Spectral approximation of elliptic operators by the Hybrid High-Order method
Victor Calo, Matteo Cicuttin, Quanling Deng, Alexandre Ern

To cite this version:
Victor Calo, Matteo Cicuttin, Quanling Deng, Alexandre Ern. Spectral approximation of elliptic operators by the Hybrid High-Order method. 2018. hal-01628698v2
Spectral approximation of elliptic operators by the Hybrid High-Order method

Victor Calo∗ Matteo Cicuttin† Quanling Deng‡ Alexandre Ern§

Abstract

We study the approximation of the spectrum of a second-order elliptic differential operator by the Hybrid High-Order (HHO) method. The HHO method is formulated using cell and face unknowns which are polynomials of some degree $k \geq 0$. The key idea for the discrete eigenvalue problem is to introduce a discrete operator where the face unknowns have been eliminated. Using the abstract theory of spectral approximation of compact operators in Hilbert spaces, we prove that the eigenvalues converge as h^{2t} and the eigenfunctions as h^s in the H^1-seminorm, where h is the mesh-size, $t \in [s, k+1]$ depends on the smoothness of the eigenfunctions, and $s > \frac{1}{2}$ results from the elliptic regularity theory. The convergence rates for smooth eigenfunctions are thus h^{2k+2} for the eigenvalues and h^{k+1} for the eigenfunctions. Our theoretical findings, which improve recent error estimates for Hybridizable Discontinuous Galerkin (HDG) methods, are verified on various numerical examples including smooth and non-smooth eigenfunctions. Moreover, we observe numerically in one dimension for smooth eigenfunctions that the eigenvalues superconverge as h^{2k+4} for a specific value of the stabilization parameter.

Mathematics Subjects Classification: 65N15, 65N30, 65N35, 35J05

Keywords Hybrid high-order methods, eigenvalue approximation, eigenfunction approximation, spectrum analysis, error analysis

1 Introduction

The Hybrid High-Order (HHO) method has been recently introduced for diffusion problems in [27] and for linear elasticity problems in [26]. The HHO method is formulated by

∗Department of Applied Geology, Western Australian School of Mines, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia; Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, Perth, WA 6152, Australia. E-mail address: victor.calo@curtin.edu.au

†University Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée cedex 2, and INRIA Paris, 75589 Paris, France. E-mail address: matteo.cicuttin@enpc.fr

‡Corresponding author. Curtin Institute for Computation and Department of Applied Geology, Western Australian School of Mines, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia. E-mail address: quanling.deng@curtin.edu.au

§University Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée cedex 2, and INRIA Paris, 75589 Paris, France. E-mail address: alexandre.ern@enpc.fr
introducing cell and face unknowns which are polynomials of some degree \(k \geq 0 \) (some variations in the degree of the cell unknowns are possible; see [17]). The method is then devised from a local reconstruction operator and a (subtle) local stabilization operator in each mesh cell. This leads to a discretization method that supports general meshes (with polyhedral cells and non-matching interfaces). Moreover, when approximating smooth solutions of second-order elliptic source problems, the method delivers error estimates of order \(h^{k+1} \) in the \(H^1 \)-seminorm and of order \(h^{k+2} \) in the \(L^2 \)-norm under full elliptic regularity. Positioning unknowns at the mesh faces is also a natural way to express locally in each mesh cell the balance properties satisfied by the model problem. As shown in [17], the HHO method can be fitted into the family of Hybridizable Discontinuous Galerkin (HDG) methods introduced in [18] (and thus to the Weak Galerkin method [46]) and is also closely related to the nonconforming Virtual Element Method from [5]. The HHO method has undergone a vigorous development over the last few years; we mention, among others, the application to advection-diffusion equations in [24], to the Stokes equations in [28], to the Leray–Lions equations in [23], and to hyperelasticity with finite deformations in [1]. The implementation of HHO methods is described in [16]. As already pointed out in [27, 26], the cell unknowns can be eliminated locally in each mesh cell, leading to a global Schur complement problem with compact stencil in terms of the face unknowns.

The goal of this work is to devise and analyze HHO methods for the discretization of the eigenvalue problem associated with a second-order elliptic differential operator. The key idea is to formulate the discrete eigenvalue problem by letting the mass bilinear form act only on the cell unknowns, whereas the stiffness bilinear form acts, as for the discrete source problem, on both cell and face unknowns. Thus, the first main contribution of this work is to identify the relevant HHO solution operator approximating the exact solution operator. We show that this can be achieved by introducing a purely cell-based operator, where the face unknowns have been eliminated by expressing them in terms of the cell unknowns. Note that the elimination process is reversed with respect to the usual approach for the source problem, where one ends up with a face-based discrete operator. While the present cell-based operator is not needed for actual computations, it plays a central role in the error analysis. Indeed, with this tool in hand, it becomes possible to analyze the approximation error on the eigenvalues and the eigenfunctions by means of the abstract theory of spectral approximation of compact operators in Hilbert spaces following the work of Vainikko [44, 45], Bramble and Osborn [10, 40], Descloux et al. [21, 22], and Babuška and Osborn [6]. The second main contribution of this work is Theorem 4.4 and Corollary 4.6 which establish a convergence of order \(h^{2t} \) for the eigenvalues and of order \(h^t \) for the eigenfunctions in the \(H^1 \)-seminorm, where \(t \in [s, k+1] \) is the smoothness index related to the eigenfunctions and \(s \in (\frac{1}{2}, 1] \) is the smoothness index resulting from the elliptic regularity theory. In the case of smooth eigenfunctions, we have \(t = k+1 \), leading to a convergence of order \(h^{2k+2} \) for the eigenvalues and of order \(h^{k+1} \) for the eigenfunctions in the \(H^1 \)-seminorm. These convergence orders are confirmed by our numerical experiments including both smooth and non-smooth eigenfunctions of the Laplace operator in one and two dimensions. We highlight that these convergence
results are so far lacking for HDG methods (see the discussion in the next paragraph), so that the present work contributes to fill this gap. Finally, the third contribution of this work is the numerical observation of a superconvergence of order h^{2k+4} for the eigenvalues in one dimension whenever the stabilization parameter is chosen to be equal to $(2k + 3)$.

Let us put our results in perspective with the literature on the approximation of elliptic eigenvalue problems by other discretization methods. Following the early work in [43], it is well-known that using H^1-conforming finite elements of degree $k \geq 1$ on simplicial meshes leads to convergence rates of order h^{2k} for the eigenvalues and of order h^k for the eigenfunctions (provided the eigenfunctions are smooth enough). We refer the reader to [8] for a review on the finite element approximation of eigenvalue problems. Similar results were obtained more recently in [3, 32] for discontinuous Galerkin (dG) methods. The analysis of the spectral approximation by mixed and mixed-hybrid methods was started in [14, 38, 37] and expanded in [29, 9]. Hybridization techniques leading to an eigenproblem on the face unknowns were studied in [19] for Raviart–Thomas mixed finite elements; therein, it was also observed that the use of a local post-processing technique improves the accuracy of the computed eigenfunctions (see also [30] for the lowest-order case). The approximation of elliptic eigenvalue problems using the Virtual Element Method (VEM) was studied in [31], where optimal convergence rates were obtained. The spectral approximation of elliptic operators by the HDG method was analyzed in [33], leading to a convergence of order h^{2k+1} for the eigenvalues; therein, a non-trivial post-processing using a Rayleigh quotient was also examined numerically leading to an improved convergence of order h^{2k+2} for $k \geq 1$. In contrast, the HHO approximation directly delivers a provable convergence of order h^{2k+2} even for $k = 0$. Finally, let us mention the recent work in [41, 20, 13] which studies numerically the optimally blended quadrature rules [2] for the isogeometric analysis [35] of the Laplace eigenvalue problem and reports superconvergence of order h^{2k+2} for the eigenvalue errors while maintaining optimal convergence of orders h^k and h^{k+1} for the eigenfunction errors in the H^1-seminorm and in the L^2-norm, respectively.

The rest of this paper is organized as follows. Section 2 presents the second-order elliptic eigenvalue problem and briefly recalls the main abstract results we are going to use concerning the spectral approximation of compact operators in Hilbert spaces. Section 3 deals with the HHO discretization, first of the source problem and then of the eigenvalue problem. The algebraic realization of both problems is also presented. Section 3 additionally identifies the relevant notion of discrete solution operator for HHO methods and outlines the error analysis for the HHO discretization of the source problem. This analysis is based on the results of [27], but we handle the case where the exact solution does not have full regularity. Section 4 is concerned with the error analysis for the HHO discretization of the eigenvalue problem and contains our main results. Section 5 presents our numerical examples. Finally, some concluding remarks are collected in Section 6.
2 Functional setting

In this section, we present the second-order elliptic eigenvalue problem, and briefly recall the main abstract results on the approximation of the spectrum of compact operators in Hilbert spaces.

2.1 Problem statement

We consider the following second-order elliptic eigenvalue problem: Find an eigenpair \((\lambda, u)\) with \(\lambda \in \mathbb{R}_{>0}\) and \(u : \Omega \to \mathbb{R}\) such that

\[-\Delta u = \lambda u \quad \text{in } \Omega,\]
\[u = 0 \quad \text{on } \partial \Omega,
\]

(2.1)

where \(\Omega \subset \mathbb{R}^d\), \(d \in \{1, 2, 3\}\), is a bounded open domain with Lipschitz boundary \(\partial \Omega\) and \(\Delta\) is the Laplacian. In weak form, the problem (2.1) reads as follows: Find \((\lambda, u) \in \mathbb{R}_{>0} \times H^1_0(\Omega)\) such that

\[a(u, w) = \lambda b(u, w), \quad \forall w \in H^1_0(\Omega),
\]

(2.2)

with the bilinear forms \(a\) and \(b\) defined on \(H^1_0(\Omega) \times H^1_0(\Omega)\) and \(L^2(\Omega) \times L^2(\Omega)\) as

\[a(v, w) = (\nabla v, \nabla w)_{L^2(\Omega)}, \quad b(v, w) = (v, w)_{L^2(\Omega)},
\]

(2.3)

where \((\cdot, \cdot)_{L^2(\Omega)}\) denotes the inner product in \(L^2(\Omega)\) or in \(L^2(\Omega; \mathbb{R}^d)\). The eigenvalue problem (2.1) has a countably infinite sequence of eigenvalues \((\lambda_j)_{j \geq 1}\) (see, among many others, [12, Sec. 9.8]) such that

\[0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots, \quad \lambda_j \to +\infty,
\]

(2.4)

and an associated sequence of \(L^2\)-orthonormal eigenfunctions \((u_j)_{j \geq 1}\) such that

\[(u_j, u_l)_{L^2(\Omega)} = \delta_{jl}, \quad \forall j, l \geq 1,
\]

(2.5)

with the Kronecker delta defined as \(\delta_{jl} = 1\) when \(j = l\) and zero otherwise.

The source problem associated with the eigenvalue problem (2.2) is as follows: For all \(\phi \in L^2(\Omega)\), find \(u \in H^1_0(\Omega)\) such that

\[a(u, w) = b(\phi, w), \quad \forall w \in H^1_0(\Omega).
\]

(2.6)

The solution operator associated with (2.6) is denoted as \(T : L^2(\Omega) \to L^2(\Omega)\), so that we have \(T(\phi) \in H^1_0(\Omega) \subset L^2(\Omega)\) and

\[a(T(\phi), w) = b(\phi, w), \quad \forall w \in H^1_0(\Omega).
\]

(2.7)

By the Rellich–Kondrachov Theorem (see, e.g., [34, Thm. 1.4.3.2]), \(T\) is compact from \(L^2(\Omega)\) to \(L^2(\Omega)\). Moreover, the elliptic regularity theory (see, e.g., [34, 42, 36]) implies
that there is a real number \(s \in \left(\frac{1}{2}, 1 \right] \) so that \(T \in \mathcal{L}(L^2(\Omega); H^{1+s}(\Omega)) \). The reason for introducing the solution operator \(T \) is that \((\lambda, u) \in \mathbb{R}_{>0} \times H_0^1(\Omega) \) is an eigenpair for (2.2) if and only if \((\mu, u) \in \mathbb{R}_{>0} \times H_0^1(\Omega) \) with \(\mu = \lambda^{-1} \) is an eigenpair of \(T \).

One can also consider the adjoint solution operator \(T^* : L^2(\Omega) \to L^2(\Omega) \) such that, for all \(\psi \in L^2(\Omega) \), \(T^*(\psi) \in H_0^1(\Omega) \) and

\[
a(w, T^*(\psi)) = b(w, \psi), \quad \forall w \in H_0^1(\Omega).
\]

(2.8)

The symmetry of the bilinear forms \(a \) and \(b \) implies that \(T = T^* \); however, allowing more generality, we keep a different notation for the two operators. Since in general we have

\[
(T(\phi), \psi)_{L^2(\Omega)} = \langle T(\phi), T^*(\psi) \rangle = \langle \phi, T^*(\psi) \rangle_{L^2(\Omega)},
\]

(2.9)

we infer that \(T^* \) is the adjoint operator of \(T \), once the duality product is identified with the inner product in \(L^2(\Omega) \). Therefore, in the present symmetric context, the operator \(T \) is selfadjoint.

2.2 Spectral approximation theory for compact operators

Let us now briefly recall the main results we use concerning the spectral approximation of compact operators in Hilbert spaces. Let \(L \) be a Hilbert space with inner product denoted by \(\langle \cdot, \cdot \rangle_L \), and let \(T \in \mathcal{L}(L; L) \); assume that \(T \) is compact. We do not assume for the abstract theory that \(T \) is selfadjoint and we let \(T^* \in \mathcal{L}(L; L) \) denote the adjoint operator of \(T \). Let \(T_n \in \mathcal{L}(L; L) \) be a member of a sequence of compact operators that converges to \(T \) in operator norm, i.e.,

\[
\lim_{n \to +\infty} \| T - T_n \|_{\mathcal{L}(L; L)} = 0,
\]

(2.10)

and let \(T_n^* \in \mathcal{L}(L; L) \) be the adjoint operator of \(T_n \). We want to study how well the eigenvalues and the eigenfunctions of \(T_n \) approximate those of \(T \). Let \(\sigma(T) \) denote the spectrum of the operator \(T \) and let \(\mu \in \sigma(T) \setminus \{0\} \) be a nonzero eigenvalue of \(T \). Let \(\alpha \) be the ascent of \(\mu \), i.e., the smallest integer \(\alpha \) such that \(\ker(\mu I - T) \alpha = \ker(\mu I - T) \alpha+1 \), where \(I \) is the identity operator. Let also

\[
G_\mu = \ker(\mu I - T) \alpha, \quad G_\mu^* = \ker(\mu I - T^*) \alpha,
\]

(2.11)

and \(m = \dim(G_\mu) \) (this integer is called the algebraic multiplicity of \(\mu \); note that \(m \geq \alpha \)).

Theorem 2.1 (Convergence of the eigenvalues). Let \(\mu \in \sigma(T) \setminus \{0\} \). Let \(\alpha \) be the ascent of \(\mu \) and let \(m \) be its algebraic multiplicity. Then there are \(m \) eigenvalues of \(T_n \), denoted as \(\mu_{n,1}, \ldots, \mu_{n,m} \), that converge to \(\mu \) as \(n \to +\infty \). Moreover, letting \(\langle \mu_n \rangle = \frac{1}{m} \sum_{j=1}^m \mu_{n,j} \) denote their arithmetic mean, there is \(C \), depending on \(\mu \) but independent of \(n \), such that

\[
\max_{1 \leq j \leq m} |\mu - \mu_{n,j}|^\alpha + |\mu - \langle \mu_n \rangle| \leq C \left(\sup_{0 \neq \phi \in G_\mu} \frac{|\langle (T - T_n)\phi, \psi \rangle_L|}{\| \phi \|_L \| \psi \|_L} \right. \\
+ \left. \| (T - T_n)\|_{\mathcal{L}(G_\mu; L)} \| (T - T_n)^*\|_{\mathcal{L}(G_\mu^*; L)} \right).
\]

(2.12)
Remark 2.2 (Convergence of the arithmetic mean). Note that (2.12) shows that for \(\alpha \geq 2 \), the arithmetic mean of the eigenvalues has a better convergence rate than each eigenvalue individually.

Theorem 2.3 (Convergence of the eigenfunctions). Let \(\mu \in \sigma(T) \setminus \{0\} \) with ascent \(\alpha \) and algebraic multiplicity \(m \). Let \(\mu_{n,j} \) be an eigenvalue of \(T_n \) that converges to \(\mu \). Let \(w_{n,j} \) be a unit vector in \(\ker(\mu_{n,j} I - T_n)^\ell \) for some positive integer \(\ell \leq \alpha \). Then, for any integer \(r \) with \(\ell \leq r \leq \alpha \), there is a vector \(u_r \in \ker(\mu I - T)^r \subset G_\mu \) such that

\[
\| u_r - w_{n,j} \|_L \leq C \left\| (T - T_n) | u_r \|_{L(G_\mu; L^\ell)}^{\frac{r-\ell+1}{\ell}} \right.,
\]

where \(C \) depends on \(\mu \) but is independent of \(n \).

3 HHO discretization

In this section we present the discrete setting underlying the HHO discretization and then we describe the discretization of the source problem (2.6) and of the eigenvalue problem (2.2) by the HHO method. The HHO discretization of the source problem has been introduced and analyzed in [27]; herein, we complete the error analysis by addressing the case where the solution has minimal elliptic regularity pickup. The devising and analysis of the HHO discretization of the eigenvalue problem is the main subject of this work.

3.1 Discrete setting

Let \(K \) be a partition of \(\Omega \) into non-overlapping mesh cells. A generic mesh cell is denoted by \(K \) and can be a \(d \)-dimensional polytope with planar faces. In what follows, we assume that \(\Omega \) is also a polytope in \(\mathbb{R}^d \) with planar faces, so that the mesh can cover \(\Omega \) exactly. For all \(K \in K \), we let \(n_K \) denote the unit outward vector to \(K \). We say that \(F \subset \mathbb{R}^d \) is a mesh face if it is a subset with nonempty relative interior of some affine hyperplane \(H_F \) and if one of the two following conditions holds true: either there are two distinct mesh cells \(K_1, K_2 \in K \) so that \(F = \partial K_1 \cap \partial K_2 \cap H_F \) and \(F \) is called an interface or there is one mesh cell \(K \in K \) so that \(F = \partial K \cap \partial \Omega \cap H_F \) and \(F \) is called a boundary face. The mesh faces are collected in the set \(F \), interfaces in the set \(F_i \), and boundary faces in the set \(F_b \). We let \(h_S \) denote the diameter of the set \(S \) which can be a mesh cell or a mesh face. We assume that the mesh \(\mathcal{K} \) is a member of a shape-regular polytopal mesh family in the sense specified in [27, 26]. In a nutshell, there is a matching simplicial submesh of \(\mathcal{K} \) that belongs to a shape-regular family of simplicial meshes in the usual sense of Ciarlet [15] and such that each cell \(K \in \mathcal{K} \) (resp., face \(F \in \mathcal{F} \)) can be decomposed in a finite number of sub-cells (resp., sub-faces) with uniformly comparable diameter.

The HHO method is defined locally in each mesh cell \(K \in \mathcal{K} \) from a pair of local unknowns which consist of one polynomial attached to the cell \(K \) and a piecewise polynomial attached to the boundary \(\partial K \), i.e., one polynomial attached to each face \(F \) composing the boundary of \(K \). Let \(k \geq 0 \) be a polynomial degree, and let \(P^k_{d'}(S) \), with
be the linear space composed of real-valued polynomials of total degree at most \(k \) on the \(d' \)-dimensional affine manifold \(S \subset \mathbb{R}^d \) (\(S \) is typically a mesh face or a mesh cell). The local discrete HHO pair is denoted

\[
\hat{v}_K = (v_K,v_{\partial K}) \in \hat{V}_K^k := \mathbb{P}_d^k(K) \times \mathbb{P}_{d-1}(\mathcal{F}_{\partial K}),
\]

where

\[
\mathbb{P}_{d-1}(\mathcal{F}_{\partial K}) = \bigotimes_{F \in \mathcal{F}_{\partial K}} \mathbb{P}_d^k(F),
\]

and \(\mathcal{F}_{\partial K} \) is the collection of all the faces composing the cell boundary \(\partial K \). There is actually some flexibility in the choice of the polynomial degree for the cell unknowns since one can take them to be polynomials of degree \(l \in \{ k-1, k, k+1 \} \) [17]. For simplicity, we only consider the case \(l = k \); all what follows readily extends to the other choices for \(l \). In what follows, we always use hat symbols to indicate discrete HHO pairs.

There are two key ingredients to devise locally the HHO method: a local reconstruction operator and a local stabilization operator. The local reconstruction operator is defined as \(P_{K}^{k+1} : V_K^k \to \mathbb{P}_{d-1}^{k+1}(K) \) such that for all \(\hat{v}_K = (v_K,v_{\partial K}) \in \hat{V}_K^k \), we have

\[
(\nabla P_{K}^{k+1} (\hat{v}_K), \nabla w)_{L^2(K)} = (\nabla v_K, \nabla w)_{L^2(K)} + (v_{\partial K} - v_K, \nabla w \cdot n_K)_{L^2(\partial K)},
\]

for all \(w \in \mathbb{P}_d^{k+1}(K) \). The above Neumann problem uniquely defines \(P_{K}^{k+1} (\hat{v}_K) \in \mathbb{P}_d^{k+1}(K) \) up to an additive constant which can be specified by additionally requiring that \((P_{K}^{k+1} (\hat{v}_K) - v_K, 1)_{L^2(K)} = 0 \) (this choice is irrelevant in what follows). Concerning stabilization, we define the local operator \(S_{\partial K}^k : \mathcal{V}_K^k \to \mathbb{P}_{d-1}(\mathcal{F}_{\partial K}) \) such that, for all \(\hat{v}_K = (v_K,v_{\partial K}) \in \hat{V}_K^k \), we have

\[
S_{\partial K}^k (\hat{v}_K) = \Pi_{\partial K}^k (v_{\partial K} - P_{K}^{k+1} (\hat{v}_K)) - \Pi_{\partial K}^k (v_K - P_{K}^{k+1} (\hat{v}_K)),
\]

where \(\Pi_{\partial K}^k \) and \(\Pi_{\partial K}^0 \) denote the \(L^2 \)-orthogonal projectors from \(L^1(K) \) onto \(\mathbb{P}_d^k(K) \) and from \(L^1(\partial K) \) onto \(\mathbb{P}_{d-1}(\mathcal{F}_{\partial K}) \), respectively. Equivalently, we have \(S_{\partial K}^k (\hat{v}_K) = \Pi_{\partial K}^k (v_{\partial K} - P_{K}^{k+1} (\hat{v}_K)) \) with \(P_{K}^{k+1} (\hat{v}_K) = v_K + (I - \Pi_{\partial K}^k) (P_{K}^{k+1} (\hat{v}_K)) \), which is [27, Eq. (22)]. Finally, the local HHO bilinear form for the stiffness is such that, for all \(\hat{v}_K = (v_K,v_{\partial K}) \in \hat{V}_K^k \) and all \(\hat{w}_K = (w_K,w_{\partial K}) \in \hat{V}_K^k \), we have

\[
\hat{a}_K(\hat{v}_K,\hat{w}_K) = (\nabla P_{K}^{k+1} (\hat{v}_K), \nabla p_{K}^{k+1} (\hat{w}_K))_{L^2(K)} + (\tau_{\partial K} S_{\partial K}^k (\hat{v}_K), S_{\partial K}^k (\hat{w}_K))_{L^2(\partial K)},
\]

where \(\tau_{\partial K} \) denotes the piecewise constant function on \(\partial K \) such that \(\tau_{\partial K | F} = \eta h_F^{-1} \) for all \(F \in \mathcal{F}_{\partial K} \), and \(\eta > 0 \) is a user-specified positive stabilization parameter (the simplest choice is to set \(\eta = 1 \)).

3.2 HHO discretization of the source problem

To discretize the source problem (2.6) using the HHO method, we consider the following global space of discrete HHO pairs:

\[
\hat{V}_h^k = V_K^k \times V_{K_i}^k, \quad V_K^k = \bigotimes_{K \in \mathcal{K}} \mathbb{P}_d^k(K), \quad V_{K_i}^k = \bigotimes_{F \in \mathcal{F}} \mathbb{P}_{d-1}^k(F).
\]
Here, the subscript h refers to the global mesh-size defined as $h = \max_{K \in \mathcal{K}} h_K$. For a global HHO pair $\hat{v}_h = (v_K, v_F) \in \hat{V}_h^k$ with $v_K \in V_K^k$ and $v_F \in V_F^k$, we denote by $\hat{v}_K = (v_K, v_{0K}) \in \hat{V}_K^k$ the local HHO pair associated with the mesh cell $K \in \mathcal{K}$, and we denote by $v_F \in \mathbb{P}_{d-1}^k(F)$ the component associated with the mesh face $F \in \mathcal{F}$. The homogeneous Dirichlet boundary condition can be embedded into the HHO space by considering the subspaces
\begin{equation}
\hat{V}_{h,0} = V_K^k \times V_F^k, \quad V_F^k := \{ v_F \in V_F^k | v_F = 0, \forall F \in \mathcal{F} \}.
\end{equation}

The HHO discretization of the source problem with $\phi \in L^2(\Omega)$ reads as follows: Find $\tilde{u}_h \in \hat{V}_{h,0}^k$ such that
\begin{equation}
\hat{a}_h(\tilde{u}_h, \hat{v}_h) = b(\phi, w_K), \quad \forall \hat{v}_h = (w_K, w_F) \in \hat{V}_{h,0}^k,
\end{equation}
where
\begin{equation}
\hat{a}_h(\tilde{v}_h, \tilde{w}_h) = \sum_{K \in \mathcal{K}} \hat{a}_K(\tilde{v}_K, \tilde{w}_K), \quad \forall \tilde{v}_h, \tilde{w}_h \in \hat{V}_h.
\end{equation}

The algebraic realization of the discrete source problem (3.8) leads to a symmetric linear system which can be written in the following block form where unknowns attached to the mesh cells are ordered before unknowns attached to the mesh faces:
\begin{equation}
\begin{bmatrix}
A_{KK} & A_{KF} \\
A_{FK} & A_{FF}
\end{bmatrix}
\begin{bmatrix}
U_K \\
U_F
\end{bmatrix}
= \begin{bmatrix}
\phi_K \\
0
\end{bmatrix}.
\end{equation}

The system matrix is positive-definite owing to the coercivity of the bilinear form \hat{a}_h; see (3.25) below. A computationally-effective way to solve the above linear system is to use a Schur complement technique, also known as static condensation, where the cell unknowns are eliminated by expressing them locally in terms of the face unknowns. This elimination is simple since the block-matrix A_{KK} is block-diagonal. The resulting linear system in terms of the face unknowns is
\begin{equation}
K_{FF}U_F = -A_{FK}A_{KK}^{-1}A_{KF}\phi_K,
\end{equation}
with the Schur complement matrix $K_{FF} = A_{FF} - A_{FK}A_{KK}^{-1}A_{KF}$. As shown in [17], the linear system (3.11) is a global transmission problem (in which a given mesh face is locally coupled to the other mesh faces with which it shares a mesh cell) that expresses the equilibration of a suitable flux across all the mesh interfaces.

3.3 HHO discretization of the eigenvalue problem

The HHO discretization of the eigenvalue problem (2.2) consists of finding the discrete eigenpairs $(\lambda_h, \tilde{u}_h) \in \mathbb{R}_{>0} \times \hat{V}_{h,0}^k$ such that
\begin{equation}
\hat{a}_h(\tilde{u}_h, \hat{w}_h) = \lambda_h b(u_K, w_K), \quad \forall \hat{w}_h = (w_K, w_F) \in \hat{V}_{h,0}^k.
\end{equation}
One key idea here is that the mass bilinear form on the right-hand side of (3.12) only involves discrete cell unknowns.
The algebraic realization of (3.12) is the matrix eigenvalue problem

$$
\begin{bmatrix}
A_{KK} & A_{KF} \\
A_{FK} & A_{FF}
\end{bmatrix}
\begin{bmatrix}
U_K \\
U_F
\end{bmatrix}
= \lambda_h
\begin{bmatrix}
B_{KK} & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
U_K \\
U_F
\end{bmatrix}.
$$

(3.13)

Since the face unknowns do not carry any mass, they can be eliminated, leading to the following matrix eigenvalue problem solely in terms of the cell unknowns:

$$
K_{KK}U_K = \lambda_h B_{KK}U_K,
$$

(3.14)

with the Schur complement matrix

$$
K_{KK} = A_{KK} - A_{KF}A_{FF}^{-1}A_{FK}.
$$

Therefore, there are as many discrete eigenpairs as there are cell unknowns, i.e., the dimension of the polynomial space \(P^k_d \) times the number of mesh cells.

3.4 HHO solution operators

We now introduce the key operators that play a central role in the analysis of the HHO approximation of the eigenvalue problem. To motivate the approach, we observe that for the source problem (3.8), one can consider the cell-face HHO solution operator

$$
\hat{T}_h : L^2(\Omega) \rightarrow \hat{V}_{h,0}^k,
$$

so that

$$
\hat{a}_h(\hat{T}_h(\phi),\hat{w}_h) = b(\phi,w_K), \quad \forall \hat{w}_h = (w_K,w_F) \in \hat{V}_{h,0}^k.
$$

(3.15)

However, this operator is not convenient to analyze the approximation of the eigenvalue problem since it does not map to a subspace of \(L^2(\Omega) \). The key idea is then to introduce a cell HHO solution operator \(T_K : L^2(\Omega) \rightarrow V_k^K \subset L^2(\Omega) \) by mimicking the elimination of the face unknowns presented above at the algebraic level for the eigenvalue problem.

As a first step, we define the operator \(Z_{F,0} : V_k^K \rightarrow V_{F,0}^k \) so that, for all \(v_K \in V_k^K, Z_{F,0}(v_K) \in V_{F,0}^k \) is defined as the unique solution of

$$
\hat{a}_h((v_K,Z_{F,0}(v_K)),(w_K,w_F)) = 0, \quad \forall w_F \in V_{F,0}^k.
$$

(3.16)

To allow for some generality, we also define the operator \(Z_{F,0}^\dagger : V_k^K \rightarrow V_{F,0}^k \) so that

$$
\hat{a}_h((0,w_F),(v_K,Z_{F,0}^\dagger(v_K))) = 0, \quad \forall w_F \in V_{F,0}^k.
$$

(3.17)

In the present setting where the bilinear form \(\hat{a}_h \) is symmetric, the two operators \(Z_{F,0} \) and \(Z_{F,0}^\dagger \) coincide. As a second step, we define the bilinear form \(a_K \) on \(V_k^K \times V_k^K \) such that

$$
a_K(v_K,w_K) = \hat{a}_h((v_K,Z_{F,0}(v_K)),(w_K,Z_{F,0}^\dagger(w_K)));
$$

and introduce the solution operator \(T_K : L^2(\Omega) \rightarrow V_k^K \) so that

$$
a_K(T_K(\phi),w_K) = b(\phi,w_K), \quad \forall w_K \in V_k^K.
$$

(3.19)
Lemma 3.1 (HHO solution operator). The following holds true:

\[
\mathcal{T}_h(\phi) = (T_K(\phi), (Z_{\mathcal{F},0} \circ T_K)(\phi)), \quad \forall \phi \in L^2(\Omega). \tag{3.20}
\]

Proof. Let \(\phi \in L^2(\Omega) \). Let us set \(u_K = T_K(\phi) \) so that \(u_K \in V^k_K \) and \(a_K(u_K, w_K) = b(\phi, w_K) \), for all \(w_K \in V^k_K \), and set \(u_F = (Z_{\mathcal{F},0} \circ T_K)(\phi) = Z_{\mathcal{F},0}(u_K) \) so that \(u_F \in V^k_{\mathcal{F},0} \). Setting \(\hat{u}_h = (u_K, u_F) \in \hat{V}^k_{h,0} \), we need to verify that \(\hat{u}_h \) solves the discrete HHO source problem, i.e.,

\[
\hat{a}_h(\hat{u}_h, \hat{w}_h) = b(\phi, w_K), \quad \forall \hat{w}_h = (w_K, w_F) \in \hat{V}^k_{h,0}.
\]

Considering first a test function in the form \(\hat{w}_h = (w_K, 0) \), we obtain

\[
\hat{a}_h(\hat{u}_h, (w_K, 0)) = \hat{a}_h((u_K, Z_{\mathcal{F},0}(u_K)), (w_K, 0))
\]

\[
= \hat{a}_h((u_K, Z_{\mathcal{F},0}(u_K)), (w_K, 0)) + \hat{a}_h((u_K, Z_{\mathcal{F},0}(u_K)), (0, Z^T_{\mathcal{F},0}(w_K)))
\]

\[
= \hat{a}_h((u_K, Z_{\mathcal{F},0}(u_K)), (w_K, Z^T_{\mathcal{F},0}(w_K)))
= a_K(u_K, w_K) = b(\phi, w_K),
\]

where we used the definition (3.16) of \(Z_{\mathcal{F},0} \) in the second line and the definition (3.18) of \(a_K \) in the fourth line. Considering now a test function in the form \(\hat{w}_h = (0, w_F) \), we obtain owing to (3.16) that

\[
\hat{a}_h(\hat{u}_h, (0, w_F)) = \hat{a}_h((u_K, Z_{\mathcal{F},0}(u_K)), (0, w_F)) = 0.
\]

This completes the proof. \(\square \)

The cell HHO solution operator \(T_K \) defined in (3.19) is the relevant solution operator for the discrete eigenvalue problem (3.12). Indeed, the eigenpair \((\lambda_h, \hat{u}_h) \in \mathbb{R}_{>0} \times \hat{V}^k_{h,0} \) with \(\hat{u}_h = (u_K, u_F) \in V^k_K \times V^k_{\mathcal{F},0} \) solves (3.12) if and only if \(u_F = Z_{\mathcal{F},0}(u_K) \) and the pair \((\lambda_h, u_K) \in \mathbb{R}_{>0} \times V^k_K \) solves

\[
a_K(u_K, w_K) = \lambda_h b(u_K, w_K), \quad \forall w_K \in V^k_K, \tag{3.21}
\]

that is, if and only if \((\mu_h, u_K) \in \mathbb{R}_{>0} \times V^k_K \) with \(\mu_h = \lambda_h^{-1} \) is an eigenpair of the discrete solution operator \(T_K \).

3.5 Error analysis for the source problem

In this section we briefly outline the analysis of the HHO discretization of the source problem drawing on the ideas introduced in [27]. One difference here is to include the case when the exact solution has a smoothness index \(s \in \left(\frac{1}{2}, k + 2 \right] \) and not just \(s = k + 2 \) (recall that \(s > \frac{1}{2} \) follows from the elliptic regularity theory). In what follows, we use the symbol \(C \) to denote a generic constant (its value can change at each occurrence) that can depend on the mesh regularity, the polynomial degree \(k \) and the domain \(\Omega \), but is independent of the mesh-size \(h \).
Let $K \in \mathcal{K}$ be a mesh cell. We equip the local HHO space \hat{V}_h^K defined in (3.1) with the following seminorm (which is an HHO counterpart of the $H^1(K)$-seminorm)

$$
\| \hat{v}_K \|_{\hat{V}_h^K}^2 = \| \nabla v_K \|_{L^2(K)}^2 + \| \tau_{\partial K}^\frac{1}{2} (v_K - v_{\partial K}) \|_{L^2(\partial K)}^2,
$$

for all $\hat{v}_K = (v_K, v_{\partial K}) \in \hat{V}_h^K$. We observe that $\| \hat{v}_K \|_{\hat{V}_h^K} = 0$ implies that v_K and $v_{\partial K}$ are constant functions taking the same value. We equip the global HHO space \hat{V}_h defined in (3.6) with the seminorm (which is an HHO counterpart of the $H^1(\Omega)$-seminorm)

$$
\| \hat{v}_h \|_{\hat{V}_h}^2 = \sum_{K \in \mathcal{K}} \| \hat{v}_K \|_{\hat{V}_h^K}^2, \quad \forall \hat{v}_h \in \hat{V}_h.
$$

The map $\cdot \mapsto \| \cdot \|_{\hat{V}_h}$ is a norm on the subspace $\hat{V}_{h,0}$ defined in (3.7). [27, Lemma 4] shows that there is a real number $\beta > 0$, uniform with respect to the mesh-size h, such that, for all $K \in \mathcal{K},$

$$
\beta \| \hat{v}_K \|_{\hat{V}_h^K}^2 \leq \hat{a}_K(\hat{v}_K, \hat{v}_K) \leq \beta^{-1} \| \hat{v}_K \|_{\hat{V}_h^K}^2, \quad \forall \hat{v}_K \in \hat{V}_h^K,
$$

and, consequently, given the definition (3.9) of \hat{a}_h, that the following coercivity and boundedness properties hold true:

$$
\hat{a}_h(\hat{v}_h, \hat{v}_h) \geq \beta \| \hat{v}_h \|_{\hat{V}_h}^2, \quad \forall \hat{v}_h \in \hat{V}_h,
$$

$$
\hat{a}_h(\hat{v}_h, \hat{w}_h) \leq \beta^{-1} \| \hat{v}_h \|_{\hat{V}_h} \| \hat{w}_h \|_{\hat{V}_h}, \quad \forall (\hat{v}_h, \hat{w}_h) \in \hat{V}_h \times \hat{V}_h.
$$

Owing to the Lax–Milgram Lemma, we infer that the cell-face HHO solution operator $\hat{T}_h : L^2(\Omega) \to \hat{V}_{h,0}$ introduced in (3.15) is well-defined. For later use in the analysis of the eigenvalue problem, we now establish a stability property for \hat{T}_h.

Lemma 3.2 (Stability of \hat{T}_h). There is C so that

$$
\| \hat{T}_h(\phi) \|_{\hat{V}_h} \leq C \| \phi \|_{L^2(\Omega)}, \quad \forall \phi \in L^2(\Omega).
$$

Proof. Let $\phi \in L^2(\Omega)$ and let us write $\hat{T}_h(\phi) = (u_K, u_F)$ with $u_K \in V^K_\mathcal{K}$ and $u_F \in V^K_{F,0}$. Using the coercivity property (23.5), the definition (3.15) of the solution operator \hat{T}_h, that of the bilinear form b, and the Cauchy–Schwarz inequality leads to

$$
\beta \| \hat{T}_h(\phi) \|_{\hat{V}_h}^2 \leq \hat{a}_h(\hat{T}_h(\phi), \hat{T}_h(\phi)) = b(\phi, u_K) \leq \| \phi \|_{L^2(\Omega)} \| u_K \|_{L^2(\Omega)}.
$$

On the broken polynomial space $V^K_\mathcal{K}$, we can apply the following discrete Poincaré inequality which has been derived in the discontinuous Galerkin context in [4, 11, 25]:

$$
C_{P,\mathcal{K}} \| u_K \|_{L^2(\Omega)} \leq \left(\sum_{K \in \mathcal{K}} \| \nabla u_K \|_{L^2(K)}^2 + \sum_{F \in \mathcal{F}} h_F^{-1} \| u_K \|_{L^2(F)}^2 \right)^{\frac{1}{2}}.
$$
with $C_{\text{P.dG}} > 0$ uniform with respect to the mesh-size h, and where $[u_K]_F$ denotes the jump of u_K across F if F is an interface ($F \in \mathcal{F}^i$) or the value of u_K on F if F is a boundary face ($F \in \mathcal{F}^b$). If $F \in \mathcal{F}^i$, we have $[u_K]_F = u_{K_1}|_F - u_{K_2}|_F$ where K_1, K_2 are the two mesh cells sharing F (the sign of the jump is irrelevant in what follows), and we can therefore write $[u_K]_F = (u_{K_1} - u_{K_2})|_F - (u_{K_2} - u_{K_1})|_F$ where u_F is the component of u_F attached to F. If $F \in \mathcal{F}^b$, we have $[u_K]_F = u_{K_1}|_F$ where K_1 is the unique mesh cell sharing F with $\partial \Omega$, and we can therefore write $[u_K]_F = (u_{K_1} - u_F)|_F$ since $u_F \equiv 0$ (recall that $u_F \in V^L_{\mathcal{F},0}$). Recalling the definition (3.23) of the $\| \cdot \|_{\hat{V}^k_h}$-norm, that of $\tau_{\partial K}$ given just below (3.5), and using the triangle inequality, we infer that

$$
\|u_K\|_{L^2(\Omega)} \leq C\| (u_K, u_F)\|_{\hat{V}^k_h} = C\| \hat{T}_h(\phi)\|_{\hat{V}^k_h}.
$$

Combining this bound with (3.28), we obtain the assertion. \hfill \Box

An important tool in the analysis of HHO methods is the global reduction operator $\hat{I}_h^k : H^1(\Omega) \to \hat{V}^k_h$ defined such that, for all $v \in H^1(\Omega)$,

$$
\hat{I}_h^k(v) = (\Pi^k_K(v), \Pi^k_F(v)) := ((\Pi^k_K(v))_{K \in \mathcal{K}}, (\Pi^k_F(v))_{F \in \mathcal{F}}) \in \hat{V}^k_h, \tag{3.29}
$$

where Π^k_K and Π^k_F denote the L^2-orthogonal projectors onto $\Pi^k_d(K)$ and $\Pi^k_d(F)$, respectively. We also define the local reduction operator $\hat{I}_K^k : H^1(K) \to \hat{V}^k_K$ such that, for all $v \in H^1(K)$,

$$
\hat{I}_K^k(v) = (\Pi^k_K(v), \Pi^k_{\partial K}(v)) = (\Pi^k_K(v), (\Pi^k_F(v))_{F \in \mathcal{F}_{\partial K}}) \in \hat{V}^k_K. \tag{3.30}
$$

Recalling the local reconstruction operator $p^{k+1}_K : \hat{V}^k_K \to \Pi^{k+1}_d(K)$ defined in (3.3), [27, Lemma 3] shows that

$$
e_{K}^{k+1} := p^{k+1}_K \circ \hat{I}_K^k : H^1(K) \to \Pi^{k+1}_d(K), \tag{3.31}
$$

is the elliptic projector, i.e., for all $v \in H^1(K)$, $e_{K}^{k+1}(v)$ is the unique polynomial in $\Pi^{k+1}_d(K)$ such that $(\nabla(e_{K}^{k+1}(v) - v), \nabla w)_{L^2(K)} = 0$ for all $w \in \Pi^{k+1}_d(K)$ and $(e_{K}^{k+1}(v) - v, 1)_{L^2(K)} = 0$. For two functions $v, w \in H^1(K)$, the above orthogonality condition on the gradient implies that

$$(\nabla(e_{K}^{k+1}(v) - v), \nabla(e_{K}^{k+1}(w) - w))_{L^2(K)} = (\nabla v, \nabla w)_{L^2(K)} - (\nabla e_{K}^{k+1}(v), \nabla e_{K}^{k+1}(w))_{L^2(K)}. \tag{3.32}
$$

Lemma 3.3 (Discrete error estimate). There is C such that

$$
\| \hat{T}_h(\phi) - \hat{I}_h^k(T(\phi))\|_{\hat{V}^k_h} \leq C h^s \| T(\phi)\|_{H^{1+s}(\Omega)}, \tag{3.33}
$$

for all $t \in [s, k + 1]$, and all $\phi \in L^2(\Omega)$ such that $T(\phi) \in H^{1+t}(\Omega)$; here, $s > \frac{1}{2}$ is the smoothness index resulting from the elliptic regularity theory.
Proof. Let \(t \in [s, k+1] \), and let \(\phi \in \mathcal{L}^2(\Omega) \) be such that \(T(\phi) \in H^{1+t}(\Omega) \). Proceeding as in the proof of [27, Theorem 8], we infer that

\[
\|T_h(\phi) - \hat{T}_h^k(T(\phi))\|_{V_h^k} \leq C \sup_{\hat{w}_h \in \hat{V}_h^k, \|\hat{w}_h\|_{\hat{V}_h^k} = 1} \|\hat{\delta}_h(\hat{w}_h)\| = C \|\hat{\delta}_h\|_{(\hat{V}_h^k,0)},
\]

with the consistency error \(\hat{\delta}_h(\hat{w}_h) \) such that

\[
\hat{\delta}_h(\hat{w}_h) = \sum_{K \in \mathcal{K}} (\nabla \xi_K \cdot \nabla w_K)_{L^2(K)} + (\nabla \xi_K \cdot n_K, w_{\partial K} - w_K)_{L^2(\partial K)} + (\tau_{\partial K} S_{\hat{\delta}K}^k(\hat{I}_k^h(u)), S_{\hat{\delta}K}^k(\hat{w}_K))_{L^2(\partial K)},
\]

and the shorthand notation \(\xi_K := e_k^{k+1}(u_{\partial K}) - u_{\partial K} \) and \(u = T(\phi) \) (we used \(s > 1/2 \) in writing the second summand on the right-hand side above). Using the Cauchy–Schwarz inequality and recalling the definition of the norm \(\|\hat{w}_h\|_{\hat{V}_h^k} \), we obtain

\[
\frac{1}{2} \frac{\|\hat{\delta}_h\|_{(\hat{V}_h^k,0)}}{\|\hat{w}_h\|_{\hat{V}_h^k}^2} \leq C \left(\sum_{K \in \mathcal{K}} \|\nabla \xi_K\|_{L^2(K)}^2 + h_K \|\nabla \xi_K\|_{L^2(\partial K)}^2 + h_K^{-1} \|S_{\hat{\delta}K}^k(\hat{I}_k^h(u))\|_{L^2(\partial K)}^2 \right)^{1/2}
\]

Recalling the definition (3.4) of the stabilization operator \(S_{\hat{\delta}K}^k \), we obtain that

\[
S_{\hat{\delta}K}^k(\hat{I}_k^h(u)) = \Pi_{\hat{\delta}K}^k(\Pi_{\hat{\delta}K}^k(u) - e_k^{k+1}(u))_{\partial K} - \Pi_{\hat{\delta}K}^k((u - e_k^{k+1}(u)))_{\partial K} = -\Pi_{\hat{\delta}K}^k((\xi_K)_{\partial K}) + \Pi_{\hat{\delta}K}^k(\xi_K)_{\partial K}.
\]

We then have

\[
\|S_{\hat{\delta}K}^k(\hat{I}_k^h(u))\|_{L^2(\partial K)} \leq \|\xi_K\|_{L^2(\partial K)} + \|\Pi_{\hat{\delta}K}^k(\xi_K)\|_{L^2(\partial K)} \leq \|\xi_K\|_{L^2(\partial K)} + Ch_K^{1/2} \|\nabla \xi_K\|_{L^2(K)} \leq C(h_K^{1/2} \|\nabla \xi_K\|_{L^2(K)} + h_K \|\nabla \xi_K\|_{L^2(\partial K)}) \leq Ch_K^{1/2} \|\nabla \xi_K\|_{L^2(K)},
\]

where we used a triangle inequality and the \(L^2 \)-stability of \(\Pi_{\hat{\delta}K}^k \) in the first line, a discrete trace inequality and the \(L^2 \)-stability of \(\Pi_{\hat{\delta}K}^k \) in the second line, a multiplicative trace inequality in the third line, and the Poincaré–Steklov inequality on \(\hat{K} \) in the fourth line (that is, \(\|\xi_K\|_{L^2(\partial K)} \leq Ch_K \|\nabla \xi_K\|_{L^2(K)} \) since \(\xi_K \) has zero mean-value in \(K \) by construction). We conclude that

\[
\|\hat{\delta}_h\|_{(\hat{V}_h^k,0)} \leq C \left(\sum_{K \in \mathcal{K}} \|\nabla \xi_K\|_{L^2(K)}^2 + h_K \|\nabla \xi_K\|_{L^2(\partial K)}^2 \right)^{1/2},
\]

Finally, invoking the approximation properties of the elliptic projector on all the mesh cells leads to the assertion. \(\square \)
4 Error analysis for the eigenvalue problem

The goal of this section is to perform the error analysis of the discrete eigenvalue problem (3.12) by using the abstract theory outlined in Section 2.2 in the Hilbert space $L = L^2(\Omega)$. Let $T, T^* : L^2(\Omega) \to H_0^1(\Omega) \subset L^2(\Omega)$ be the exact solution and adjoint solution operators defined in Section 2.1 ($T = T^*$, i.e., T is selfadjoint, in the present symmetric setting). Let $T_K : L \to V^k_K \subset L$ be the discrete HHO solution operator defined in (3.19). Its adjoint operator $T_K^* : L \to V^k_K \subset L$ is defined so that, for all $\psi \in L$, $T^*_K(\psi) \in V^k_K$ is the unique solution of

$$a_K(w_K, T^*_K(\psi)) = b(w_K, \psi), \quad \forall w_K \in V^k_K. \quad (4.1)$$

Owing to the symmetry of the bilinear forms a_K and b, we have $T_K = T^*_K$ in the present setting, i.e., T_K is selfadjoint. We keep as before a distinct notation to allow for more generality, and we also set $\tilde{T}^1_h : L \to V^k_{h,0}$ so that $\tilde{T}^1_h(\psi) = (T^*_K(\psi), (Z_f,0 \circ T^*_K)(\psi))$ for all $\psi \in L$. Proceeding as in Lemma 3.1, we conclude that

$$\hat{a}_h(\hat{w}_h, \tilde{T}^1_h(\psi)) = b(w_K, \psi), \quad \forall \hat{w}_h = (w_K, w_F) \in \hat{V}^k_{h,0}. \quad (4.2)$$

In the present symmetric setting, we have $\hat{T}_h = \tilde{T}^1_h$ with \hat{T}_h defined in (3.15). Finally, the elliptic regularity theory implies that there is a real number $s \in [\frac{1}{2}, 1]$ so that $T, T^* \in L^s(L^2(\Omega); H^{1+s}(\Omega))$, with operator norm denoted by C_s.

4.1 Preliminary results

To verify that we can apply the abstract theory from Section 2.2, let us show that T_K converges to T in operator norm as the mesh-size h tends to zero, i.e., that (2.10) holds true.

Lemma 4.1 (Bound on $L \times L$). The following holds true:

$$\sup_{(\phi, \psi) \in L \times L} |((T - T_K)(\phi), \psi)_L| \leq Ch^s||\phi||_L ||\psi||_L. \quad (4.3)$$

where $s \in (\frac{1}{2}, 1]$ is the smoothness index associated with the elliptic regularity theory. Consequently, we have $\|T - T_K\|_{L^2(L; L)} \to 0$ as $h \to 0$.

Proof. For all $\phi, \psi \in L$, we have

$$(T - T_K)(\phi, \psi)_L$$

\[
= (T(\phi), \psi)_L - b(T_K(\phi), \psi) \\
= (T(\phi), \psi)_L - a_K(T_K(\phi), T^*_K(\psi)) \\
= (T(\phi), \psi)_L - \hat{a}_h(\hat{T}_h(\phi), \tilde{T}^1_h(\psi)) \\
= (T(\phi) - \Pi^k_K(T(\phi)), \psi)_L + \hat{a}_h(\hat{I}^k_h(T(\phi)) - \hat{T}_h(\phi), \tilde{T}^1_h(\psi)) \\
= (T(\phi) - \Pi^k_K(T(\phi)), \psi)_L + \hat{a}_h(\hat{I}^k_h(T(\phi)) - \hat{T}_h(\phi), \tilde{T}^1_h(\psi)), \quad (4.4)
\]
where we used the definition of the bilinear form b in the first line, the definition (4.1) of T^*_K in the second line, the definition (3.18) of a_K and Lemma 3.1 in the third line, a simple algebraic manipulation in the fourth line, and the property (4.2) and the definition (3.29) of T_h^k in the fifth line. Let us call S_1, S_2 the two summands on the right-hand side of (4.4).

Owing to the elliptic regularity theory and the approximation properties of the projector Π^k_K (with $k \geq 0$), we obtain that

$$|S_1| \leq Ch|T(\phi)|_{H^1(\Omega)}|\psi|_L.$$

Since $|T(\phi)|_{H^1(\Omega)} \leq |T(\phi)|_{H^{1+\tau}(\Omega)} \leq C_s|\phi|_L$, we infer that

$$|S_1| \leq CC_sCh|\phi|_L|\psi|_L.$$

To bound S_2, we use the boundedness property (3.26) of \hat{a}_h followed by the error estimate from Lemma 3.3 (with $t = s$) and the stability property of $T_h^\dagger = \hat{T}_h$ from Lemma 3.2 to infer that

$$|S_2| \leq Ch^s|T(\phi)|_{H^{1+\tau}(\Omega)}|\psi|_L \leq CC_sCh^s|\phi|_L|\psi|_L.$$

Combining the bounds on S_1 and S_2 concludes the proof.

Let $\mu \in \sigma(T) \setminus \{0\}$ with ascent α and algebraic multiplicity m. To quantify the smoothness of the functions in the subspaces G_μ and G^*_μ defined in (2.11), we assume that there is a real number $t \in [s, k + 1]$ and a constant C_t so that

$$|\phi|_{H^{1+t}(\Omega)} + |T(\phi)|_{H^{1+t}(\Omega)} \leq C_t |\phi|_L, \quad \forall \phi \in G_\mu,$$

$$|\psi|_{H^{1+t}(\Omega)} + |T^*(\psi)|_{H^{1+t}(\Omega)} \leq C_t |\psi|_L, \quad \forall \psi \in G^*_\mu. \quad (4.5)$$

Note that t depends on μ, but we just write t instead of t_μ to alleviate the notation. If $t = s$, functions in G_μ and G^*_μ do not provide additional smoothness with respect to that resulting from the elliptic regularity theory. In general, functions in G_μ and G^*_μ are smoother, and one has $t > s$. The case $t = k + 1$ leads to optimal error estimates, see Remark 4.7 below.

Lemma 4.2 (Bound on $G_\mu \times L$ and $L \times G^*_\mu$). The following holds true:

$$\sup_{(\phi, \psi) \in G_\mu \times L} |(T - T_K)(\phi), \psi|_L \leq Ch^t |\phi|_L |\psi|_L, \quad (4.6)$$

where $t \in [s, k + 1]$ is the smoothness index associated with μ. Consequently, we have

$$|(T - T_K)|_{L(G_\mu; L)} \leq Ch^t. \quad (4.7)$$

Similar bounds hold for T^*_K, and in particular, we have $|(T - T_K)^*|_{L(G^*_\mu; L)} \leq Ch^t$.

Proof. We only prove the statement for T_K, and the other proof is similar. Our starting point is (4.4). Owing to the smoothness of the function $T(\phi)$ resulting from (4.5), we infer that

$$|S_1| \leq Ch^{\min(k+1,t+1)}|T(\phi)|_{H^{1+t}(\Omega)}|\psi|_L \leq CC_tCh^{\min(k+1,t+1)}|\phi|_L|\psi|_L.$$

Using similar arguments leads to $|S_2| \leq Ch^t|\phi|_L|\psi|_L$ and since $t \leq \min(k + 1, t + 1)$, the assertion follows.

15
Lemma 4.3 (Bound on $G_\mu \times G_\mu^*$). The following holds true:

\[
\sup_{(\phi, \psi) \in G_\mu \times G_\mu^*} \| ((T - T_k)(\phi), \psi) \|_L \leq C h^{2t} \| \phi \|_L \| \psi \|_L, \tag{4.8}
\]

where $t \in [s, k + 1]$ is the smoothness index associated with μ.

Proof. Our starting point is again (4.4), but we can now derive sharper bounds on the two summands S_1 and S_2 by exploiting the smoothness of both ϕ and ψ. On the one hand, we have

\[
S_1 = (T(\phi) - \Pi_k^*(T(\phi)), \psi)_L = (T(\phi) - \Pi_k^*(T(\phi)), \psi - \Pi_k^*(\psi))_L,
\]

so that

\[
|S_1| \leq C h^{2\min(k+1,t+1)} \| T(\phi) \|_{H^{1+t}(\Omega)} \| \psi \|_{H^{1+t}(\Omega)} \leq C C h^{2\min(k+1,t+1)} \| \phi \|_L \| \psi \|_L,
\]

where we used the smoothness of the functions $T(\phi)$ and ψ resulting from (4.5). On the other hand, we have

\[
S_2 = \hat{a}_h(\hat{I}_h(T(\phi)) - \hat{T}_h(\phi), \hat{T}_h^1(\psi))
\]

\[
= \hat{a}_h(\hat{I}_h(T(\phi)) - \hat{a}_h(\hat{T}_h(\phi), \hat{I}_h(T(\phi)) - \hat{T}_h(\phi), \hat{T}_h^1(\psi) - \hat{I}_h(T^*(\psi)))
\]

\[
= a(T(\phi), T^*(\psi)) - \hat{a}_h(\hat{T}_h(\phi), \hat{I}_h(T^*(\psi)))
\]

\[
+ \hat{a}_h(\hat{I}_h(T(\phi)) - \hat{T}_h(\phi), \hat{T}_h^1(\psi) - \hat{I}_h(T^*(\psi)))
\]

\[
= (\phi - \Pi_k^*(\phi), T^*(\psi) - \Pi_k^*(T^*(\psi)))_L
\]

\[
+ \hat{a}_h(\hat{I}_h(T(\phi)) - \hat{T}_h(\phi), \hat{T}_h^1(\psi) - \hat{I}_h(T^*(\psi)))
\]

where we used simple algebraic manipulations to derive the second and third identities, and the definition of T together with that of \hat{T}_h and of \hat{I}_h to derive the last identity. Let us call $S_{2,1}, S_{2,2}, S_{2,3}$ the three summands on the right-hand side of the above equation. Reasoning as above and invoking the smoothness of the functions ϕ and $T^*(\psi)$ resulting from (4.5), we infer that

\[
|S_{2,1}| \leq C C h^{2\min(k+1,t+1)} \| \phi \|_L \| \psi \|_L.
\]

To bound $S_{2,2}$, we observe that

\[
S_{2,2} = \sum_{K \in \mathcal{K}} (\nabla e^{k+1}_K(T(\phi)), \nabla e^{k+1}(T^*(\psi)))_{L^2(K)} - (\nabla T(\phi), \nabla T^*(\psi))_{L^2(K)}
\]

\[
+ \sum_{K \in \mathcal{K}} (\tau_K S^{k}_\partial K(\hat{I}_h(T(\phi))), S^{k}_\partial K(\hat{I}_h(T^*(\psi))))_{L^2(\partial K)} =: S_{2,2,1} + S_{2,2,2}.
\]
Since e^{k+1}_K is the elliptic projector, the identity (3.32) implies that
\[S_{2,2,1} = \sum_{K \in \mathcal{K}} - (\nabla (T(\phi) - e^{k+1}_K(T(\phi))), \nabla (T^*(\psi) - e^{k+1}_K(T^*(\psi))))_{L^2(K)} \]

Using the Cauchy–Schwarz inequality and the approximation properties of the elliptic projector, we infer that
\[|S_{2,2,1}| \leq C h^{2t} |T(\phi)|_{H^{1+t}(\Omega)} |T^*(\psi)|_{H^{1+t}(\Omega)} \leq C C_i h^{2t} |\phi|_L |\psi|_L. \]

Moreover, reasoning as in the end of the proof of Lemma 3.3, we obtain that
\[|S_{2,2,2}| \leq C h^{2t} |T(\phi)|_{H^{1+t}(\Omega)} |T^*(\psi)|_{H^{1+t}(\Omega)} \leq C C_i h^{2t} |\phi|_L |\psi|_L. \]

Hence, we have
\[|S_{2,2}| \leq C C_i h^{2t} |\phi|_L |\psi|_L. \]

Finally, the bound on $S_{2,3}$ results from the boundedness property (3.26) of \hat{a}_h and the error estimate from Lemma 3.3 since
\[|S_{2,3}| \leq C h^{2t} |T(\phi)|_{H^{1+t}(\Omega)} |T^*(\psi)|_{H^{1+t}(\Omega)} \leq C C_i h^{2t} |\phi|_L |\psi|_L. \]

Collecting the above estimates concludes the proof. \square

4.2 Main results

We can now present our main results. Let $\mu \in \sigma(T) \setminus \{0\}$ with ascent α and algebraic multiplicity m. We focus now on the spectral approximation of selfadjoint operators, so that we have $\alpha = 1$. Owing to the convergence result from Lemma 4.1, there are m eigenvalues of T_K, denoted $\mu_{h,1}, \ldots, \mu_{h,m}$, that converge to μ as $h \to 0$.

Theorem 4.4 (Error estimate on eigenvalues and eigenfunctions in L). Assume that there is $t \in [s,k+1]$ so that the smoothness property (4.5) holds true, where $s > \frac{1}{2}$ is the smoothness index resulting from the elliptic regularity theory. Then there is C, depending on μ (and on the mesh regularity, the polynomial degree k and the domain Ω) but independent of the mesh-size h, such that
\[\max_{1 \leq j \leq m} |\mu - \mu_{h,j}| \leq C h^t. \quad (4.9) \]

Furthermore, let $u_{K,j} \in V^h_K$ be a unit vector in $\ker(\mu_{h,j} I - T_K)$. Then, there is a unit vector $u_j \in \ker(\mu I - T) \subset G_\mu$ such that
\[\|u_j - u_{K,j}\|_L \leq C h^t. \quad (4.10) \]

Proof. Combining the results from Lemma 4.2, and Lemma 4.3 with Theorem 2.1 and Theorem 2.3 completes the proof. \square
Remark 4.5 (Error estimate on eigenvalues). Since the eigenvalues λ and λ_h associated with (2.2) and (3.12), respectively, are such that $\lambda = \mu^{-1}$ and $\lambda_h = \mu_h^{-1}$, we infer that the same estimate as (4.9) holds true for the error between λ and λ_h.

Corollary 4.6 (Eigenfunction error estimate in H^1). Let us drop the index j for simplicity from the eigenfunction u_j and the approximate eigenfunction $u_{k,j}$ and let us set $\hat{u}_h = (u_K, Z_{F,0}(u_K))$. Then the following holds true:

$$\hat{a}_h(\hat{u}_h - \hat{I}_h^k(u), \hat{u}_h - \hat{I}_h^k(u)) \leq Ch^l.$$

(4.11)

Consequently, we have

$$\left(\sum_{K \in \mathcal{K}} \| \nabla (u - \rho_K^{k+1}(\hat{u}_K)) \|_{L^2(K)}^2 \right)^{\frac{1}{2}} \leq Ch^l.$$

(4.12)

Proof. We observe that

$$\lambda_h(u_K, u)_L = \lambda_h(u_K, \Pi_K^k(u))_L = \lambda_h(b(u_K, \Pi_K^k(u)) = a_K(u_K, \Pi_K^k(u))$$

$$= \hat{a}_h((u_K, Z_{F,0}(u_K)), (\Pi_K^k(u), Z_{F,0}^1(\Pi_K^k(u))))$$

$$= \hat{a}_h((u_K, Z_{F,0}(u_K)), (\Pi_K^k(u), Z_{F,0}^1(\Pi_K^k(u))))$$

$$+ \hat{a}_h((u_K, Z_{F,0}(u_K)), (0, \Pi_K^k(u) - Z_{F,0}^1(\Pi_K^k(u))))$$

$$= \hat{a}_h(\hat{u}_h, \hat{I}_h^k(u)),$$

where we have used the definition of Π_K^k and (3.21) in the first line, the definition (3.18) of \hat{a}_h in the second line, the property (3.16) of $Z_{F,0}^1$ in the third line, and the definition of \hat{I}_h^k in the last line. Setting $\delta_u := \hat{a}_h(\hat{I}_h^k(u), \hat{I}_h^k(u)) - a(u, u)$ and recalling the normalization $\|u\|_L = \|u_K\|_L = 1$, we infer that

$$\hat{a}_h(\hat{u}_h - \hat{I}_h^k(u), \hat{u}_h - \hat{I}_h^k(u)) = \hat{a}_h(\hat{u}_h, \hat{u}_h) - 2\hat{a}_h(\hat{u}_h, \hat{I}_h^k(u)) + \hat{a}_h(\hat{I}_h^k(u), \hat{I}_h^k(u))$$

$$= \lambda_h \|u_K\|_L^2 - 2\lambda_h(u_K, u)_L + \lambda_h \|u\|_L^2 - (\lambda_h - \lambda) \|u\|_L^2 + \delta_u$$

$$= \lambda_h \|u_K - u\|_L^2 - \lambda_h + \lambda + \delta_u,$$

which is a generalization of the Pythagorean eigenvalue error identity (see [43]) in the HHO context. The bound (4.11) then follows from the bounds derived in Theorem 4.4 (see in particular the bound on $S_{2,2}$ therein to estimate δ_u). Finally, the bound (4.12) follows from the definition of the bilinear form \hat{a}_h, the triangle inequality, and the approximation properties of the elliptic projector.

Remark 4.7 (Optimal convergence). If $t = k + 1$, we recover a convergence of order h^{2k+2} for the eigenvalues and of order k^{k+1} for the eigenfunctions in the H^1-seminorm.
5 Numerical experiments

In this section, we first verify the error estimates from Section 4 for eigenvalues and smooth eigenfunctions approximated by the HHO method in 1D (unit interval) and in 2D (unit square). We then study the effect of varying the stabilization parameter and, in particular, we report superconvergence results for 1D uniform meshes when using a particular value of the stabilization parameter. We next consider in 2D the use of polygonal (hexagonal) meshes and we compare our results to those obtained using continuous finite elements. Finally, we present convergence results on an L-shaped domain (which includes the case of a non-smooth eigenfunction) and on the unit disk. In all cases, we consider the eigenvalues λ and λ_h associated with (2.2) and (3.12), respectively; both sets of eigenvalues are sorted in an increasing order as $\lambda_1 < \lambda_2 \ldots$ and $\lambda_{1,h} < \lambda_{2,h} \ldots$, and we report the normalized eigenvalue errors $\frac{\lambda_j - \lambda_{h,j}}{\lambda_j}$.

<table>
<thead>
<tr>
<th>k</th>
<th>N</th>
<th>first mode error order</th>
<th>second mode error order</th>
<th>fourth mode error order</th>
<th>eighth mode error order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>3.19e-2 —</td>
<td>1.17e-1 —</td>
<td>3.50e-1 —</td>
<td>6.99e-1 —</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>8.16e-3 1.97</td>
<td>3.19e-2 1.87</td>
<td>1.17e-1 1.58</td>
<td>3.50e-1 1.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>2.05e-3 1.99</td>
<td>8.16e-3 1.97</td>
<td>3.19e-2 1.87</td>
<td>1.17e-1 1.58</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>5.14e-4 2.00</td>
<td>2.05e-3 1.99</td>
<td>8.16e-3 1.97</td>
<td>3.19e-2 1.87</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.28e-4 2.00</td>
<td>5.14e-4 2.00</td>
<td>2.05e-3 1.99</td>
<td>8.16e-3 1.97</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1.10e-4 —</td>
<td>1.81e-3 —</td>
<td>3.25e-2 —</td>
<td>4.01e-1 —</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.78e-6 4.01</td>
<td>1.10e-4 4.05</td>
<td>1.81e-3 4.16</td>
<td>3.25e-2 3.63</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>4.23e-7 4.00</td>
<td>6.78e-6 4.01</td>
<td>1.10e-4 4.05</td>
<td>1.81e-3 4.16</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>2.64e-8 4.00</td>
<td>4.23e-7 4.00</td>
<td>6.78e-6 4.01</td>
<td>1.10e-4 4.05</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.65e-9 4.00</td>
<td>2.64e-8 4.00</td>
<td>4.23e-7 4.00</td>
<td>6.78e-6 4.01</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.15e-7 —</td>
<td>7.52e-6 —</td>
<td>5.28e-4 —</td>
<td>6.08e-2 —</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.79e-9 6.01</td>
<td>1.15e-7 6.03</td>
<td>7.52e-6 6.13</td>
<td>5.28e-4 6.85</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>2.78e-11 6.01</td>
<td>1.79e-9 6.01</td>
<td>1.15e-7 6.03</td>
<td>7.52e-6 6.13</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>9.88e-14 8.14</td>
<td>2.78e-11 6.01</td>
<td>1.79e-9 6.01</td>
<td>1.15e-7 6.03</td>
</tr>
</tbody>
</table>

Table 1: Unit interval, relative eigenvalue errors, $\eta = 1$.

5.1 Smooth eigenfunctions in 1D and 2D unit domains

Let $\Omega = (0, 1)$ or $\Omega = (0, 1) \times (0, 1)$ be the unit interval in 1D or the unit square in 2D, respectively. The 1D problem (2.1) has exact eigenvalues $\lambda_j = j^2 \pi^2$ and corresponding normalized eigenfunctions $u_j(x) = \sqrt{2} \sin(j \pi x)$ with $j = 1, 2, \ldots$, whereas the 2D problem (2.1) has exact eigenvalues $\lambda_{jk} = \pi^2 (j^2 + k^2)$ and normalized eigenfunctions $u_{jk}(x, y) = 2 \sin(j \pi x) \sin(k \pi y)$ with $j, k = 1, 2, \ldots$. We discretize the unit interval uniformly with
$N \in \{10, 20, 40, 80, 160\}$ elements and the unit square uniformly with $N \times N$ squares with $N \in \{4, 8, 16, 32, 64\}$. The default stabilization parameter of the HHO method is $\eta = 1$. The relative eigenvalue errors are reported in Table 1 in 1D and in Table 2 in 2D for the first, second, fourth, and eighth eigenvalues and for the polynomial degrees $k \in \{0, 1, 2\}$. These tables show good agreement with the convergence order predicted by Theorem 4.4, i.e., the convergence order for the eigenvalues is indeed h^{2k+2}. The H^1-seminorm errors on the first, second, fourth, and eighth eigenfunctions in 1D are reported in Table 3. We observe a good agreement with the convergence order predicted by Corollary 4.6, that is, the convergence order for the eigenfunctions in the H^1-seminorm is indeed h^{k+1}.

<table>
<thead>
<tr>
<th>k</th>
<th>N</th>
<th>first mode error</th>
<th>order</th>
<th>second mode error</th>
<th>order</th>
<th>fourth mode error</th>
<th>order</th>
<th>eighth mode error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>2.51e-1</td>
<td>—</td>
<td>5.11e-1</td>
<td>—</td>
<td>6.36e-1</td>
<td>—</td>
<td>7.39e-1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.70e-2</td>
<td>1.70</td>
<td>2.16e-1</td>
<td>1.24</td>
<td>2.51e-1</td>
<td>1.34</td>
<td>4.08e-1</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.04e-2</td>
<td>1.92</td>
<td>6.57e-2</td>
<td>1.72</td>
<td>7.70e-2</td>
<td>1.70</td>
<td>1.33e-1</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.18e-3</td>
<td>1.98</td>
<td>1.74e-2</td>
<td>1.92</td>
<td>2.04e-2</td>
<td>1.92</td>
<td>3.73e-2</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1.30e-3</td>
<td>1.99</td>
<td>4.41e-3</td>
<td>1.98</td>
<td>5.18e-3</td>
<td>1.98</td>
<td>9.62e-3</td>
<td>1.96</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2.27e-2</td>
<td>1.92</td>
<td>1.62e-1</td>
<td>—</td>
<td>3.32e-1</td>
<td>—</td>
<td>5.10e-1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.45e-3</td>
<td>3.97</td>
<td>9.75e-3</td>
<td>4.06</td>
<td>2.27e-2</td>
<td>3.87</td>
<td>6.35e-2</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>9.15e-5</td>
<td>3.98</td>
<td>5.96e-4</td>
<td>4.03</td>
<td>1.45e-3</td>
<td>3.97</td>
<td>3.90e-3</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.74e-6</td>
<td>3.99</td>
<td>3.71e-5</td>
<td>4.00</td>
<td>9.15e-5</td>
<td>3.98</td>
<td>2.45e-4</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>3.59e-7</td>
<td>4.00</td>
<td>2.32e-6</td>
<td>4.00</td>
<td>5.74e-6</td>
<td>3.99</td>
<td>1.54e-5</td>
<td>4.00</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5.71e-4</td>
<td>—</td>
<td>8.46e-3</td>
<td>—</td>
<td>4.91e-2</td>
<td>—</td>
<td>2.31e-1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.63e-6</td>
<td>6.05</td>
<td>1.07e-4</td>
<td>6.30</td>
<td>5.71e-4</td>
<td>6.43</td>
<td>2.33e-3</td>
<td>6.64</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.34e-7</td>
<td>6.01</td>
<td>1.62e-6</td>
<td>6.05</td>
<td>8.63e-6</td>
<td>6.05</td>
<td>3.34e-5</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.09e-9</td>
<td>6.00</td>
<td>2.51e-8</td>
<td>6.01</td>
<td>1.34e-7</td>
<td>6.01</td>
<td>5.14e-7</td>
<td>6.02</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>3.26e-11</td>
<td>6.00</td>
<td>3.92e-10</td>
<td>6.00</td>
<td>2.09e-9</td>
<td>6.00</td>
<td>8.01e-9</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Table 2: Unit square, relative eigenvalue errors, $\eta = 1$.

5.1.1 Effect of the stabilization parameter η

We first report some striking superconvergence results for the HHO method with the stabilization parameter set to $\eta = 2k + 3$ on 1D uniform meshes. In this case, we observe numerically two extra orders in the convergence of the relative eigenvalue errors, i.e., these errors now converge as h^{2k+4}, see Table 4. We thus obtain relative eigenvalue errors close to machine precision already on relatively coarse meshes. Moreover, we observe numerically (results are not reported for brevity) that taking values different from $2k+3$ for the stabilization parameter does not improve the relative eigenvalue errors. We also point out that the choice $\eta = 2k + 3$ does not increase the convergence order of the
Table 3: Unit interval, H^1-seminorm errors on eigenfunctions, $\eta = 1$.

eigenfunctions. In 2D, we observe that the choice $\eta = 2k + 3$ improves the approximation significantly in the sense of a much smaller constant C in (4.9), but the convergence order remains h^{2k+2}. The results are reported in Table 5 (compare with Table 2). The theoretical analysis of the above observations is postponed to future work.

In all of our numerical experiments, the default choice $\eta = 1$ for the stabilization parameter produces satisfactory results. As expected, decreasing the value of η progressively leads to a loss of stability in the HHO stiffness matrix, and therefore to a degradation of the accuracy of the discrete eigenvalues and eigenfunctions. To illustrate this simple fact, we report in Table 6 the first four discrete eigenvalues using a polynomial degree $k \in \{0, 1, 2\}$ and a stabilization parameter $\eta = 2^{-l}$, $l \in \{0, \ldots, 6\}$. We consider here a quasi-uniform sequence of triangular meshes with an initial average mesh-size 0.017, where the next finer mesh in the sequence is produced by dividing each triangle into four congruent sub-triangles. The results reported in Table 6 indicate that the sensitivity to the choice of a too small value of η swiftly decreases as the polynomial degree k increases. A similar study varying the stabilization parameter in the context of the VEM can be found in [39], where the loss of accuracy also follows from the loss of stability if the value assigned to the stabilization parameter is too low.
To illustrate the fact that the same convergence orders can be obtained if the HHO method is deployed on general meshes, we consider now a quasi-uniform sequence of polygonal (hexagonal) meshes of the unit square; see Figure 1. The coarsest mesh in the sequence is composed of predominantly hexagonal cells with average mesh-size 0.065; the average mesh-size is halved from one mesh in the sequence to the next finer mesh. Table 7 shows the relative eigenvalue errors for $k \in \{0, 1, 2\}$ with stabilization parameter $\eta = 1$ and $\eta = 2k + 3$ for the first ($j = 1$) and third ($j = 3$) eigenpairs. We observe a convergence of order h^{2k+2}, in agreement with Theorem 4.4. Once again, the choice $\eta = 2k + 3$ for the stabilization parameter does not change the convergence order, but substantially improves the constant C.

5.1.3 Comparison with the finite element method (FEM)

We now present a brief comparison between the discrete eigenvalues obtained using a continuous linear finite element method (FEM(1)) and the HHO method with $k = 0$ and $k = 1$ (referred to as HHO(0) and HHO(1), respectively). We consider the same quasi-uniform sequence of triangular meshes as in Section 5.1.1, and we use the stabilization parameter $\eta = 1$ or $\eta = 8$ for HHO(0) and $\eta = 1$ for HHO(1). Table 8 reports the errors for the first and eighth eigenvalues. All the reported convergence orders match the theoretical predictions. HHO(0) with $\eta = 1$ leads to somewhat larger errors than FEM(1), but the situation is significantly reversed when using HHO(0) with $\eta = 8$ or HHO(1) with $\eta = 1$. We also mention that our numerical experiments show that the

<table>
<thead>
<tr>
<th>k</th>
<th>N</th>
<th>first mode</th>
<th>second mode</th>
<th>fourth mode</th>
<th>eighth mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>error</td>
<td>order</td>
<td>error</td>
<td>order</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>4.07e-5</td>
<td>—</td>
<td>6.59e-4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.54e-6</td>
<td>4.00</td>
<td>4.07e-5</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1.59e-7</td>
<td>4.00</td>
<td>2.54e-6</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>9.91e-9</td>
<td>4.00</td>
<td>1.59e-7</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>6.19e-10</td>
<td>4.00</td>
<td>9.91e-9</td>
<td>4.00</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1.66e-6</td>
<td>—</td>
<td>1.13e-4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.55e-8</td>
<td>6.02</td>
<td>1.66e-6</td>
<td>6.09</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.98e-10</td>
<td>6.00</td>
<td>2.55e-8</td>
<td>6.02</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5.95e-12</td>
<td>6.06</td>
<td>3.98e-10</td>
<td>6.00</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9.18e-9</td>
<td>—</td>
<td>2.42e-6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.57e-11</td>
<td>8.01</td>
<td>9.18e-9</td>
<td>8.04</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.04e-13</td>
<td>8.42</td>
<td>3.57e-11</td>
<td>8.01</td>
</tr>
</tbody>
</table>

Table 4: Unit interval, relative eigenvalue errors, $\eta = 2k + 3$.

5.1.2 Polygonal (hexagonal) meshes in 2D

<table>
<thead>
<tr>
<th>k</th>
<th>N</th>
<th>first mode</th>
<th>second mode</th>
<th>fourth mode</th>
<th>eighth mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>error order</td>
<td>error order</td>
<td>error order</td>
<td>error order</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>4.23e-2</td>
<td>—</td>
<td>1.66e-1</td>
<td>3.97e-1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.06e-2</td>
<td>1.99</td>
<td>4.23e-2</td>
<td>7.84e-2</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.66e-3</td>
<td>2.00</td>
<td>1.06e-2</td>
<td>1.98e-2</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.65e-4</td>
<td>2.00</td>
<td>2.66e-3</td>
<td>4.96e-3</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1.66e-4</td>
<td>2.00</td>
<td>6.65e-4</td>
<td>1.24e-3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2.74e-4</td>
<td>—</td>
<td>5.80e-5</td>
<td>1.73e-2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.13e-5</td>
<td>3.69</td>
<td>2.74e-4</td>
<td>1.75e-4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.40e-6</td>
<td>3.93</td>
<td>2.13e-5</td>
<td>3.47e-6</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>8.82e-8</td>
<td>3.98</td>
<td>1.40e-6</td>
<td>4.41e-7</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>5.53e-9</td>
<td>4.00</td>
<td>8.82e-8</td>
<td>3.11e-8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1.75e-5</td>
<td>—</td>
<td>8.23e-4</td>
<td>1.28e-3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.90e-7</td>
<td>5.91</td>
<td>1.75e-5</td>
<td>4.54e-5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.60e-9</td>
<td>5.98</td>
<td>2.90e-7</td>
<td>8.01e-7</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7.20e-11</td>
<td>6.00</td>
<td>4.60e-9</td>
<td>1.29e-8</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>2.66e-13</td>
<td>8.08</td>
<td>7.20e-11</td>
<td>2.02e-10</td>
</tr>
</tbody>
</table>

Table 5: Unit square, Relative eigenvalue errors, $\eta = 2k + 3$.

The overall costs of FEM(1) and HHO(0) on various domains and mesh configurations are roughly the same.

5.2 L-shaped domain

We now study the Laplacian eigenvalue problem on the L-shaped domain $\Omega = \Omega_0 \backslash \Omega_1$, where $\Omega_0 = (0, 2) \times (0, 2)$ and $\Omega_1 = [1, 2] \times [1, 2]$. The L-shaped domain Ω has a reentrant corner at the point $(1, 1)$, which results in possibly non-smooth eigenfunctions. In fact, the first eigenfunction is in $H^{1+\epsilon}(\Omega)$ with $t = \frac{2}{3} - \epsilon$ with ϵ arbitrarily small, and the corresponding eigenvalue is $\lambda_1 = 9.6397238440219$ [7]. There are also smooth eigenfunctions. For example, the third eigenfunction is smooth and the corresponding eigenvalue is known exactly to be $\lambda_3 = 2\pi^2$. Figure 2 shows the HHO approximations (with $\eta = 1$) of the first and the third eigenfunctions using quasi-uniform triangulations of Ω and the polynomial degree $k = 1$.

To assess the convergence orders, we consider a sequence of triangulations where each of the three unit squares composing the L-shaped domain Ω is discretized uniformly with $2 \times N \times N$ triangular elements, where $N \in \{4, 8, 16, 32, 64\}$. Table 9 reports the relative eigenvalue errors for the first and third eigenvalues. We consider the values $\eta = 1$ and $\eta = 2k + 3$ for the stabilization parameter together with the polynomial degrees $k \in \{0, 1\}$. The relative error on the first eigenvalue converges with order k^{2t} with $2t \approx \frac{4}{3}$,
Table 6: Discrete eigenvalues $\lambda_{h,j}$, $j \in \{1, 2, 3, 4\}$ with polynomial degree $k \in \{0, 1, 2\}$ and stabilization parameter $\eta = 2^{-l}, l \in \{0, \ldots, 6\}$.

<table>
<thead>
<tr>
<th>k</th>
<th>η</th>
<th>$\lambda_{h,1}$</th>
<th>$\lambda_{h,2}$</th>
<th>$\lambda_{h,3}$</th>
<th>$\lambda_{h,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>1.74e1</td>
<td>3.70e1</td>
<td>3.73e1</td>
<td>5.11e1</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1.85e1</td>
<td>4.25e1</td>
<td>4.27e1</td>
<td>6.26e1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.92e1</td>
<td>4.60e1</td>
<td>4.60e1</td>
<td>7.05e1</td>
</tr>
<tr>
<td>1</td>
<td>1/64</td>
<td>1.57e1</td>
<td>5.09e1</td>
<td>5.11e1</td>
<td>8.16e1</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
<td>1.97e1</td>
<td>4.87e1</td>
<td>4.87e1</td>
<td>7.54e1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.97e1</td>
<td>4.93e1</td>
<td>4.93e1</td>
<td>7.87e1</td>
</tr>
<tr>
<td>2</td>
<td>1/64</td>
<td>1.97e1</td>
<td>4.94e1</td>
<td>4.94e1</td>
<td>7.90e1</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
<td>1.97e1</td>
<td>4.93e1</td>
<td>4.93e1</td>
<td>7.89e1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.97e1</td>
<td>4.93e1</td>
<td>4.93e1</td>
<td>7.90e1</td>
</tr>
</tbody>
</table>

Figure 1: First and third approximate eigenfunctions with hexagonal meshes.

whereas the relative error on the third eigenvalue converges with the optimal order h^{2k+2}. These results are again in agreement with Theorem 4.4. The errors with $\eta = 2k + 3$ are, as observed above, smaller than those with $\eta = 1$. Comparing with the results reported in [33] with HDG and $k = 0$, the HHO approximation of the first eigenvalue converges with order $h^{4/3}$ whereas the HDG approximation converges with order h; the HHO approximation of the third eigenvalue converges with order h^2 whereas the HDG approximation converges with order h. Additionally, Table 10 shows the eigenfunction errors in the H^1-seminorm for the first and third modes. Here, the sequence of triangular meshes starts with an initial mesh-size 0.052, and the refinement procedure is the same as above. We use a linear FEM solution (normalized in $L^2(\Omega)$) solved at level 7 of the mesh sequence (this corresponds to a mesh-size 4.05×10^{-4}) as a reference solution for the calculation of the first eigenfunction error, and we use $u_3(x, y) = 2\sin(\pi x)\sin(\pi y)/\sqrt{3}$ (normalized in $L^2(\Omega)$) to compute the error on the third eigenfunction. In both cases,
the error convergence rates are in good agreement with Theorem 4.4.

5.3 Unit disk

Lastly, we consider the Laplacian eigenvalue problem (2.1) in the unit disk $\Omega = \{(x, y) : x^2 + y^2 \leq 1\}$. Using polar coordinates, the eigenpairs are

\[
(s^2_n, m, J_n(s^2_n r) \cos(n\theta))_{n=0,1,2,\ldots}, \quad (s^2_n, m, J_n(s^2_n r) \sin(n\theta))_{n=1,2,\ldots}, \quad (5.1)
\]

where J_n is the Bessel function of order n, and $s_{n,m}$ are the zeros of the Bessel functions with $m = 1, 2, 3, \ldots$. Figure 3 shows the first and seventh discrete eigenfunctions.

We approximate the unit disk using a sequence of unstructured triangulations where the coarsest mesh in the sequence ($\ell = 0$) is composed of triangular cells with mesh-size 0.033, and the refinement procedure is the same as above. Since the boundary of the disk is approximated by straight lines, the error committed by this discretization is of order h^2. Thus, we only consider the lowest-order HHO approximation with $k = 0$. Table 11 reports the relative eigenvalue errors with $\eta = 2k + 3 = 3$ for the stabilization parameter. We observe a convergence order of h^2 as predicted.

<table>
<thead>
<tr>
<th>k</th>
<th>ℓ</th>
<th>$j = 1, \eta = 1$</th>
<th>$j = 1, \eta = 2k + 3$</th>
<th>$j = 3, \eta = 1$</th>
<th>$j = 3, \eta = 2k + 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>error order</td>
<td>error order</td>
<td>error order</td>
<td>error order</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3.20e-1 —</td>
<td>8.72e-2 —</td>
<td>6.69e-1 —</td>
<td>2.78e-1 —</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.19e-1 1.43</td>
<td>2.21e-2 1.98</td>
<td>3.52e-1 0.93</td>
<td>8.41e-2 1.73</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3.56e-2 1.74</td>
<td>5.45e-3 2.02</td>
<td>1.28e-1 1.45</td>
<td>2.15e-2 1.97</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9.60e-3 1.89</td>
<td>1.35e-3 2.02</td>
<td>3.73e-2 1.78</td>
<td>5.37e-3 2.00</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2.48e-3 1.95</td>
<td>3.34e-4 2.01</td>
<td>9.84e-3 1.92</td>
<td>1.33e-3 2.01</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1.97e-2 —</td>
<td>1.10e-3 —</td>
<td>3.16e-1 —</td>
<td>1.43e-2 —</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.33e-3 3.89</td>
<td>8.28e-5 3.73</td>
<td>2.40e-2 3.72</td>
<td>1.32e-3 3.43</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8.74e-5 3.92</td>
<td>5.63e-6 3.88</td>
<td>1.45e-3 4.05</td>
<td>9.01e-5 3.88</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5.64e-6 3.95</td>
<td>3.66e-7 3.94</td>
<td>9.11e-5 3.99</td>
<td>5.86e-6 3.94</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3.59e-7 3.97</td>
<td>2.33e-8 3.97</td>
<td>5.75e-6 3.98</td>
<td>3.73e-7 3.97</td>
</tr>
</tbody>
</table>

Table 7: Unit square with hexagonal meshes, relative eigenvalue errors, $\eta = 1$ and $\eta = 2k + 3$.

The error order is in good agreement with Theorem 4.4.

5.3 Unit disk

Lastly, we consider the Laplacian eigenvalue problem (2.1) in the unit disk $\Omega = \{(x, y) : x^2 + y^2 \leq 1\}$. Using polar coordinates, the eigenpairs are

\[
(s^2_n, m, J_n(s^2_n r) \cos(n\theta))_{n=0,1,2,\ldots}, \quad (s^2_n, m, J_n(s^2_n r) \sin(n\theta))_{n=1,2,\ldots}, \quad (5.1)
\]

where J_n is the Bessel function of order n, and $s_{n,m}$ are the zeros of the Bessel functions with $m = 1, 2, 3, \ldots$. Figure 3 shows the first and seventh discrete eigenfunctions.

We approximate the unit disk using a sequence of unstructured triangulations where the coarsest mesh in the sequence ($\ell = 0$) is composed of triangular cells with mesh-size 0.033, and the refinement procedure is the same as above. Since the boundary of the disk is approximated by straight lines, the error committed by this discretization is of order h^2. Thus, we only consider the lowest-order HHO approximation with $k = 0$. Table 11 reports the relative eigenvalue errors with $\eta = 2k + 3 = 3$ for the stabilization parameter. We observe a convergence order of h^2 as predicted.
<table>
<thead>
<tr>
<th>ℓ</th>
<th>FEM(1)</th>
<th>HHO(0)</th>
<th>HHO(1)</th>
<th>FEM(1)</th>
<th>HHO(0)</th>
<th>HHO(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.75e-2</td>
<td>2.92e-2</td>
<td>9.72e-5</td>
<td>1.48e-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.36e-3</td>
<td>7.47e-3</td>
<td>2.57e-5</td>
<td>9.45e-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.09e-3</td>
<td>1.88e-3</td>
<td>6.81e-6</td>
<td>5.97e-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.72e-4</td>
<td>4.70e-4</td>
<td>1.75e-6</td>
<td>3.76e-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.81e-5</td>
<td>1.18e-4</td>
<td>4.40e-7</td>
<td>2.36e-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>order</td>
<td>2.00</td>
<td>1.99</td>
<td>1.95</td>
<td>3.99</td>
<td>2.01</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Table 8: Comparison of eigenvalue errors for $\lambda_{h,1}$ and $\lambda_{h,8}$ when using FEM(1), HHO(0) with $\eta = 1$ or $\eta = 8$, and HHO(1) with $\eta = 1$.

![First and third approximate eigenfunctions in the L-shaped domain.](image)

Figure 2: First and third approximate eigenfunctions in the L-shaped domain.

6 Concluding remarks

In this paper, we devised and analyzed the approximation of the eigenvalues and eigenfunctions of a second-order self-adjoint elliptic operator using the Hybrid High-Order (HHO) method. Using polynomials of degree $k \geq 0$ for the face unknowns, and assuming smooth eigenfunctions, we established theoretically and observed numerically that the errors on the eigenvalues converge as h^{2k+2} whereas the errors on the eigenfunctions converge as h^{k+1} in the H^1-seminorm. We considered triangular and polygonal (hexagonal) meshes in the numerical experiments for the Laplace eigenproblem in two-dimensional domains with smooth and non-smooth eigenfunctions. Additionally, we observed numerically in one dimension that the eigenvalue error converges at the even faster rate h^{2k+4} for the particular choice $\eta = 2k + 3$ of the stabilization parameter in the HHO method.
Several extensions of the present work can be considered, among which we mention biharmonic eigenvalue problems and non-selfadjoint second-order eigenvalue problems as well as the Maxwell eigenvalue problem in a curl-curl setting.

Acknowledgements

This publication was made possible in part by the CSIRO Professorial Chair in Computational Geoscience at Curtin University and the Deep Earth Imaging Enterprise Future Science Platforms of the Commonwealth Scientific Industrial Research Organisation, CSIRO, of Australia. Additional support was provided by the European Union’s Horizon 2020 Research and Innovation Program of the Marie Skłodowska-Curie grant agreement No. 777778 and the Curtin Institute for Computation. This work was initiated when the first author was visiting the Institute Henri Poincaré (IHP) during the Fall 2016 Thematic Trimester on “Numerical Methods for Partial Differential Equations”. The support of the Institute is gratefully acknowledged. Stimulating discussions with E. Burman (University College London) and J.-L. Guermond (Texas A&M University) who were also visiting the Institute for the Fall 2016 Thematic Quarter are gratefully acknowledged.

References

Table 10: L-shaped domain, first and third eigenfunction errors in the H^1-seminorm with polynomial degree $k \in \{0,1\}$ and stabilization parameter $\eta \in \{1,2k+3\}$.

![Figure 3: The first and seventh approximate eigenfunctions in the unit disk.](image)

Table 11: Unit disk, relative eigenvalue errors, $k = 0$ and $\eta = 3.$

<table>
<thead>
<tr>
<th>k</th>
<th>ℓ</th>
<th>first mode error</th>
<th>order</th>
<th>fourth mode error</th>
<th>order</th>
<th>seventh mode error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6.35e-3</td>
<td>—</td>
<td>1.55e-2</td>
<td>—</td>
<td>3.19e-2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.59e-3</td>
<td>2.00</td>
<td>3.82e-3</td>
<td>2.02</td>
<td>7.95e-3</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.98e-4</td>
<td>2.00</td>
<td>9.54e-4</td>
<td>2.00</td>
<td>1.99e-3</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.96e-5</td>
<td>2.00</td>
<td>2.38e-4</td>
<td>2.00</td>
<td>4.97e-4</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.49e-5</td>
<td>2.00</td>
<td>5.96e-5</td>
<td>2.00</td>
<td>1.24e-4</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.22e-6</td>
<td>2.00</td>
<td>1.49e-5</td>
<td>2.00</td>
<td>3.11e-5</td>
<td>2.00</td>
</tr>
</tbody>
</table>

