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A B S T R A C T

Exotic peregrine earthworms are often considered to cause environmental harm and to have a negative impact
on native species, but, as ecosystem engineers, they enhance soil physical properties. Pontoscolex corethrurus is by
far the most studied morphospecies and is also the most widespread in tropical areas. The term of morphospecies
is used in this review because P. corethrurus may in fact constitute a complex of cryptic species. This earthworm
is found in a wide range of habitats, from apparently pristine to any kind of human-disturbed environment. This
review synthesizes 265 studies describing the distribution, morphology, biological and ecological traits of this
morphospecies, as well as its impacts on soil conditions and communities. We then discuss the characteristics
necessary for this specific morphospecies to become a successful colonizer throughout the world and the positive
and negative effects it can have on the ecosystems that it has invaded. We emphasize the lack of knowledge of P.
corethrurus reproductive mode and ploidy level, of its population genetics, and of the potential existence of
cryptic species. To finish, we highlight the fact that data on P. corethrurus interactions with non-earthworm soil
macrofauna are scarce.

1. Introduction

Earthworms are generally described as ecosystem engineers that
greatly impact the physical, chemical and biological properties of soil
(Blouin et al., 2013). Of the 3000–3500 earthworm species that have
been described (Csuzdi, 2012), about 150 species are considered to be
peregrine (i.e., widely ranging, often owing to human activity;
Blakemore, 2012). Most of these peregrine earthworm species are well
adapted to human transport and can colonize disturbed habitats
(Hendrix et al., 2008). Climate may act as a barrier to their dispersal
while their abundance may be limited by soil fertility and plant cover
quality (Ortiz-gamino et al., 2016). It is also recognized that introduced
species may cause changes to the ecosystem to which it has been in-
troduced. For instance, European Lumbricidae such as Lumbricus rubellus
or L. terrestris that have invaded previously glaciated regions in Canada
and the USA have dramatically affected nutrient cycling and the func-
tioning of the native ecosystems (Eisenhauer et al., 2011; Suárez et al.,
2006).

Most of the species that are deliberately or inadvertently introduced
into a new region fail to survive, and the majority of those that do
survive, do not become invasive pests (Williamson and Fitter, 1996).

Introduced species pass through filters at four well-established spatio-
temporal stages of invasion: introduction, establishment, landscape
spread and integration (Vermeij, 1996). Species traits and environ-
mental characteristics (Vermeij, 1996), as well as propagule pressure
(propagule sizes, propagule numbers, and temporal and spatial patterns
of propagule arrival) (Simberloff, 2009) may explain the success of
these invasive species. Here, we discuss the case of Pontoscolex core-
thrurus, the quintessential peregrine earthworm in the tropics which has
been successfully introduced worldwide. This endogeic earthworm
tolerates a wide range of biotic and abiotic environmental conditions
(Fragoso et al., 1999; Lavelle et al., 1987). It was first described in 1857
by Fritz Müller from Itajahy in the state of Santa Catarina in Brazil.
Righi (1984) identified the Guyana shield as the original region of the
Pontoscolex genus. Recently, Cunha et al. (2014), revealed the existence
of two highly divergent genetic lineages within P. corethrurus in the
island of Sao Miguel (Azores), suggesting the existence of cryptic spe-
cies (i.e., different species which are not distinguishable morphologi-
cally). Thus, we choose to refer to the “morphospecies” P. corethrurus
(i.e., a species distinguished from others only by its morphology) in this
review. Cryptic species should be accounted for biological and ecolo-
gical studies because different species may show differential
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adaptations to diverse environments and respond differently to per-
turbations.

P. corethrurus is one of the most studied tropical earthworm mor-
phospecies in soil science (Fragoso et al., 1997; Plisko, 2001). It is used
in ecotoxicological studies (Römbke and García, 2000), and it has been
recommended as a bioindicator for the assessment of soil quality and
ecosystem disturbances (Brown et al., 2006). Some restoration strate-
gies of degraded soils have included the introduction of the morphos-
pecies. For instance, it was used for the biofertilisation of tropical
agricultural lands (Senapati et al., 1999; Topoliantz et al., 2002), the
remediation of polluted sites (Duarte et al., 2012; Ganihar, 2003; García
and Fragoso, 2002; Liang et al., 2011), and the improvement of phy-
toextraction treatments (Jusselme et al., 2012). Additionally, its use has
been proposed in vermicomposting (Chaudhuri and Bhattacharjee,
2011; Molina-Murguia et al., 2009; Nath and Chaudhuri, 2012; Sabrina
et al., 2013) and as a source of protein in animal feed for poultry and
pork, and in fisheries (Brown et al., 2006). Although P. corethrurus may
have a positive impact on soil ecosystems in certain circumstances, it
may also negatively affect soil physical properties by increasing soil
compaction. It may also modify biogeochemical processes as well as
communities of plants, microbes and native earthworms (Marichal
et al., 2010).

Four hypotheses have been put forward for explaining the success of
invasive species: (i) they have traits that favour each stage of the in-
vasion process, (ii) they exploit empty niches, (iii) they are favoured by
anthropogenic pressure on natives and (iv) they are no longer under
predatory, parasitic or competitive pressure (Sakai et al., 2001). Here,
our objectives were (i) to address each of these hypotheses in order to
describe the colonization success of the earthworm P. corethrurus in its
pan-tropical region; due to the scarcity of data on the pathogens,
parasites and predators of this species, the fourth hypothesis was not
developed; (ii) to discuss the effects of the morphospecies in the in-
troduced areas and (iii) to identify evidence in the literature suggesting
the use of different cryptic species in experimental studies. We also
identified knowledge gaps and provided promising perspectives for
future research.

2. Literature search

The literature search was carried out using the keyword
“Pontoscolex corethrurus” in Topics of the Web of Science databases
using the ‘All Databases’ option. This option contained ‘Web of Science
TM Core Collection’, ‘Current Contents Connect’, ‘KCI-Korean Journal
Database’, ‘MEDLINE’, ‘SciELO Citation Index’ and ‘CABI’ research en-
gines. We found 302 references published between 1900 and 2017. We
also searched for synonymous species described by Blakemore (2006):
Lumbricus corethrurus, Urochaeta corethrura, Pontoscolex arenicola, Ur-
ochaeta hystrix, Urochaeta dubia, Urochaeta, sp., Urochaeta australiensis,
Pontoscolex hawaiensis, Pontoscolex guangdongensis and Pontoscolex cor-
ethrurus mexicana.

The articles written in English which were relevant for the review
were sorted using the abstracts and the full texts. Moreover, the articles
written in other languages and from which we could extract the in-
formation from the figures and tables, were also used. Finally, articles
that did not focus specifically on P. corethrurus (e.g., when P. corethrurus
was used for comparing results) were excluded. To complete the bib-
liographic corpus, some essential articles, which were not in the Web of
Science, were collected from soil science specialists. The final corpus
was composed of 265 references (Fig. 1). Most of the papers studied
specimens collected outside the Guyana shield which is the putative
native area of P. corethrurus. The greatest number of studies were
conducted in India and Brazil, with 46 references each, followed by
Mexico, with 39 references (Fig. 2).

Fig. 1. Bibliographic corpus on P. corethrurus gathered in this review (source: ISI Web of
Science). Papers were grouped into 6 different categories, corresponding to the most
studied subjects on P. corethrurus: impact on the environment (33% of the studies), re-
sponses to environmental conditions (32%), earthworm community assessment (22%),
biological features (3%), taxonomy (4%) and other subjects (i.e., genetics, biochemistry,
geographical distribution and digestion) (6%).



3. General results

3.1. Distribution and dispersal vectors

Pontoscolex corethrurus has a widespread distribution, shown in
Fig. 2. The map shows that it is present not only in tropical regions but
also in sub-tropical zones. For instance, Ortiz-gamino et al. (2016) re-
corded its presence in sub-tropical regions of Mexico, at an elevation of
1550–1619 m above sea level (m.a.s.l.), and an average temperature of
17°± 2, where no other tropical species occur. This morphospecies was
even recorded in the temperate zone, in the Azores archipelago (Cunha
et al., 2014) and the Falkland islands (Reynolds and Jones, 2006). Gates
(1972) mentioned that P. corethrurus was present in a greenhouse in the
London suburb of Kew (United Kingdom), but there is no record of its
expansion in this country.

Several vectors of passive dispersal may be involved in the spread of
peregrine earthworms, e.g., transport of cocoons by streams and surface
water, phoretic interactions with birds and mammals, transport by
humans which can be accidental (with soil or potted plants) or com-
mercial, for fishing bait and waste management industries (P. core-
thrurus is most probably extensively transported by humans). Dupont
et al. (2012) proposed that the accidental transfer of this morphospecies
from Cayenne to the Nouragues reserve in French Guiana, which was
revealed using the Amplified Fragment Length Polymorphism (AFLP)
method, could be due to deliberate soil transfer for scientific experi-
ments and accidental soil transfer on tools and shoes. Moreover, Brown
et al. (2006) indicated that P. corethrurus is commonly used as fish-bait
in Brazil. While González et al. (2006) highlighted the fact that its
dispersal to the Caribbean Islands can be explained by human migration
prior to European colonization, Blakemore (2006) suggested oceanic
drafting as another vector of dispersal.

3.2. Morphology

Our purpose was not to describe in detail P. corethrurus morpholo-
gical diagnosis but instead to highlight the main external and internal

morphological traits mentioned in the literature. When reviewing 13
studies on P. corethrurus taxonomy (see Table 1 for references), we
noticed some heterogeneity in the descriptions. For instance, some
differences in the positions of the clitellum and tubercula pubertatis,
which are key traits in earthworm taxonomy, were observed among
papers. The beginning of the clitellum position has been identified in
either XIV or XV segments while the end of it has been found in three
different segments: XXI, XXII, and XXIII. The beginning of the tubercula
pubertatis has been found in XV, XVIII and XIX segments and its ends in
XXI, XXII and XXIII segments. Moreover, female, male and sper-
mathecal pores have not always been observed (Table 1). Some traits
were homogenous among references, such as the position of sper-
mathecae and calciferous glands. The quincunx formation of setae on
the last quarter of the body was mentioned in several studies. It is a
character commonly used for the diagnosis of this species. However,
Moreno (2004) highlighted the possibility of mistaking this species with
others of the Pontoscolex genus by considering only this characteristic.
Another diagnostic characteristic of the morphospecies is a special
caudal zone described by Eisen (1896) and Gates (1973) of 4–7 seg-
ments (Table 1). The typhlosole which begins approximately at segment
XXI ends with this caudal zone (Gates, 1973).

3.3. Morphospecies traits and environmental characteristics

3.3.1. Reproductive strategy and fecundity
Earthworms are usually hermaphrodites, meaning that both male

and female organ systems, such as testes and ovaries, occur within a
single individual. In P. corethrurus, male reproductive organs are often
absent or atrophied (Gates, 1973; Tsai et al., 2000) and cocoons are
viable without mating, thus suggesting a parthenogenetic reproduction
(Chaudhuri and Bhattacharjee, 2011). In rare cases, Gates (1973) ob-
served some iridescence in P. corethrurus spermathecae that raised the
possibility of biparental reproduction. Sexual reproduction has also
been suggested to occur by Dupont et al. (2012), based on a population
genetics study.

This morphospecies is a continuous breeder with a high fecundity

Fig. 2. Distribution map indicating the countries were P. corethrurus was found. Numbers show the countries where more than 10 studies were carried out on P. corethrurus. Four types of
sources were used for this map and are presented in different colors: (i) in green, the locality specified in the Drilobase web site (http://taxo.drilobase.org/), (ii) in red, localities found in
Gates (1972) but not mentioned in the Drilobase, (iii) in purple, four localities (China, Reunion and Guadeloupe islands, and Nigeria) found in the literature (China: (Hua et al., 2008;
Huang et al., 2015; Paz-Ferreiro et al., 2015, 2014; Zhang et al., 2010), Reunion: (Boyer et al., 2013), Guadeloupe: (Lafont et al., 2007; Loranger-Merciris et al., 2012; Sierra et al., 2014),
and Nigeria (Henrot and Brussaard, 1997; Mba, 1994): and (iv) in blue, three islands (St. Kitts, St. Lucia, St. Vincent) where P. corethrurus was sampled (S. James pers. com.) but this was
not recorded in the literature. The map was done on https://mapchart.net/website. When P. corethrurus was recorded in a country, all the country is colored although the distribution of
the species could be more restricted (for instance P. corethrurus is only present is the sub-tropical area of the United States). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

http://taxo.drilobase.org/
https://mapchart.net/


rate (Gates, 1972; Vannucci, 1953). Under laboratory conditions, an
adult of P. corethrurus can produce up to 145 cocoons per year
(Arunachalam, 1987; Bhattacharjee and Chaudhuri, 2002; García and
Fragoso, 2002). Cocoons have a short development time ranging from
21 ± 1 to 40 ± 9 days at 20–32 °C in laboratory (Arunachalam, 1987;
Bhattacharjee and Chaudhuri, 2002; Chaudhuri and Bhattacharjee,
2011; Gates, 1972; Nair et al., 2009; Ortiz-ceballos et al., 2009). The
hatching rate of cocoons is high, ranging from 78% to 97%, depending
on the temperature, in moist soil conditions (Lavelle et al., 1987).
Generally, one hatchling is present per cocoon (Bhattacharjee and
Chaudhuri, 2002; Vannucci, 1953; but see Nair et al., 2009). Before
depositing their cocoons, P. corethrurus individuals build spherical nest
chambers (mean diameter of 5.97 ± 1.24 mm) with their buccal ap-
pendix and coat the chambers with a fine layer of soil and mucus (Ortiz-
ceballos et al., 2009). Cocoons are then laid individually in these
chambers (Hamoui, 1991; Vannucci, 1953). The nest chamber are
surrounded by a ‘feeding-chamber’ where casts are deposited and
where juvenile earthworms can come to feed once hatched (Ortiz-ce-
ballos et al., 2009).

Research has revealed that P. corethrurus present a relative re-
productive plasticity. For instance, this morphospecies has been shown
to increase its rate of cocoon production and incubation period with
increased temperature (Bhattacharjee and Chaudhuri, 2002). More-
over, García and Fragoso (2003) showed that individuals from the same
population of P. corethrurus raised on different substrates displayed a
possible physiological trade-off between cocoon number and cocoon
weight, related to nitrogen (N) limitations. In their experiment, P.
corethrurus produced fewer but bigger cocoons (> 50 mg) in soils with
high N-availability and more but smaller cocoons (< 50 mg) when N
was less available (García and Fragoso, 2003).

3.3.2. Feeding habits, soil nutrient content and plant composition of the
ecosystem

The P. corethrurus diet is geophagous (i.e., feeding on soil) and can
be classified between the polyhumic (i.e., ingesting soil with high or-
ganic matter content) and mesohumic (i.e., feeding indiscriminately on
both mineral and organic particles) endogeic categories (Barois et al.,
1999; Lavelle et al., 1987). Research has suggested that P. corethrurus
may derive much of its tissue carbon (C) from rhizospheric sources
(Spain et al., 1990) and fungal biomass may be its main source of N
(Lachnicht et al., 2002).

Its abundance is positively affected by organic matter availability
(García and Fragoso, 2002; Marichal et al., 2010; Ortiz-Gamino et al.,
2016), N availability (Li et al., 2010; Marichal et al., 2010) and P
availability (Marichal et al., 2011) in the soil. Therefore, this mor-
phospecies prefers rich soils in terms of organic matter and leaf litter
(Liu and Zou, 2002; Ganihar, 2003; García and Fragoso, 2003). It is,

Table 1
Morphological characteristics of P. corethrurus described in 13 papers focusing on its
taxonomy. External and internal morphological traits mentioned in more than 3 refer-
ences were recorded. The positions are based on segments.

Morphological traits Descriptions

External characteristics
Body length (mm) Minimum 60 (2,4,8), 92 (11, 13), 95 (3),

Maximum 75 (8), 120 (4,2), 100 (10), 111 (3), 128
(13), 148 (11), 155 (12)

Segment numbers Minimum 129 (12), 145 (3), 160 (10), 166 (2),
167 (5, 11, 13), 193 (8), 200 (6), 212
(4)

Maximum 165 (12), 200 (2, 10), 210 (8), 212 (3),
220 (13), 222 (5), 232 (11), 250 (6)

Pigmentation Absence (2, 4, 6, 10, 11)
Presence Pale brown (12), white to pink (13)

Clitellum Position XV-XXIII (2, 3, 4, 5, 10, 12) XIV-XXII
(11, 13), XV-XXI (8), XV-XXII (1)

Shape Saddle shaped (2, 4, 5, 7, 8, 11, 12, 13)

Tubercula pubertatis Position ½ XIX- ½ XXIII (3), XIX-XXI (2, 8), XIX/
n-XXI, XXII/n (4), XIX/2, XIX/n, XX to
XXI, XXII/n (5), XIX- ½ XXII (10), XVIII-
XXI (11), XIX-XXII (12), XV-XXI (13)

Shape Longitudinal bands of irregular shape
(4, 11, 12)

Dorsal pore Absent (2, 11, 12, 13)

Female pore Absence (8, 11, 13)
Presence (2, 5, 6, 10, 12)
Number One pair (10)
Position XIV-XV (10)

Male pore Absence (5, 8, 11, 12)
Presence (2, 4, 7, 13)
Number One pair (10)
Position XIX/XX (2), intersegmental in XX-XXI

(10), XVII (13)

Spermathecal pores Absence (11, 13)
Presence (2, 3, 5, 7, 10, 12)
Number Three pairs (7, 10, 12)
Position On intersegmental furrows of VI/VII-

VII/VIII-VIII/IX (7, 10, 12), VI/VII -
VIII/IX (2, 5)

Tail's quincunx
formation of
setae

Presence (2, 4, 5, 7, 8, 10, 11, 12, 13)

Caudal zone Position CVII-CXVIII (3), CXIII-CXXXIIII (5),
CXX-CXXX (9),

Number 4-7 (5), 5–7 (9) segments long
Internal characteristics
Typhlosole Presence (2, 4, 5, 7, 10, 11, 12, 13)

Caeca absence (7, 11, 12, 13)
Caeca presence (2)
Typhlosole
position (start)

XXI-XXV (4), XXIII-XXV (10), XV (11,
13), XXII (12)

Typhlosole
position (end)

CVIII-CXXXVIII (5), CXIII-CXXV (10)

Spermathecae Number Two pairs (1), three pairs (2, 3, 5, 7, 8,
10, 11, 12, 13)

Position VII-IX (2, 3, 5, 7, 8, 10, 11, 12, 13), VIII-
IX (1)

Shape Club-shaped (8), tubular (11)

Table 1 (continued)

Morphological traits Descriptions

Seminal vesicles Absence (5)
Presence (2, 4, 5, 7, 10, 11, 12, 13)
Number One pair (2, 4, 10, 11, 12, 13), 8 to 10

segments long (4, 5)
Position XII (2, 12), XV-XVII (11), XIII (13)
Shape Saccular (2, 12), follicular and flattened

(11), taped shape (10)

Calciferous glands Number Three pairs (1, 2, 3, 5, 7, 8, 10, 11, 13)
Position VII-IX (1, 2, 3, 5, 7, 8, 10, 11, 12, 13)
Shape Lingular and flattened (2), oval shaped

(11, 13), tubular (10, 12),

(1) (Beddard, 1893), (2) (Blakemore, 2006), (3) (Eisen, 1896), (4) (Gates, 1972), (5)
(Gates, 1973), (6) (Müller, 1857), (7) (Narayanan et al., 2016), (8) (Nxele, 2012), (9)
(Righi and Bittencourt, 1972), (10) (Righi, 1990) (11) (Shen and Yeo, 2005), (12)
(Tripathi and Bhardwaj, 2005), (13) (Tsai et al., 2000).



however, worth noting that Ayala and Barois (2016) showed in a la-
boratory experiments that P. corethrurus was unable to grow in an ex-
tremely rich substrate of 75–100% organic matter, the mortality rate
being between 56 and 100%.

P. corethrurus is also able to feed in environments where litter re-
sources are low (Lavelle et al., 1987; Marichal et al., 2010; Ponge et al.,
2006; Shilenkova and Tiunov, 2015). For instance, P. corethrurus
reached a remarkably high density (200 ind.m−2) in a soil extremely
poor in organic matter, the alluvial sandy soil of a gallery forest along
the Dong Nai River in the Cat Tien National Park, southern Vietnam.
The results of a microcosm experiment suggested that the high abun-
dance of these earthworms in poor sandy soils might be due to assim-
ilation of labile carbon released to the soil from plant roots (Shilenkova
and Tiunov, 2015).

Plant species differ in the quantity and quality of litter produced,
and these differences may significantly affect earthworm populations
(Zou, 1993): the density of P. corethrurus was higher in Hawaiian
plantations considered to have high litter quality (Albizia falcataria
plantations) compared with plantations with lower litter quality (Eu-
calyptus saligna). Plants may affect earthworm populations in other
ways; for instance León and Zou (2004) showed that the shift from grass
vegetation (Axonopus compressus) to woody plants (Miconia prasina) in
secondary forests of Puerto Rico decreased the abundance and biomass
of P. corethrurus through reducing fine root biomass.

3.3.3. Habitat
3.3.3.1. Vegetative cover. P. corethrurus seems to proliferate in disturbed
habitats (Marichal et al., 2010) and is often found to be dominant in
croplands, pastures, urban areas and gardens (Table 2). However, P.
corethrurus has also been found in forests (Table 2). In particular, it was
found to be dominant in the primary forests of the Manzillo Wildlife
Refuge and of the Tortuguero National Park in Costa-Rica (Lapied and
Lavelle, 2003), in the tropical rainforests of Puerto-Rico (Zou and
González, 1997) and in the cloud forest at the top of Luquillo Mountains
(Liu and Zou, 2002), a result highlighting that this species also lives in
undisturbed ecosystems.

3.3.3.2. Soil moisture and temperature. P. corethrurus populations are
generally found in areas where the annual mean temperature is above
20 °C. Reproduction being restricted to the 23–27 °C range, P.
corethrurus growth to the adult stage is only possible between 20° and
30 °C (Lavelle et al., 1987). Contrary to other tropical species (e.g.,
Meroscolex marcusi and Andiorrhinus caudatus), P. corethrurus is resistant
to dehydration (Ayres and Guerra, 1981). However, if the soil moisture
is too low (depending on the soil type), P. corethrurus may go into
diapause (i.e., temporary suspension in development) (Chuang et al.,
2004; Guerra, 1994). The use of soil moisture treatments as a gradient
of “optimal-stress” environmental conditions by Fragoso and Lozano
(1992), showed that juveniles and adults of P. corethrurus use different
strategies for tissue regeneration. In juvenile worms, caudal amputation
resulted in the initiation of diapause and, consequently, in the
activation of the process of regeneration, independently of
environmental conditions. Adults were only capable of regenerating
tissue during diapause, which mainly occurred under conditions of
environmental stress (soil dryness in the experiment). In a laboratory
experiment, Zhang et al. (2008) showed that soil dryness was the
primary factor limiting the reproduction of P. corethrurus.

3.3.3.3. Soil physico-chemical characteristics. Although P. corethrurus is
found in a wide range of soil types (e.g., Entisol-Oxisol, Vertisol,
Ferrasol, Ultisol, Fluvisol, and Andosol soils), Huerta et al. (2007)
showed in Tabasco, Mexico that it prefers sites with high silt content
(Fluvisol). It tolerates a wide range of soil pH (García and Fragoso,
2002; Lavelle et al., 1987) and, although it is often found in relatively
acidic soil i.e., from 4.5 to 6.8 (Table 2, Teng et al., 2013), it favors soils
with higher pH. Studying a wide range of deforested soils of Eastern

Amazonia, Marichal et al. (2010) revealed that P. corethrurus densities
covaried with pH and also with silt. Although it seems to favour soils
with high pH, Marichal et al. (2012) found a positive relationship
between mortality and pH in soil sampled in Eastern Brazilian
Amazonian soils with high pH values (7.41 and 7.96). Juveniles seem
more sensitive to pH than adults; Topoliantz et al. (2005) found that
treatments increasing pH, such as charcoal addition, promoted juvenile
activity (i.e., casting).

3.3.3.4. Soil contaminants. Zavala-Cruz et al. (2012) proposed that the
ability of P. corethrurus to colonize contaminated soils could be
favoured by a genetic plasticity that confers a certain tolerance to
pollutants or a specific genetic resistance to pollutants. P. corethrurus
has indeed a broad tolerance towards soil contaminants and has been
found in different polluted sites. For instance, P. corethrurus was the
most abundant morphospecies (75% of the total abundance of the
community) in a site contaminated with hydrocarbons after an oil spill
about 20 years previously in Tabasco, Mexico (Hernández-Castellanos
et al., 2013), suggesting a high tolerance to benzo(a)pyrene (BaP).

A similar tolerance to trace elements has been reported by Duarte
et al. (2014) in a lead (Pb) mining site in Southern Brazil. They showed
that P. corethrurus biomass, cast production and survival rates were
reduced only at high Pb soil concentrations (9.716 μg g−1), compared
to low and intermediate Pb concentrations (maximum 4.278 μg g−1).
Similarly, P. corethrurus mortality, growth and cocoon production were
affected only at high mercury (Hg) concentrations (50 and 100 μg g−1

soil) after 56 days in a laboratory experiment with soils from forested
sites in French Guiana (Da Silva et al., 2016). Buch et al. (2017) worked
on soils of two Brazilian forest conservation units that had been pol-
luted by Hg due to atmospheric deposition. They found cocoon pro-
duction and earthworm growth to be affected at much lower con-
centrations of Hg i.e., 8 μg g−1 than that reported by Da Silva et al.
(2016). At this concentration, P. corethrurus individuals were not found
to avoid the contaminated soil. As with other contaminants and
earthworm species (Pelosi et al., 2014), the bioavailability of chemicals
in soils is highly dependent on soil properties (Van Gestel and Weeks,
2004). Therefore, the effects of trace elements on P. corethrurus are
likely to depend on soil type, moisture, temperature and many other
soil characteristics.

Only a few studies have investigated P. corethrurus sensitivity to
pesticides. Kale and Krishnamoorthy (1979) assessed the effects of the
insecticide Sevin (i.e., 1-naphthyl-n-methylcarbamate) which was
mixed with a clay loam in the laboratory. They found the lower con-
centrations (i.e., 37.5–75 ppm) to have a stimulatory effect on earth-
worm growth and survival rather than an inhibitory effect. However,
the highest concentrations (i.e., > 150 ppm) resulted in growth delays
and reduced rates of survival. Forster et al. (2006) showed that P.
corethrurus was very sensitive to the fungicide carbendazim. This fun-
gicide, forbidden in Europe since 2009, caused a decrease in P. core-
thrurus abundance during a three-month experiment under laboratory
conditions using intact soil-core terrestrial model ecosystems (TMEs).
This result was confirmed by Buch et al. (2013) who revealed that
carbendazim at 3.16 mg a.i.kg−1 and the insecticide carbofuran at 5 mg
a.i.kg−1 applied in boxes filled with artificial tropical soil (TAS, a
substrate used in ecotoxicological tests (OECD, 1984)) had lethal effects
on this morphospecies.

Finally, the response of P. corethrurus to herbicides is variable, as it
is for the other contaminants mentioned above. Even at the highest
concentrations of a glyphosate-based herbicide (GBH) (47 mg a.i.kg−1),
Buch et al. (2013) did not find any significant effect on mortality.
Conversely, García-Pérez et al. (2014) showed that GBH could have
lethal impacts on P. corethrurus, as the application of GBH to coffee
plantations thrice a year caused significant reduction in P. corethrurus
density (167 and 353 ind.m−2 with and without herbicide, respec-
tively) and biomass (23 and 45 g m−2 with and without herbicide,
respectively). However, in another study under laboratory conditions



Table 2
Relative abundance and dominance status of P. corethrurus based on papers published since 2000. The relative abundance of other species (sp.) is also presented. When the information
was available, it is indicated when the species was considered dominant (D).

Habitat Country Soil pH Relative abundance (%) Refa

P. corethrurus other exotic sp native sp undefined origin sp

Forest Secondary forest Brazil _ 25.0 75.0 _ _ 1
Disturbed native forest Brazil 5 _ 100 _ _ 2
Forest of the Cahuita National Park Costa Rica _ 68.2 (D) 31.8 _ _ 3
Peripheric primary forest of Tortuguero National Park Costa Rica _ 100 (D) _ _ _ 3
Primary forest of the Manzanillo Wildlife Refuge Costa Rica _ 91.4 (D) 8.6 _ _ 3
Remote primary forest of Tortuguero National Park Costa Rica _ _ _ 100 _ 3
Forest Cuba 5.62 65.8 (D) 21.4 12.8 _ 4
Mixed forest India 4.62 28 (D) 22.3 49.7 _ 5
Elfin woodland Puerto Rico _ 14.7 16.5 68.8 _ 6
Flooded Pterocarpus Puerto Rico _ _ _ 100 _ 6
Lowland moist forest Puerto Rico _ 51.5 34 14.5 _ 6
Lowland dry forest Puerto Rico _ _ 100 _ _ 6
Palo colorado forest Puerto Rico _ 51.7 _ 48.3 _ 6
Sierra palm forest Puerto Rico _ 85.7 2.4 11.9 _ 6
Tabonuco forest Puerto Rico _ 80.2 2.4 17.4 _ 6
Forest with coffee (Coffea arabica) Puerto Rico 6.7–6.8 100 (D) _ _ _ 7
Forest with fern (Dicranoteris flexusosa) Puerto Rico 5.8–6.8 100 (D) _ _ _ 7
Forest with Selaginella spp. Puerto Rico 5.3–5.9 79.0 (D) _ 21.0 _ 7
Maricao State Forest Puerto Rico 4.5–5.0 98.0 (D) _ 2.0 _ 8
Wet forest (well-drained areas) Puerto Rico 4.7 97.0 (D) 1.0 2.0 9
Wet forest (Tabonuco forest) Puerto Rico 5.9 95.0 (D) 5.0 9
Fresh water swamp forest Singapore _ 86.0 _ _ 14.0 10
Bukit Timah nature reserve (foret) Singapore _ 12.5 _ _ 87.5 10
Upper seletar resevoir park (foret) Singapore _ 91.6 _ _ 8.4 10
Dry evergreen forest Thailand _ 58.8 _ _ 41.2 11
Dry dipterocarp forest fired Thailand _ _ _ _ 100 11
Dry dipterocarp forest-non fired Thailand _ _ _ _ 100 11

Wetland Sungei buloh wetland reserve (covered with
mangroves)

Singapore _ 87.2 _ _ 12.8 10

Pasture and grassland Cultivated pasture Brazil 5.3 50.0 50.0 _ _ 2
Perennial pasture Brazil 4.6 _ 100 _ _ 2
Old pastures 1 Brazil _ 43.0 39.0 18.0 _ 1
Old pastures 2 Brazil _ 96.0 (D) 2.1 1.9 _ 1
Pasture Cuba 5.6 11.3 74.8 (D) 13.9 _ 4
Pasture (extensive cattle farming) 1 Mexico 6.6 19.6 _ 80.4 _ 12
Pasture (extensive cattle farming) 2 Mexico 6.6 37.0 63.0 _ _ 12
Pasture (semi-intensive cattle farming) 1 Mexico 5.5 46.0 54.0 _ _ 12
Pasture (semi-intensive cattle farming) 2 Mexico 5.6 _ 100 _ _ 12
Rifle range (grass field) Singapore _ 54.1 _ _ 45.9 10
Grassland Thailand _ 55.6 _ _ 44.4 11

Culture and plantation Grain crop (converted from an old pasture) Brazil _ 87.0 (D) 8.3 4.7 _ 1
Grain crop field 1 Brazil _ 0 66.5 33.5 _ 1
Grain crop field 2 Brazil _ 0 30.0 70.0 (D) _ 1
Sugarcane (Saccharum sp.) 2 Brazil _ 10.0 60.0 30.0 _ 1
Sugarcane (Saccharum sp.) 1 Brazil _ 41.0 50.0 9.0 _ 1
Manduirana plantation Brazil 5.6 _ 100 _ _ 2
Banana plantation Costa Rica _ 100 (D) _ _ _ 3
Mixed fruit plantation India _ 20.0 8.3 71.7 (D) _ 13
Pineapple plantation India _ 10.4 1.9 87.7 (D) _ 13
Rubber plantation India 4.7 71.8 (D) 5.4 22.8 _ 14
Rubber plantation India 4.5 76.5(D) 3.3 20.2 _ 5
Agricultural ecosystem Malaysia 6.1 7.8 _ _ 92.2 (D) 15
Rice paddy Thailand _ 27.3 _ _ 72.7 11
Cassava plantation Thailand _ 55.8 _ _ 44.2 11
Forest plantation Thailand _ 93.3 _ _ 6.7 11
Mango plantation Thailand _ 71.4 _ _ 28.6 11
Sugarcane plantation Thailand _ _ _ _ 100 11

Urban area and gardens Lawn Brazil 4.6 25.0 75.0 _ _ 2
Bribri village Costa Rica _ 100 (D) _ _ _ 3
Cahuita village Costa Rica _ 91.8 (D) 8.2 _ _ 3
Puerto Viejo village Costa Rica _ 89.7 (D) 10.3 _ _ 3
Campus of National University of Singapore Singapore _ 16.7 _ _ 83.3 10
Kranji wireless station Singapore _ 80.8 _ _ 19.2 10
Singapore botanic gardens Singapore _ 91.7 _ _ 8.3 10
Household area Thailand _ 27.2 _ _ 72.8 11
Office building area 1 Thailand _ 52.0 _ _ 48.0 11
Office building area 2 Thailand _ 51.0 _ _ 49.0 11

a References: (1) (Nunes et al., 2006), (2) (Ressetti, 2006), (3) (Lapied and Lavelle, 2003), (4) (Martinez and Sanchez, 2000), (5) (Chaudhuri and Nath, 2011), (6) (González et al.,
2007), (7) (Borges et al., 2006), (8) (Hubers et al., 2003), (9) (González et al., 1999), (10) (Shen and Yeo, 2005), (11) (Somniyam and Suwanwaree, 2009), (12) (Ortiz-gamino et al.,



by the same authors, earthworms exposed to a Coffea litter polluted by
GBH produced the same number of cocoons as P. corethrurus fed with
the unpolluted litter (García-pérez et al., 2016).

3.4. Impact of P. corethrurus on its environment

3.4.1. Physical impacts on soil structure
P. corethrurus is known to compact soil. As a consequence of its

feeding activity, small aggregates are progressively transformed into
larger aggregates which tend to accumulate in the absence of other
agents that break down these larger aggregates; the soil is thus pro-
gressively compacted (Alegre et al., 1996; Blanchart et al., 1997). The
accumulation of casts by P. corethrurus at the soil surface under moist
soil conditions may result in the formation of a continuous muddy layer
of earthworm casts if “decompacting” activities by other invertebrate
populations are too weak. The growth of plants is then prevented and
when droughts occur, this layer turns into a compact thick crust. As a
consequence, large patches of bare soil impermeable to water and air
are generated (Chauvel et al., 1999). Alegre et al. (1996) observed a
significant increase in bulk density from 1.12 to 1.23 g cm−3 and a
decrease in porosity from 58% to 53% in the presence of P. corethrurus
in a loamy soil in Peru. Similar changes were found in a reciprocal
transplant study by Barros et al. (2001) where blocks of forest soil with
48% porosity (in an experimental station in Central Amazonia in Brazil)
were transferred to a pasture with 16% porosity where P. corethrurus
was very abundant (400 ind.m−2) and vice versa. After 1 year, the
transplanted blocks of forest soil presented a porosity of 26%, whilst the
transplanted blocks of pasture soil presented a porosity of 34%.

By contrast, in certain circumstances, P. corethrurus contributed to
soil bioturbation processes and decreased soil compaction. Zund et al.
(1997) demonstrated that the presence of P. corethrurus decreased bulk
density and increased aeration of a compacted Oxisol from Australia.
Moreover, Hallaire et al. (2000) showed, in a sandy loam soil in Yur-
imaguas, Peru, that P. corethrurus activity induced a compaction of the
surface soil, through a coalescence of casts, in plots without organic
inputs whereas they created a crumb structure in plots with high soil
organic matter contents. Although it is generally accepted that soil
compaction by macroaggregation occurs when soil organic matter
(SOM) is missing, Sparovek et al. (1999) showed that P. corethrurus
inoculation, with or without organic matter amendment, resulted in soil
compaction in an acidic Oxisol of Brazil.

3.4.2. Chemical impacts
3.4.2.1. Organic matter mineralization and nutrient cycling. Earthworm
activity via the production of casts is recognized as an important factor
affecting C, N and phosphorus (P) cycles in the soil and CO2 and N2O
fluxes from the soil to the atmosphere (Chapuis-Lardy et al., 2010;
Jiménez et al., 2003; Lavelle et al., 1998). The activity of such endogeic
geophagous earthworms is often considered to increase C
mineralization in the short term and favour C storage through the
stabilization of SOM in stable micro-aggregates in the long term
(Lavelle et al., 1997; Lavelle and Martin, 1992; Lavelle and Spain,
2001). The influence of earthworms on SOM and nutrient dynamics
may depend on a number of factors including the time frame in
question but also inherent soil properties, the form of management in
place (Fonte et al., 2010) and the interaction with plants (Fonte et al.,
2012). Using microcosm experiments, Fonte et al. (2010) showed that,
in the first 15 cm layer of the soil, P. corethrurus decreased the total soil
C by 3% under the Quesungual slash-and-mulch agroforestry system of
western Honduras (QSMAS). The QSMAS is an agricultural system with
short fallow periods and promoted by extension agents with the
intention of reducing the slash-and-burn agricultural strategy (Pauli
et al., 2005). By comparing treatments with and without earthworms in
maize crops under no tillage in the Peruvian Amazonia, Desjardins et al.

(2003) showed that the total carbon content of the 0–10 cm depth was
dramatically reduced by 28% in the earthworm – inoculated plots. The
results of a 5 months incubation of P. corethrurus with added rice and
soybean residues suggested that incorporation of organic C by
earthworm was higher with smaller rice residues than with larger and
woodier soybean residues (Coq et al., 2007).

Earthworm activity is recognized to be an important factor in reg-
ulating CO2 fluxes from the soil to the atmosphere (Speratti and
Whalen, 2008). We found only one laboratory study investigating this
issue with P. corethrurus. The study showed that its presence in Ferralsol
of Madagascar induced a significant increase in CO2 emissions
(Chapuis-Lardy et al., 2010).

In addition to its effects on C dynamics, P. corethrurus is known to
enhance N mineralization and availability (Araujo et al., 2004;
González and Zou, 1999; Lafont et al., 2007; Lavelle et al., 1992; Tapia-
Coral et al., 2006). For instance, Lavelle et al. (1992) showed that
mineral N concentrations ranged from 133.1 to 167.8 μg N per gram
dry soil in fresh casts of this morphospecies fed on an Amazonian Ul-
tisol. This was approximately five times higher than the concentration
in the non-ingested soil. Similarly, Pashanasi et al. (1992) and Araujo
et al. (2004) found that the introduction of P. corethrurus significantly
increased the soil microbial biomass-N (bio-N) and mineral-N avail-
ability in various experiments. However, in a mesocosm experiment,
Fonte and Six (2010) found no significant effect of P. corethrurus on
potentially mineralizable N using a method that measured relatively
labile sources of organic N.

Finally, it is generally accepted that earthworms increase P avail-
ability across a wide range of agroecosystems (Jiménez et al., 2003;
Lopez-Hernandez et al., 1993). A significant increase of exchangeable
phosphate was observed in the casts of P. corethrurus in several ex-
periments carried out in mesocosms using topsoil dug to a maximum of
25 cm depth (Chapuis-Lardy and Brossard, 1995; Chapuis-Lardy et al.,
1998, 2009; Lopez-Hernandez et al., 1993; Sabrina et al., 2013), thus
confirming its important contribution to phosphate cycling in tropical
soil surface layer. Surprisingly, Fonte and Six (2010) observed a de-
crease in P availability in presence of P. corethrurus in the surface 15 cm
of mesocosms that were incubated under field conditions within the
QSMAS in western Honduras. They proposed that increased P enrich-
ment and availability in casts comes at the expense of lower P content
and availability in non-ingested soil.

3.4.2.2. Metal mobility and availability in soils. In general, earthworms
increase the availability and mobility of essential (e.g., Zn, Cu, Mn, Fe)
and non-essential (e.g., Cd, Pb, Hg) metals in both contaminated and
uncontaminated soils (Sizmur and Hodson, 2009). Using a sequential
extraction procedure, Duarte et al. (2012) revealed that P. corethrurus
significantly reduced the amount of Pb in the soluble and exchangeable
forms in the soil, and increased the Pb bound in Fe and Mn oxides in the
casts. This can be beneficial for soil bioremediation. In addition,
Jusselme et al. (2015) found that P. corethrurus has an indirect impact
on the Pb phytoextraction ability of Lantana camara. The presence of
earthworms enhanced L. camara biomass by about 1.5–2 times, thereby
increasing the uptake of Pb two to threefold (Jusselme et al., 2015).

3.4.3. Impact on biotic factors
3.4.3.1. Effect on other earthworm species. Pontoscolex corethrurus may
reach high densities in some areas. Marichal et al. (2010) surveyed 270
sites in Brazil and Colombia and showed that where P. corethrurus
occurred, its average density was 90.2 ind.m−2, ranging from 5.3 to
567 ind.m−2. The density of P. corethrurus populations is often
inversely correlated with the density of other earthworm species
(Chaudhuri and Nath, 2011; González et al., 1996; Lapied and
Lavelle, 2003; Römbke et al., 2009).

Some studies have suggested that an increase in density of P.

2016), (13) (Dey and Chaudhuri, 2014), (14) (Chaudhuri et al., 2008), (15) (Teng et al., 2013).



corethrurus could cause the loss of native species populations (Fragoso
et al., 1995; Lapied and Lavelle, 2003). However, the coexistence of this
morphospecies with native species has been observed in several sites of
different forests in Cuba, India, Puerto Rico, in pastures in Brazil, Cuba
and Mexico and in cultures and plantations in Brazil and India
(Table 2). The coexistence or replacement of native earthworms by
exotic ones may depend on the disturbance history and the state of
naturalness of the landscape (González et al., 2006). Different re-
lationships among P. corethrurus and native earthworms may depend on
the specific context of the study area. For instance, in a mid-altitude
Tabonuco forest (400 m above sea level) in Puerto Rico, Hendrix et al.
(1999) showed that the niches of P. corethrurus and the native earth-
worm Estherella sp. Overlapped completely in sites rich in N resources.
On the other hand, in a tropical forest in Puerto Rico, Lachnicht et al.
(2002) found the activity of Estherella sp. and P. corethrurus to be spa-
tially separated, and it appeared that they excluded each other from
bottom and surface layers. Marichal et al. (2010) suggested that the
replacement of native species by P. corethrurus is a result of changes in
the environment, such as deforestation in tropical rainforest areas, that
affect both groups of species differently, rather than the result of
competition between invasive and native species. They proposed that
while native species tend to disappear because of the destruction of
their habitats and reduction of their food sources, P. corethrurus can
occupy the soil with increased pH, C and nutrient contents created by
the deforestation and burning.

In some cases, the dominance of native species over P. corethrurus
was found, such as in pineapple plantations of West Tripura in India
where the endogeic native species Drawida assamensis was dominant
although P. corethrurus was present (Table 2, Dey and Chaudhuri,
2014).

Lastly, P. corethrurus may coexist with other exotic earthworm
species (Table 2) such as Dichogaster spp in Brazil and Costa Rica(Lapied
and Lavelle, 2003; Nunes et al., 2006), Ocnerodrilus occidentalis and
Drawida barwelli in Puerto Rico and Cuba (González et al., 2007;
Martinez and Sanchez, 2000) Amynthas gracilis and Octolasion tyrtaeum
in Mexico (Ortiz-gamino et al., 2016) and Metaphire houlleti, M. post-
huma, Perionyx excavatus and Amynthus alexandri in India (Dey and
Chaudhuri, 2014).

3.4.3.2. Effect on nematodes. Earthworms can have either a direct (e.g.,
by ingestion) or an indirect (i.e., by physical and chemical changes of
soil properties) impact on plant-feeding nematodes (Blouin et al., 2005;
Lafont et al., 2007; Senapati, 1992; Wurst, 2010). Under laboratory
conditions, Boyer et al. (2013) revealed a decrease in Heterodera
sacchari and Pratylenchus zeae populations, two plant parasitic
nematodes, in the presence of P. corethrurus. They highlighted a
transit effect on nematode populations during the passage through
the earthworm gut. However, Lafont et al. (2007) and Loranger-
Merciris et al. (2012) found that the density of the banana feeding
nematodes Radopholus similis, Pratylenchus coffeae and Helicotylenchus
multicinctus did not significantly decrease in presence of P. corethrurus in
microcosm experiments, although they observed significantly less root
damage induced by nematodes. Finally, P. corethrurus may have a
positive effect on total nematode densities, as shown by Villenave et al.
(2010) in a 5-month field mesocosm experiment conducted in
Madagascar. The authors revealed that P. corethrurus stimulated the
microbial community, which increased the density of the dominant
microbiovorous bacterial-feeding and fungal-feeding nematodes.

3.4.3.3. Effect on soil microorganisms. Endogeic earthworms have
developed complex interactions with soil microorganisms. In
particular, the digestion process in the earthworm gut is known to
enhance microbial activity (Barois and Lavelle, 1986; Drake and Horn,
2007). The feeding activity of P. corethrurus has been shown to result in
increased microbial biomass and activity in casts after soil was passed
through the gut and excreted (Barois, 1992; Barois and Lavelle, 1986;

Bernard et al., 2012). Thus, P. corethrurus has provided a basis for the
‘sleeping beauty’ hypothesis where water and soluble-C in the form of
intestinal mucus produced by the earthworm awakens dormant
microbial communities in the gut, thereby increasing mineralization
of the stable forms of SOM ingested (Lavelle et al., 1983). While
dormant microorganisms may be activated during their transit through
the gut, others remain unaffected, and yet others digested in the
intestinal tract (Drake and Horn, 2007). Barois (1992) pointed out
dissimilarities of gut microbial activity among P. corethrurus
populations suggesting that different populations might show
differences in physiological genetics and/or in the intensity of the
mutualism with the soil microbial communities. This latter study also
demonstrated that temperature has a direct effect in triggering
microbial activity within the gut of P. corethrurus.

3.4.3.4. Effect on plants. Earthworms generally have positive effects on
plant growth in the tropics (Brown et al., 1999) by affecting soil
maccroaggregation and availability of nutrients. We previously
highlighted (section 3.4.1) that soil macroaggregation by P.
corethrurus often resulted in increased soil bulk density, and
decreased total soil porosity and water infiltration, along with some
changes in the soil moisture patterns. Such changes in a sandy loamy
soil might be beneficial to some crops such as shown by Alegre et al.
(1996) for rice cowpea and maize. Pashanasi et al. (1996) showed that
the inoculation of P. corethrurus at a density of 90 ind.m−2 had a
positive effect on soil properties and plant production in low-input
cropping systems at Yurimaguas (Peru), although this positive effect
varied depending on rainfall, plants and organic inputs. In particular,
maize seemed to respond better than rice to earthworm effects, while
cowpea did not respond at all.

A major factor affecting plant growth, in relation to the presence of
earthworms, is the availability of resources. If the casts, which are
enriched in nutrients necessary for plant growth such as N, P, and po-
tassium (K) (Chaudhuri et al., 2012; Lopez-Hernandez et al., 1993) are
deposited close to plant roots, they can have significant positive im-
pacts on plant growth (Lavelle et al., 1992). For instance, Loranger-
Merciris et al. (2012) showed that P. corethrurus enhanced dessert ba-
nana growth through increased P availability in its casts. In another
study, the presence of P. corethrurus increased aboveground biomass of
Brachiaria decumbens by 30%, via increased availability of soil nutrients
(Fonte et al., 2012).

The activity of P. corethrurus may also promote plant health. Teng
et al. (2016) demonstrated that the severity of banana blood disease
(i.e., a destructive bacterial infection caused by Ralstonia solanacearum)
decreased after the inoculation of P. corethrurus. This process was ex-
plained by a higher plant biomass in comparison to controls, as roots
were exposed to high densities of beneficial microorganisms through
burrowing and casting activities of the earthworms (Teng et al., 2016).

4. Discussion

4.1. Components of P. corethrurus invasion success

Identifying traits correlated with invasiveness is a central goal in
invasion ecology. It is generally agreed that distinct characteristics are
important during different stages of the invasion process (e.g., Ribeiro
et al., 2008). In particular life history traits (i.e., traits involved in re-
production, growth and survival) may help to differentiate potentially
successful and unsuccessful invaders (Sol et al., 2012). During the first
stage of the invasion, which is the arrival of a species in a new habitat,
one or more propagules of a species must first be carried and survive the
dispersal. Most long-distance introductions of P. corethrurus to new
areas are the direct or indirect result of human activities. This earth-
worm was thus transported throughout the world (Fig. 2) and these
events that were probably recurrent are extremely difficult to date.

Once propagules are introduced, a successful invader must establish



a reproducing population. P. corethrurus is a continuous breeder with a
high fecundity rate, a high hatching success and a short development
time (Lavelle, 1981). Organisms with such characteristics are often
classified as r-selected and recognized to be frequently colonizing spe-
cies (Bufford and Daehler, 2011). The fact that P. corethrurus can re-
produce by parthenogenesis predisposes this species to invasiveness.
Indeed, the ability of a single individual to establish a population is an
important characteristic of many invasive species (e.g. Dybdahl and
Drown, 2011). Yet, parthenogenetic species lack the capacity to gen-
erate novel genetic variation necessary for evolvability (i.e., the ability
of a population to adapt in response to environmentally induced stress,
Waddington, 1965) due to the absence of bi-parental reproduction and
genetic recombination. It has been suggested however, that P. core-
thrurus is capable of bi-parental reproduction (Dupont et al., 2012;
Gates, 1973). Such a mixed-mating system, allowing reproduction
through inbreeding and outbreeding according to mating possibilities,
is a trait that may favour the rapid establishment of an exotic species in
new areas (Dupont et al., 2007). The possibility of sexual reproduction
should be investigated by genotyping parents and offspring from cross
experiments. Moreover, knowledge of the ploidy level of P. corethrurus
could help to better understand its reproductive mode. Indeed, par-
thenogenesis is closely linked to polyploidy in earthworms and odd
number of chromosomes are often incompatible with sexual re-
production (Shen et al., 2011).

Competitive ability is another trait that may confer an advantage for
invasive species during establishment. Many studies have documented
invaders that show a superior ability to exploit local resources when
compared with native residents (Sakai et al., 2001). Plasticity, i.e., the
ability of an organism to cope with a wide variety of habitats and
conditions, is thus an important factor in the success of the establish-
ment step (Bufford and Daehler, 2011). P. corethrurus is described as
euryecic (i.e., of wide ecological plasticity). For instance, P. corethrurus
has a broad tolerance towards soil contaminants. Its fitness (i.e., in-
dividual reproductive success to participate in next generation pool
gene) in different polluted sites is affected only at high pollutant con-
centrations. P. corethrurus also presents a reproductive plasticity; an
adjustment of cocoon production (number and weight) and incubation
period have been observed in different situations (Bhattacharjee and
Chaudhuri, 2002; García and Fragoso, 2003).

Another important sign of plasticity of this species is its flexible diet.
Although P. corethrurus prefers rich soils in terms of organic matter and
leaf litters, it is able to proliferate in extremely poor soils (Shilenkova
and Tiunov, 2015). Marichal et al. (2010) proposed that P. corethrurus
can occupy soils where other earthworm species are not present or have
disappeared due to soil use and management.

In addition to the invasiveness of the species, another component of
the invasion success is the invasibility of the recipient ecosystem
(Mitchell et al., 2006). The hypothesis of ecological opportunity pro-
poses that extinction of native species, and in consequence the creation
of ‘empty’ niches, promote the establishment of exotic species (Elton,
1958). Since human-caused environmental changes may alter native
species survival, they may favour a few introduced species that would
competitively displace many other species from a region (Tilman and
Lehman, 2001). Land use history plays thus a major role in determining
the abundance and community structure of earthworms and the es-
tablishment of exotic earthworms in areas previously inhabited by na-
tive worms. For example, in the tropics, the conversion of forest to
pastures has been associated with significant decreases in soil macro-
invertebrate diversity (Lavelle and Pashanasi, 1989) and an increased
dominance of a few exotic earthworm species that can persist along
gradients of plant succession after disturbance (León et al., 2003; Zou
and González, 1997). Although invasion by P. corethrurus has been also
observed in undisturbed habitats (González et al., 2006; Hendrix et al.,
1999), it seems that land use conversion is a main reason for P. core-
thrurus dominance in different parts of the world (Marichal et al., 2010;
Zou et al., 2006).

Once initial colonization and establishment have occurred, invasive
species may spread from long- and short-distance dispersal. The rate of
range expansion will obviously be influenced by propagule pressure
and dispersal capacity but also by the ability of individuals to survive
and reproduce in the new range where the invasive species may en-
counter novel selective regimes (Sakai et al., 2001). The evolution of
such local adaptation requires genetic variation. Little is known about
the genetic composition of P. corethrurus populations. Studies of po-
pulation genetics might provide valuable information about the process
of invasion, for instance by comparing the genetic composition of re-
cently established populations with populations in the native range.

The last phase of the invasion process is the integration of the
species in the ecosystem and its impact on the environment. The impact
of P. corethrurus on soil physical structure may be either detrimental or
beneficial. Depending on the SOM content, its activity may either
promote soil compaction, especially when populations of other “de-
compacting” species are not present, or contribute to soil bioturbation
(Hallaire et al., 2000). Moreover, P. corethrurus is known to accelerate
biogeochemical fluxes (González et al., 2006). In particular, its casting
activity may increase the N and P availability in agroecosystems. P.
corethrurus presence may thus be beneficial for plant growth. Teng et al.
(2016) also demonstrated its positive effect on plant health.

The impact of P. corethrurus on other earthworm species and in
particular on native species is still an open question. Some studies have
stated that an increase in densities of P. corethrurus might directly cause
the disappearance of native species and that once established in areas
inhabited by native species, its effects on soil properties prevent the re-
colonization by native species populations (Fragoso et al., 1995; Lapied
and Lavelle, 2003). However, P. corethrurus has been observed in co-
existence with native species in some disturbed sites (Table 2). These
observations suggest the absence of competitive exclusion as proposed
by Marichal et al. (2010).

The literature about biotic interactions with P. corethrurus is almost
exclusively about earthworm/earthworm and plant/earthworm inter-
actions except for a few studies on nematodes. Information about the
interaction between P. corethrurus and other soil macrofauna species is
lacking. For instance, P. corethrurus has been observed in termite gal-
leries (Gates, 1972) but, to our knowledge, no studies on their inter-
actions have been carried out. Moreover, almost no data exist on
parasites, pathogens and predators of this species, though such in-
formation could improve our understanding of P. corethrurus invasive-
ness.

4.2. Evidence of cryptic diversity?

Moreno (2004) mentioned the possibility that studies interested in
P. corethrurus could have mistakenly studied other species in the same
genus. Although several complexes of cryptic species have been re-
cently described in earthworms, highlighting the difficulties of mor-
phological diagnosis in this taxon (King et al., 2008; Novo et al., 2010;
Pérez-Losada et al., 2009; Shekhovtsov et al., 2016), there is not much
data available in the literature on the genetic diversity within the P.
corethrurus morphospecies (Cunha et al., 2014; Dupont et al., 2012). In
three populations of P. corethrurus in the Azores archipelago, Cunha
et al. (2014) revealed the existence of two genetically divergent
lineages which were morphologically indistinguishable. They showed
that one of the lineages was able to cope with the extreme conditions
found in the caldera of a volcano where it tolerates a mixture of non-
anthropogenic chemical and physical stressors. This lineage could
correspond to a new species and, in this case, the adaptation to the
caldera environmental conditions cannot be interpreted as the sign of
plasticity of P. corethrurus but instead as the result of a speciation
process. This example illustrates that cryptic species may be different in
their biological and ecological features and preferences (Birky et al.,
2010). Thus, it is conceivable that the variable impacts of P. corethrurus
on the environment, such as its compacting and de-compacting effects,



are evidence of two different species. In this particular case, it seems
however that opposite effects are most likely due to soil characteristics.
Diaz Cosin et al. (2011) highlighted that comparing published data
dealing with species belonging to a complex of cryptic species is dan-
gerous, as the authors could have incorrectly identified the species.
They recommended that authors deposit the individuals used in the
experiments into a collection in order to eliminate this uncertainty.

By comparing P. corethrurus description in different published pa-
pers (Table 1), some morphological variability was observed. Further
studies are now needed in order to determine if this variability could be
explained by the existence of several cryptic species (e.g., James et al.,
2010). To test this hypothesis, the concordance between morphological
and phylogenetic identification of P. corethrurus should be tested in
samples coming from its whole distribution range. Moreover, in-
vestigations of the reproduction mode and ploidy level of the different
lineages would help to test two alternative hypotheses concerning the
observation of sexual characters in some P. corethrurus specimens: (i)
some populations may be mixture of sexual and asexual lineages and
(ii) a unique lineage may have a mixed reproductive strategy allowing
shifts from sexual to parthenogenetic reproduction according to the
environmental conditions.

5. Conclusion

P. corethrurus is the most common and most studied tropical
earthworm morphospecies; this review integrated both the most recent
and earliest information on its biology and what makes it a successful
invader. Its impacts on the environment and other soil organisms were
found to be strongly influenced by soil characteristics as well as land
use and management. Most of the studies that have been reviewed here
have sampled the specimens in the introduced range of the species.
Although in some parts of the world this morphospecies has probably
reached the integration stage of the invasion process and has estab-
lished strong biological interaction within ecosystems, in its more re-
cently introduced ranges, P. corethrurus populations may not have
reached this stage yet. Thus, throughout its distribution area and given
the stage of the invasion process that has been reached, population
dynamics may be different and studies of ecological processes may not
be comparable.
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