Robust feature extraction algorithm suitable for real-time embedded applications

Abstract : Smart cameras integrate processing close to the image sensor, so they can deliver high-level information to a host computer or high-level decision process. One of the most common processing is the visual features extraction since many vision-based use-cases are based on such algorithm. Unfortunately, in most of cases, features detection algorithms are not robust or do not reach real-time processing. Based on these limitations, a feature detection algorithm that is robust enough to deliver robust features under any type of indoor / outdoor scenarios is proposed. This was achieved by applying a non-textured corner filter combined to a subpixel refinement. Furthermore, an FPGA architecture is proposed. This architecture allows compact system design, real-time processing for Full HD images (it can process up to 44 frames/91.238.400 pixels per second for Full HD images), and high efficiency for smart camera implementations (similar hardware resources than previous formulations without subpixel refinement and without non-textured corner filter). For accuracy/robustness, experimental results for several real world scenes are encouraging and show the feasibility of our algorithmic approach .
Type de document :
Article dans une revue
Journal of Real-Time Image Processing, Springer Verlag, 2017, 〈10.1007/s11554-017-0701-8〉
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01627719
Contributeur : Abiel Aguilar-González <>
Soumis le : jeudi 2 novembre 2017 - 11:50:46
Dernière modification le : jeudi 11 janvier 2018 - 06:28:14
Document(s) archivé(s) le : samedi 3 février 2018 - 13:21:20

Fichier

template.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Abiel Aguilar-González, Miguel Arias-Estrada, François Berry. Robust feature extraction algorithm suitable for real-time embedded applications. Journal of Real-Time Image Processing, Springer Verlag, 2017, 〈10.1007/s11554-017-0701-8〉. 〈hal-01627719〉

Partager

Métriques

Consultations de la notice

69

Téléchargements de fichiers

494