkey tasks: each time they are presented, the rewarding cube’s 
location is changed. More precisely, the wooden board is used to hide the cubes while the human 
shuffles the cubes; the human’s hands on the cubes were used to represent some sort of “cheating” 
behavior by the human. While in the previous experiments the model and the monkeys knew a priori 
that a particular signal SC (i.e. a circle shown on the touch screen) was associated with a change in 
the task condition, and thus a shift in the rewarded target, here we wanted the model to 
autonomously learn that some cues are always followed by errors and thus should be associated to 
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an environmental change that requires a new exploration. This learning process was intended to 
propose a hypothetical mechanism by which monkeys could learn the structure of the previous tasks 
during their pre-training phases. To do so, null meta-values were initially associated to each 
perceivable shape, and each time the presentation of one shape was followed by a drop in the 
average reward, the model would decrease the corresponding meta-value (Equation 5). If this is 
consistently repeated for a given shape, its meta-value will decrease below a certain threshold which 
would subsequently trigger a new exploration phase each time the shape is perceived again 
(Equation 6; Khamassi et al., 2011). 

 
With this principle, the robot learned that presentation of the board was always followed by a 

drop in the average reward. Thus the board acquired a negative meta-value and the robot 
systematically shifted its behavior and restarted to explore each time the board appeared again. 
Interestingly, such learning process led to an improvement of the performance of the robot. During 
the second part of each game, the robot made fewer errors on average during search phases, and 
required fewer trials to find the correct cube. Concretely, before the exploration reset was learned, in 
65 problems initiated by a board presentation, the robot took on average 3.5 trials to find the correct 
cube. After the exploration reset was learned for the wooden board, in 36 problems initiated by a 
board presentation, the robot took on average 2.2 trials to find the correct cube. The difference is 
statistically significant (Kruskal-Wallis test, p < 0.001). 

 
Such meta-learning mechanism constitutes a prediction on the way monkeys may learn to react to 

the Signal to Change (SC) during the pre-training phases of the previous problem solving-tasks. Future 
recordings and analyses of monkeys’ behavior during pre-training should reveal whether they indeed 
learn to correctly repeat the rewarded choice before learning to re-explore each time the SC is 
presented, or whether it is the opposite. 

CONCLUSIONS 
Accumulating evidence suggest that the frontal cortex could contribute to flexible goal-directed 
behaviors and to learning based on feedback obtained from the environment (Mars et al., 2011; 
Miller and Cohen, 2001). Recent electrophysiological findings suggest a specialization of the frontal 
cortex where the medial prefrontal cortex (MPFC) monitors performance to modulate decision-
making in the lateral prefrontal cortex (LPFC) (Matsumoto et al., 2007; Procyk et al., 2000; Seo and 
Lee, 2009). Several computational models have tackled this specialization, either by considering that 
MPFC monitors conflict between competing actions to increase the gain in the LPFC (Botvinick et al., 
2001), proposing that MPFC computes the current error-likelihood (Brown and Braver, 2005), or 
proposing that MPFC detect salient unpredicted events relevant for behavioral adaptation (Alexander 
and Brown, 2011). We extended these lines of argument by proposing a computational model 
describing MPFC function in terms of meta-learning (Doya, 2002). The MPFC could be generally 
involved in monitoring performance relative to the current environment's properties so as to tune 
parameters of reinforcement learning and action selection. Consistently with this proposition, 
Rushworth and colleagues have recently shown that the MPFC in humans is important to track the 
environment's volatility (variations in the reward rate) and adapt subsequent behavior (Behrens et 
al., 2007). 

 
The model synthesizes a wide range of anatomical and physiological data concerning the MPFC-

LPFC system (Khamassi et al., 2011). In addition, certain aspects of the neural activity produced by 
the model during performance of the tasks resembles previously reported MPFC neural patterns that 
where not a priori built into the model (Procyk et al., 2000; Quilodran et al., 2008). Specifically, like 
neurons in the MPFC, in the model MPFC feedback categorization neurons responded more to the 
first correct trial and not to subsequent correct trials, a consequence of the high learning rate suitable 
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for the deterministic task. This provides a functional explanation for these observations. Moreover, 
detailed analyses of the model’s activity properties during simulations provide testable predictions on 
the proportion of neurons in MPFC and LPFC that should carry information related to different 
variables in the model, or that should vary their spatial selectivity between search and repetition 
phases. In the future we will test hypotheses emerging from this model on simultaneously recorded 
MPFC and LPFC activities during such decision-making tasks. 

 
The work presented here also illustrated the robustness of biological hypotheses implemented in 

this model by demonstrating that it could allow a robot to solve similar tasks in the real-world. 
Comparison of simulated versus physical interaction of the robot with the environment showed that 
real-world performance produced unexpected uncertainties that the robot had to accommodate (e.g. 
obstructing vision of an object with its arm and thus failing to perceive it, or perceiving a feature in 
the scene which looked like a known object but was not). The neuro-inspired model provided 
learning abilities that could be suboptimal in a given task but which enabled the robot to adapt to 
such kind of uncertainties in each of the experiments. Besides, the model enabled the robot to show 
efficient behavioral adaptation during human-robot interaction and to successfully adapt to 
unexpected uncertainty introduced by the human (e.g. cheating). The robot could also learn that new 
objects introduced by the human could be associated with changes in the task condition. This was 
achieved by learning meta-values associated with different objects. These meta-values could either 
be reinforced or depreciated depending on variations in the average reward that followed 
presentation of these objects. The object which was used to hide cubes on the table while the human 
changed the position of the reward was learned to have a negative meta-value and triggered a new 
behavioral exploration by the robot after learning. Such meta-learning processes may explain the way 
monkeys learn the significance of the Signal to Change during the pre-training phase of the two 
studied laboratory experiments. In future work, we will analyze such pre-training behavioral data and 
test whether the model can explain the evolution of monkey behavioral performance along such 
process.  

 
Such kind of pluridisciplinary approach can provide tools both for a better understanding of neural 

mechanisms of behavioral adaptation and for the design of artificial systems that can autonomously 
extract regularities from the environment and interpret various types of feedback (rewards, feedback 
from humans) to appropriately adapt their choices.  
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