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Abstract The stereo matching is one of the most widely
used algorithms in real-time image processing applica-
tions such as positioning systems for mobile robots, three-
dimensional building mapping and both recognition, de-
tection and three-dimensional reconstruction of objects.
In area-based algorithms, the similarity between one pixel
of the left image and one pixel of the right image is mea-
sured using a correlation index computed on vicinities
of these pixels called correlation windows. In order to
preserve edges, small windows need to be used. On the
other hand, for homogeneous areas, large windows are re-
quired. Due to only local information is used, matching
between primitives is di�cult. In this article, FPGA im-
plementing of an e�cient similarity-based adaptive win-
dow algorithm for dense disparity maps estimation in
real-time is described. In order to evaluate the proposed
algorithm behavior, the developed FPGA architecture
was simulated via ModelSim-Altera 6.6c using di�erent
synthetic stereo pairs and di�erent sizes for correlation
window. In addition, the FPGA architecture was imple-
mented in an FPGA Cyclone IIEP2C35F672C6 embed-
ded in an Altera development board DE2. The dispar-
ity maps are computed at a rate of 76 frames per sec-
ond for stereo pairs of 1280� 1024 pixel resolution and
a maximum expected disparity equal to 15. The devel-
oped FPGA architecture o�ers better results with re-
spect to the most of real-time area-based stereo matching
algorithms reported in the literature, allows increasing
the processing speed up to 93,061,120 pixels per second
and enables it to be implemented in the majority of the
medium-gamma FPGA devices.

Keywords Adaptive window � Stereo matching � Dis-
parity map � FPGA.
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1 Introduction

The perception of the depht values of the points con-
tained in a scene is one of the most important tasks of the
computer vision systems and has been used in several ap-
plications such as positioning systems for mobile robots
and both recognition, detection and three-dimensional
reconstruction of objects [4, 5, 13].

Although numerous techniques exist to determine the
depth of a scene, to extract the information referring to
the depth from images obtained by a stereo con�gura-
tion has become the most used technique. In this tech-
nique the correspondence between stereo pairs and the
geometrical con�guration of the stereo camera allows to
obtain images of depth called disparity maps. In order
to determine a disparity map it is necessary to measure
the similarity of the points contained in the stereo pair.
Techniques to determine these similarities are divided
in two categories: area-based algorithms [2, 17, 34] and
feature-based algorithms [8, 12, 20].

Area-based algorithm use the grayscale or color value
of the surrounding pixels to the interest pixel for sim-
ilarity stimation and produce dense disparity maps, i.
e., they compute disparity for each pixel in stereo pair.
These algorithms are more e�cient in runtime, com-
puter resource consumption and mathematical simplic-
ity in comparison with features-based algorithms. On the
other hand, feature-based algorithms are based on spe-
ci�c interest points and are more stable against changes
of contrast, enviroment conditions and illumination due
to they represent the geometric properties of the scene
and the interest points are selected according to detec-
tors of speci�c features. The main restriction of feature-
based algorithms is that they do not allow to generate
dense disparity maps, therefore, they often need to be ap-
plied with other techniques. In addition, a pre-processing
stage for the extraction of features is necessary, which
increases the computational resource consumption and
runtime.

http://link.springer.com/article/10.1007/s11554-015-0530-6
http://link.springer.com/article/10.1007/s11554-015-0530-6
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Due to FPGAs devices allow high speed handling of
a large deal of information, several algorithms for the
estimation of disparity maps have been implemented in
these devices [16, 19]. Depending on the con�guration of
the cameras, the range of disparity levels varies; in the
case of implemented algorithms in FPGA, this implies a
signi�cant increasement of the consumption of hardware
resources, this has motivated diverse authors to study
the possibility of reducing that disadvantage [22, 29] and
search for new approaches to implement stereo vision
algorithms in FPGA devices.

2 Related works

The system presented in [37] consists in a 4� 4 array of
FPGAs connected in mesh type con�guration, authors
use a maximum total of near 35,000 LUT of 4 inputs,
allowing to process 40 frames per second for images of
320� 240 pixel resolution. In [6], a structure based on four
FPGAs Virtex 2000E of Xilinx is presented, obtaining
dense disparity maps at a speed of 40 frames per second
for images of 256� 360 pixel resolution. In [7], the use of a
single FPGA is proposed, the developed system processes
images at 30 frames per second using images of 640� 480
pixel resolution.

The architecture developed in [30], uses a technique
based on SAD to calculate the optical ow e�ciently,
the system generates dense disparity maps at speeds su-
periors to 800 frames per second for images of 320� 240
pixels using a correlation window of 7� 7 and a maxi-
mum expected disparity equal to 121. A modi�cation of
SAD is shown in [23], the authors of this work synthesize
diverse versions of SAD to determine the needs and the
performance of the hardaware resources, by decomposing
the correlation window of SAD in rows and columns us-
ing bu�ers a saving of resource of around 50% is reached.
Using di�erent forms of windows, the high consumptions
of memory decreases without any detriment of the qual-
ity. Disparity maps are calculated at speed of 122 frames
per second for images of 320� 240 pixels and a maximum
expected disparity equal to 64.

The architecture in [27] uses four FPGAs to con-
duct a recti�cation in real-time, later, a veri�cation of
left-right consistency was applied in order to improve
the quality of the produced disparity map. Speeds of
30 frames per second are reached for images of 640� 480
pixel resolution and a maximum expected disparity equal
to 128. In [2] an FPGA correlation-edge distance ap-
proach is proposed. Speeds of 76 frames per second are
reached for images of 1280� 1024 pixel resolution and
a maximum expected disparity equal to 15. By using
a geometric feature, the euclidean distance between the
selected point and the nearest left edge, the developed
FPGA architecture provides a improvement over oth-
ers conventional correlation-based stereo matching algo-
rithms.

In [9] one module for real-time disparity maps com-
putation implemented in an FPGA Stratix IV of Altera
is proposed, disparity maps are computed at a rate of
320 frames per second for images of 640� 480 pixels and
a maximum expected disparity equal to 80. Finally, the
module developed in [11] enables to process 275 frames
per second for images with a maximum expected dispar-
ity equal to 80 and 640� 480 pixel resolution, the pre-
sented architecture provides a high speed of processing at
expenses of the accuracy with great scalability in terms
of disparity levels.

2.1 Adaptive window algorithms

Several adaptive algorithms have been proposed to im-
prove results in both depth discontinuities and homoge-
neous areas. A technique of adaptive window in combi-
nation with SAD is used in [31], the algorithm processes
images of up to 1024� 1024 pixels and a maximum ex-
pected disparity equal to 32 at 47 frames per second.
Authors of [21] estimate the current depth by changes
correlation window size and shape. These changes were
performed iteratively according to the local variation of
the gray scale values. However, the algorithm is com-
putationally expensive and sensible to the initial depth
estimates. Autors of [36] have changed the window size
and shape by optimization over a large class of com-
pact windows via minimum ratio cycle. The algorithm
presented in [24] proposes using edges in the reference
image to determine the size of a rectangular window.
In [38], pixels are aggregated addaptively based on pixel
similarity using a tree structure. In [28], obtain the ag-
gregation process cost from a perspective of a histogram
is proposed.

In order to simplify the adaptive algorithms, several
algorithms have been proposed. Autors of [1] compute
correlation coe�cients on nine windows, and the one
yielding the lowest value is retained. In [15] the use
of a central window surrounded by several support win-
dows is proposed. The correlation coe�cients of the best
support windows, i.e., the lowest values, are added to
the coe�cient computed on the central window. The re-
duced number of windows used in these algorithms can-
not cover the whole range of di�erent sizes and shapes
required in all the situations. The use of non-parametric
measures has been proposed by autors of [39], in the Cen-
sus transform, each pixel and its surrounding is mapped
into a vector of boolean variables, which denoting the
ordering relation between the center pixel and a vicinity
pixel. Boolean vectors are compared using the Hamming
distance. Hamming distances are summed over a small
local area and the shift that minimizes Hamming dis-
tance is retained as the disparity. Non-parametric mea-
sures reduces the sensitivity to outliers but not resolves
the problem of the window size due to the window size
must remain small.
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(a) Ground truth map (b) SAD w = 1 (c) SAD w = 20

(d) Ground truth map (e) SAD w = 1 (f)SAD w = 20

(g) Ground truth map (h) SAD w = 1 (i) SAD w = 20

Fig. 1: Disparity maps generated for di�erent test synthetic stereo pairs by applying the SAD algorithm

3 Correlation using �xed size windows

The main disadvantage regarding to the algorithms de-
scribed in section 2.1 is that these can not be imple-
mented in a dedicated hardware for real-time process-
ing. However, in this research we are interested on stereo
matching algorithms suitable for real-time image pro-
cessing. The most adapted are correlation-based algo-
rithms such as the sum of absolute di�erences (SAD),
because they have a regular structure with �xed run-
time. In addition, several systems that use correlation-
based algorithms have been described in the literature.

In majority of area-based algorithms, a rectangular
vicinity centered on a reference pixel in one of the im-
ages from a stereo pair is compared with similar vicini-
ties for some pixels in the same raster line of the other
image. Vicinities are called correlation windows and can
be compared using a correlation-based measure such as
SAD:

Cl (x; y; s) =
i = wxX

i = � wx

j = wyX

j = � wy

jI l (x + i; y + j )�

I r (x + s + i; y + j )j ;

where I l (x + i; y + j ) and I r (x + i + s; y + j ) are the
grey scale values of the pixels within the window in
both images, called the left and right images respectively.
(2 � w + 1) 2 is the correlation window size,s is the shift
of the window in the right image and the maximal shift
of the correlation window in the right image is sm . A
correlation coe�cient is determined for each pixel and
the shift that minimizes the correlation coe�cient is re-
tained as the disparity. These algorithms yield a dense
depth map, but they need a high runtime.

Disparity maps generated by applying the SAD al-
gorithm on di�erent synthetic stereo pairs are shown in
Fig. 1. The main problem with this algorithm is to se-
lect the correlation window size. High window size values
allow to determine the correct correlation values in areas
with uniform texture. However, these window sizes imply
a high computational demand and erroneous values at
certain points due to the blurring edges and that small
features are eliminated Fig. 1.(c),(f),(i). On the other
hand, small window sizes imply low computational de-
mand but the correlation coe�cient measurement is sen-
sitive to noise, hence, erroneous values at uniform texture
regions are generated as seen inFig. 1.(b),(e),(h).
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In order to avoid of the main disadvantages of the
SAD algorithm (blurring edges and noise in homoge-
neous areas), the use of an adaptive correlation window
based on a similarity criterion suitable for real-time im-
age processing is proposed. Hence, in this article, an area-
based stereo matching algorithm in which the size and
shape of the correlation window are adjusted by each
pixel in the reference image according to its content and
his FPGA implementation are described. The proposed
algorithm uses the grey scale values variations in the win-
dow as a technique to determine the similarity criterion.
It is demonstrated that even with a simple similarity cri-
terion, the proposed algorithm outperforms other adap-
tive window algorithms and enables to be implemented
in a dedicated hardware for real-time processing such as
FPGA devices. Furthermore, it is demonstrated that the
developed FPGA architecture outperforms to the most
of other real-time area-based stereo matching algorithms
reported in the literature and allows to maintain a high
processing speed.

The rest of this paper is organized as follows:sec-
tion 4 presents the proposed algorithm and the tech-
nique to determine the similarity criterion used for the
selection of pixels. Insection 5, the FPGA architecture
for the proposed algorithm is described. Experimental
results for di�erents synthetic stereo pairs, a comparison
with other adaptive window algorithms, a comparison re-
garding to several real-time stereo matching implementa-
tions reported in the literature and FPGA implementa-
tion results are detailed in section 6. Finally, section 7
concludes this article.

4 The proposed method

The main objective in this research is to develop one
algorithm that uses a single window, which is processed
only once using a recursive approach appropriate for ded-
icated hardware real-time proccesing implementation. In
order to explain the proposed algorithm, the Tsukuba
scene shown in theFig. 2.(a) is used. This image presents
multiple objets at di�erents depths. Depth of each ob-
ject is indicated using grey scale values as shown in the
Fig. 2.(b).

a) Original image b) Ground truth

Fig. 2: Tsukuba scene

The pixels within the small overlapped window as il-
lustrated in Fig. 3.(a) include projections of points of
di�erent objects as shown at Fig. 3.(b). When correla-
tion coe�cient is computed using all the pixels of this
window, the averaging e�ect yields errors on the esti-
mated disparity. On the other hand, Fig. 3.(c) shows a
vicinity in which only the pixels that are the projections
of points of the same object are used while the other
are not considered and eliminated of the window. Pixels
that are not considered are indicated in black. Color of
the pixels retained is similar to the central pixel and they
have the same depth as shown in theFig. 3.(d). By using
this window, disparity estimation is more accurate.

a) Fixed window b) Disparities

c) Adaptive window d) Disparities

Fig. 3: Fixed versus adaptive window

In the Similarity-Based Adaptive Window algorithm
(SBAW), a �xed size window is centered on each pixel of
the reference image, but only the selected pixels by sim-
ilarity criterion are used to compute the correlation co-
e�cient. Any correlation coe�cient based on gray scale
values can be modi�ed using this technique. For exam-
ple, the standard SAD expression turns into:

Cl (x; y; s ) =
i = w xX

i = � w x

j = w yX

j = � w y

� (x; y; i; j ) � (1)

jI l (x + i; y + j ) � I r (x + s + i; y + j )j ;

where the coe�cient � (x; y; i; j ) is equal to 1 when the
pixels from the correlation window are projections of the
selected point, otherwise is zero.i and j are used in the
sum process. This corresponds to de�ne a window with
variable size and shape that can be adapted to the lo-
cal reference image data. In order that pixels within the
window correspond to the same object than the selected
pixel Pl (x; y), a pixel Pl (x + i; y + j ) is included or ex-
cluded from the window according to a similarity crite-
rion. If the two pixels are similar, � (x; y; i; j ) is set to 1,
otherwise is zero.
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4.1 Techniques to de�ne the similarity criteria

Several techniques are able to be used to de�ne the simi-
larity criterion. However, a technique based on recursive
approach is more suitable in terms of computational ef-
�ciency and facilitates his hardware implementation. In
this section a technique based on the comparison of the
grey scale values is described. It is demonstrated that
even a simple technique allows the use of adaptive win-
dows achieving to increase the disparity map accuracy.

4.1.1 Criterion based on comparison of the grey scale
values

We can assume that two pixels are not similar and they
have di�erent disparity, when there is a signi�cant dif-
ference between their grey scale values [40]. Then, we
set � (x; y; i; j ) to 1 only when the grey scale valuep(x +
i; y + j ) is close to the grey scale value of the selected
pixel p(x; y), i. e., if:

jp(x + i; y + j ) � p(x; y )j � T (x; y ) ; (2)

where T(x; y) is the maximum acceptable di�erence be-
tween the grey scale values. In practice, it is su�cient to
assign the value ofT 8 p(x; y) as a constant value de-
�ned by the user. However, the problem is to determine
an appropriate value for all points contained in the in-
put stereo pair. By analyzing simulations performed in
Matlab R2013a, it was determined that small values of
T are most appropriate for points contained in regions
near the edges while higher values ofT are more suit-
able for regions which belong to the same object. On the
other hand, it was determined that by assigning a con-
stant value to T erroneous stimations occur in regions
where due to the color of selected pixel, some pixels of
to the same object are eliminated from the correlation
window. Therefore, assigning toT a constant value does
not ensure that an appropriate value for each point of the
input stereo pair is used, furthermore, wrong stimations
will be obtained at some points.

In order to compute T the use of the sum of absolute
di�erences between the selected pixel and vicinity pixels
is proposed. This value ofT is adapted appropriately to
most points contained in the stereo pair. i.e., in homo-
geneous areas in which it is supposed that all the points
correspond to the same object,T is small and allows to
avoid noise points and punctual features of the object.
This enables to increase the accuracy of the correlation
measure. On the other hand, when multiple objects are
projected, the T value increases, however, this value al-
lows to di�erentiate between the object that includes the
selected point and others. Through multiple tests per-
formed in Matlab it was determined that the minimum
pixels required for anT accurate estimation are the pix-
els around the selected pixel,I l (x; y) (cf. Fig. 4, equa-
tion 4).

Finally, it was determined that in areas where the
variation of the correlation window is high, mainly the
points close to the corners of objects,T value is high
and the disparity estimation accuracy decreases. Even
with this limitation a high accuracy could be reached
(cf. Fig. 4). In this case j = 1 and T could be de�ned as
T = K , equation 4.

However, using a simple adequation it is possible to
increase the accuracy level. Considering that when the
selected point is a corner,T value is high and points of
diferent objects would be include in the correlation win-
dow. Therefore, whenT value is high, this value could be
replaced with a smaller value that allows to di�erentiate
between the object that includes the selected point and
the others. Based on the assumption that into a large
correlation window, multiple objects are projected, i.e.,
multiple corners are included. If the correlation window
size increases, the number of projected objects and cor-
ners proportionally increases. We propose compute the
T value adding a restriction parameter applicable on the
corner points, equation 3. This parameter is computed
as shown inequation 5 and enables to reduce the errors
at corners and increase the general accuracy near to 2%.
Fig. 5 shows some correlation windows for the Tsukuba
scene usingEquation 3. Although several techniques
can be used to de�ne the similarity criterion. We can
a�rm that even using a simple technique like the pro-
posed in this article, any rectangular correlation window
can be adapted to the local variations in the stereo pair.

T (x; y ) =

(
K (x; y ); K (x; y ) < =  
 ; otherwise,

(3)

K (x; y ) =
i = X

i = � 

j = X

j = � 

jp(x; y ) � p(x + i; y + j )j ; (4)

 =
2n

(2 � w + 1) 2
as n = bits per pixel( bpp) : (5)

Fig. 4:  behavior, w = 21
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Fig. 5: The selected pixels using the proposed algorithm

In standard algorithms, the disparity dl (x; y) is de-
�ned as the shift s giving the maximum (or minimum)
value of the correlation values, equation 1. In order
to detect occlusions, the left-right consistency is used.
For each pixel, if the disparity dl (x; y) computed using
the left image as a reference is equal to the disparity
dr (x + Sm ; y) computed using the right image as the
reference,equation 6, the solution is considered as cor-
rect. Otherwise the pixels are marked as occluded and
the disparity can be computed with subpixel accuracy
or be assigned as the minimum value betweendl (x; y)
and dr (x + Sm ; y). In this case the minimum value be-
tween dl (x; y) and dr (x + Sm ; y) will be used.

Cr (x; y; s ) =
i = w xX

i = � w x

j = w yX

j = � w y

� (x; y; i; j ) � (6)

jI r (x + i; y + j ) � I l (x � s + i; y + j )j ;

4.2 Computational complexity

In order to explain the computational complexity of the
proposed algorithm, �rst, the SAD computational com-
plexity is analyzed. In this case the computational com-
plexity is de�ned as following: OSAD (M S D=d0); where
M is the size of the input image.S is the size of the cor-
relation window. D is the maximum expected disparity
and d0 is the increment regarding to the disparity values.
Like SAD, the proposed algorithm possesses a computa-
tional complexity de�ned in the same terms, Table 2.
i.e. OSAD = OSBAW = O(M S D=d0). Based on the high
e�cient of to the SAD algorithm and considering that
his computational complexity is equal to the complex-
ity of the proposed algorithm. It is possible to a�rm the
high e�cient of the proposed method. In addition, when
SAD applying left-right consistency was implemented,
the SAD runtime was similar to the proposed method
runtime for the same setup, Table 1. As can be seen,
the increment on the runtime, in all the cases near to
30%, is the time required for theT value computation.

Table 1: Runtime for the proposed method

Scene/Algorithm Window size (2 � w + 1)
9 25 49 81 121 169

Tsukuba/SBAW 22.4 27.7 35.1 42.7 50.4 57.1
Venus/SBAW 31.3 38.9 50.6 66.1 83.4 114
Teddy/SBAW 46.3 66.4 98.7 138 191 252
Cones/SBAW 46.3 66.4 98.7 138 191 252

Tsukuba/SAD 15.3 17.6 20.9 25.3 30.8 40.6
Venus/SAD 22.7 27.1 33.6 41.4 58.5 79.6
Teddy/SAD 39.5 55.2 79.0 117 155 162
Cones/SAD 39.5 55.2 79.0 117 155 162

*All the runtimes are measured in seconds and were obtained
via MatLab

Table 2: Pseudo code for the Similarity-Based Adaptive
Window algorithm (SBAW)

Parameter de�nition

H : The size of an image I (H = X resolution � Yresolution )

W : The size of a correlation window ( W = (2 � w + 1) 2 )

S: The maximum expected disparity ( S = Sm )

s0: Increase of disparity ( s0 = 1)

Algorithm: Similarity-Based Adaptive Window

Complexity: O(H W S=s 0)

1: Compute the  value ( equation 5)

Left image as reference

For all pixels p(x; y ) which satisfy x > = w; y > = w and x < =
X resolution � w � S; y < = Yresolution � w

2: Compute the K (x; y ) value ( equation 4)

3: Compute the T (x; y ) value ( equation 3)

For s = 1 with increments equal to s0 up to S

4: Compute the C l (x; y; s ) value ( equation 1)

End

5: ( dl (x; y ) = arg min s C l (x; y; s ))

End

Right image as reference

For all pixels p(x; y ) which satisfy x > = w + S; y > = w and
x < = X resolution � w; y < = Yresolution � w

6: Compute the K (x; y ) value ( equation 4)

7: Compute the T (x; y ) value ( equation 3)

For s = 1 with increments equal to s0 up to S

8: Compute the C r (x; y; s ) value ( equation 6)

End

9: ( dr (x; y ) = arg min s C r (x; y; s ))

End

Compute the disparity map

For all pixels p(x; y ) which satisfy x > = 1 ; y > = 1 and x < =
X resolution � W � S; y < = Yresolution � W

10: ( d(x; y ) = min( dl (x; y ) ; d r (x + Sm ; y ))

End
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Fig. 6: General diagram of the developed FPGA architecture

5 The FPGA architecture

Although the algorithm presented in section 4 possess a
low mathematical complexity, compute a disparity map
for a 384� 288 pixel resolution synthetic stereo pair (pixel
resolution of the Tsukuba scene), implies a runtime close
to 1 second. This time is not appropriate for real-time
applications. This was the main motivation to search ef-
�cient ways to implement the proposed algorithm, an
FPGA implementation was selected. InFig. 6, an overview
of the developed FPGA architecture is shown. This archi-
tecture have three inputs, clk pixel as the pixel rate of
the input stereo pairs, left image [7:0] and right ima
ge [7:0] as gray scale values of pixels from the left
and right images respectively and one output,disparity
[7:0] , corresponding to disparity value for the selected
pixels. The developed FPGA architecture allows to pro-
cess input stereo pairs ofx � y pixel resolution, where
x 8 N and y < = 2048. Furthermore, this architecture
enables to compute the disparity maps by applying the
SBAW algorithm using n � n correlation windows, where
n = 2k + 1 8 k 2 N, and considering a maximum ex-
pected disparity equal to 2k � 1 8 k 2 N. Its general
behavior can be described as following: �rst, thebu�er
modules store gray scale values of pixels contained inn
horizontal lines for both left and right images of input
stereo pair. After, the storage vector modules gener-
ate n storage vectors, each vector consists of a regis-
ter de�ned by the gray scale values forn vertical pixels
stored in one of the horizontal lines stored above. Then,
left-disparity and right-disparity values are computed via
SBAW modules separately. Later, a multiplexer (mux )
sets the �nal disparity value as the minimum of two dis-
parity values previously computed by the SBAW mod-
ules. Finally, the equalizer module convert the �nal dis-
parity value to gray scale values of 8 bits of depth. In the
following subsections the architecture of all the individ-
ual modules is shown in detail.

5.1 The bu�er module

In order to store necessary data for the disparity com-
putation, the use of bu�er modules is proposed. These
modules allows to store the gray scale values correspond-
ing to the pixels contained in n horizontal lines from an
image and enables to read all stored lines in parallel. An
overview of the FPGA architecture of the bu�er module
is shown in Fig. 7. This module consists of three di�er-
ent sub-modules, TheRAM driver module manages an
array of n + 1 single-port ram units ( RAM ) assigning
to each one the corresponding address,address [9:0] ,
and the corresponding write-read value,w/r [n+1:0] .
The w/r [n+1:0] output consist of one logic vector of
n + 1 bits of size, the write-read value of each of the
RAM s is determined by each one of the bits of the
w/r [n+1:0] output. The outputs of the bu�er mod-
ules are determined via state machines, which are con-
trolled by horizontal resolution of the input stereo pairs,
x resolution [11:0] , and the correlation window size
n [5:0] . In Table 3, the behavior of the state machine
for the output w/r [n+1:0] is shown, the number of
states is set asn + 1. n RAM s are in read mode while
oneRAM is in write mode for all the states at any time.
On the other hand, in Table 4 the behavior of the state
machine for output address [9:0] is shown.

Table 3: Behavior of the state machine for the
w/r [n+1:0] output of the bu�er module

State Behavior

1 If address < x resolution [11:0] and state = 1
then w/r [n+1:0] = � � � 00001 else state = 2

2 If address < x resolution [11:0] and state = 2
then w/r [n+1:0] = � � � 00010 else state = 3

...
...

n+1 If address < x resolution [11:0] and state =
n+1 then w/r [n+1:0] = 1000 � � � else state = 1
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Fig. 7: FPGA architecture for the bu�er module

Table 4: Behavior of the state machine for the
address [9:0] output of the bu�er module

State Behavior

1
If address < x resolution [11:0] and state = 1

then address [9:0] = address +1 else state = 2 ,
address = 0

2
If address < x resolution [11:0] and state = 2

then address [9:0] = address +1 else state = 3 ,
address = 0

...
...

n+1
If address < x resolution [11:0] and state =

n+1 then address [9:0] = address +1 else state
= 1 , address = 0

The RAM module consists of a synchronous single-
port ram unit, its general settings was set as: type =
synchronous, width = 8, depth = 2048, operation type
= single port, all the others parameters are de�ned as
default. These parameters allow to store the gray scale
values for each pixel contained in horizontal lines from
images of up to 2048 horizontal resolution with 8 bits of
color depth. The use of anRAM modules array enables
to read the gray scale values of the pixels contained inn
horizontal lines from an image, seeTable 5

Table 5: Behavior of the array of RAM modules

w/r [n+1:0] Read lines by RAM 1; 2 ; 3 ; 4 ;n

1000� � � -,-,-,-
0100� � � 1,-,-,-
0010� � � 1,-,-,-
0001� � � 1,2,3,-
� � � 0001 1,2,3,n
1000� � � n+1,2,3,n
0100� � � n+1,n+2,3,n
0010� � � n+1,n+2,n+3,n
0001� � � n+1,n+2,n+3,n+4
� � � 0001 n+5,n+2,n+3,n+4

The n lines generator module reads the outputs
from the RAM modules and determines whichRAM s
modules are in read mode at any time. In order to assign
lines in the outputs of the n lines generator module in
ascending form, i.e.,pixel 1 [7:0] = input image line
number l, pixel 2 [7:0] = input image line number
l+1, pixel n [7:0] = input image line number l+n-1,
the outputs from the RAM modules in read mode are
assigned to the outputs of then lines generator mod-
ule as seen inTable 6, the �rst column corresponds to
the output w/r [n+1:0] of the RAM driver module,
the second column corresponds to the numbers of the
RAM modules assigned to the outputs of then lines
generator module.

Table 6: Output assignment for the n lines generator
module

w/r [n+1:0] Assignment
pixel l [7:0] for l=1,2,...,n

1000� � � 2,3,4,5, � � � ,n
0100� � � 3,4,5, � � � ,n,1
0010� � � 4,5, � � � ,n,1,2
0001� � � 5,n, � � � ,1,2,3
� � � 0001 1,2,3,4, � � � ,n-1

5.2 The storage vector module

To compute the disparity value via the SBAW algorithm,
it is necessary to have stored the gray scale values of
all the pixels from the correlation window. However, the
bu�er module only provides the gray scale values of one
of the vertical lines of the correlation window at each
time. In order to store the rest of the values e�ciently,
use of n register-based storage vectors is proposed. All



9

storage vectors possess a similar behavior with respect to
a shift register unit, however, these allow to read multiple
data in one clock cycle. In general, when a line begins,
the gray scale value of the pixel with coordinate (1) is
stored in index [7:0] of one storage vector, in the follow-
ing clock cycle, this value is moved to index [15:8] and
the gray scale value of the pixel with coordinate (2) is
stored in index [7:0]. A similar process is repeated for all
the pixels that integrate the line. In Fig. 8, behavior of
storage vector module with settings as follows: num-
ber of lines to process =n, v = 8 � n � 1 is shown. In
Fig. 9 the architecture of the storage vector module
is shown.

Fig. 8: Behavior of the storage vector module

Fig. 9: FPGA architecture for the storage vector
module

5.3 The SBAW module

For the computation of the disparity map via the SBAW
algorithm, a pixel-parallel and window parallel architec-
ture was designed; the necessary data are obtained from
the storage vector modules, using the appropriate in-
dexes is possible to process video streams at real-time,
giving as result disparity maps of (X � w) � (Y � w)
pixel resolution, where X , Y corresponds to the values
of resolution of the input video stream and (2� w + 1) 2

is the size of the correlation window used.

The architecture of the SBAW module is presented
in Fig. 9, its general behavior is described as following:
�rst, the absolute di�erences modules compute the
absolute di�erence between pixels from left and right
images of the correlation window. This process is ex-
ecuted in each of thedmax + 1 absolute di�erences
modules, implemented in parallel, which are con�gured
for expected disparity levels from 0 until dmax , where
each module process only one disparity level and com-
putes the absolute di�erences only for pixels which are
projections of selected pixel, i. e., all pixels belong to
the same object,equations 3 - 5. Then, the output of
each of theabsolute di�erences modules are sent to its
correspondingadder module, in this step adder blocks
compute the sum of the absolute di�erences for all pix-
els retained in the correlation window. Finally, the min-
imum module assigns the corresponding index for all
correlation values, then, determines the minimum corre-
lation value and set the disparity value as the index of
the minimum correlation value. In the developed FPGA
architecture, two SBAW modules were implemented in
parallel form where the �rst module uses the left image
as reference and the second module uses the right image.

5.3.1 The minimun module

In order to reach an appropriate propagation of the pro-
cessed data, the use of theminimum module is pro-
posed. It consists of anindex generator module and
k min modules implemented in sequential form. Firstly,
the index generator module assigns the corresponding
indexes to all the correlation values from the previous
stage, then, the min 1 module, receives all the corre-
lation values and their indexes. Afterwards, this mod-
ule determines the minimum values for correlation val-
ues, which are sorted by pairs with unrepeated correla-
tion values for any pair; the minimum correlation values
and their indexes obtained here are placed in the vec-
tors (value [x:0] , where x = 16 � (dmax + 1) � 1, and
index [x:0] , wherex = 8 � (dmax +1) � 1), respectively.
This process is repeated in sequential form until only one
correlation value and its index are placed in the output
vectors.

5.4 The equalizer module

In order that disparity values are appropriate for display-
ing in LCD screens or another output devices, the use
of the equalizer module is proposed. This module con-
vert the �nal disparity value to gray scale values through
disparity [7:0] � 256=dmax . To reduce the hardware
resource consumption, this process was performed with
a CASEstructure, which considers all expected dispar-
ity levels and turns the �nal disparity value into integer
constant value corresponding to the previously described
operation.
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Fig. 10: FPGA architecture for the SBAW module

Fig. 11: FPGA architecture for the minimum module
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(a) Tsukuba scene (b) Venus scene

(c) Teddy scene (d) Cones scene

Fig. 12: Behavior of the developed FPGA architecture

6 Discussion and analysis of results

The FPGA architecture presented in section 5 was im-
plemented with a top-down approach. All the modules
were programmed using Verilog, Quartus II Web Edition
version 10.1SP1 was used for the synthesis process. In or-
der to verify functionality of all the modules individually,
post-synthesis simulation in ModelSim-Altera 6.6c were
executed.

6.1 Simulation results

In order to evaluate the behavior of proposed algorithm,
the developed FPGA architecture was simulated in Model
Sim-Altera 6.6c using di�erent synthetic stereo pairs and
di�erent sizes for correlation windows. The selected tests
stereo pairs were the Tsukuba, Venus, Teddy and Cones
scenes. The window sizes used were:f 3; 5; 7; 9; 11; 13; 15;
17; 19; 21; 23; 25; 27; 29; 31; 33; 35; 37; 39; 41g. In Fig. 12
the behavior of the error obtained in the disparity maps
generated for di�erent window sizes for the selected syn-
thetic stereo pairs are shown, this demonstrates the e�ec-

tiveness of the developed FPGA architecture. Disparity
maps have been compared using the method proposed
in [32], in which the percentage of pixels with a disparity
error greater than one is computed. Three percentages
are computed, one for all non-occluded pixels (nonocc),
one for all pixels (all ) and one for occluded pixels near
depth discontinuities (disc ). Performance for occluded
pixels are not considered because no one algorithm com-
pute occluded pixels explicitly.

On the other hand, Fig. 13 presents the error per-
centage of all pixels (all ) for all evaluated synthetic
stereo pairs obtained via SBAW algorithm compared with
using the SAD algorithm. For the SBAW algorithm, if a
small correlation window is used, error is more important
than error for the SAD algorithm because some pixels of
the window are not used and e�ective area of the used
window is reduced. However, error in untextured areas is
signi�cantly reduced when a large correlation window is
used. Error at discontinuities grows with the correlation
window but it is smaller than the error for the SAD algo-
rithm. So, we can a�rm that performance of the SBAW
algorithm is better when a large correlation window is
used.
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(a) Tsukuba and Venus scenes

(b) Teddy and Cones scene

Fig. 13: Comparison between the SBAW algorithm and
the SAD algorithm for all the erroneous pixels (all )

In Table 7 quantitative results of the number of erro-
neous pixels obtained by the proposed algorithm for the
Tsukuba, Venus, Teddy and Cones scenes, using a 41� 41
correlation window compared with other real-time stereo
matching algorithms, reported in the literature, are pre-
sented. In order to process and collect the data presented
in Table 7, the developed architecture was scaled and
synthesized to operate with the appropriate maximum
expected disparity values. For all cases, Quartus II Web
Edition version 10.1SP1 was used for the synthesis pro-
cess and simulations in ModelSim-Altera 6.6c were ex-
ecuted. By analyzing Table 7, it is observed that the
results of the algorithm present a improvement regard-
ing to the most of real-time-stereo matching algorithms
reported in literature. In addition, similar to the major-
ity of these algorithms, the proposed algorithm presents
a high performance with small values of maximum dis-
parity (Tsukuba, Venus scenes); whilst, a medium per-
formance with high values of maximum disparity (Teddy,
Cones scenes) is observed. The generated disparity maps
for the Tsukuba, Venus, Teddy and Cones scenes consid-
ering 2� w + 1 = 41 are shown in Fig. 14.

Table 7: Comparison between quantitative results of
real-time-stereo matching algorithms

Algorithm Tsukuba Venus Teddy Cones

[25] 11% 8% - -

[14] 8.7% 8.6% - -

[11] 12.0% 8.0% - -

[12] 15.2% 14.1% - -

[9] 12.8% 10.8% 10.7% -

[2] 8.8% 6.9% 30.2 43.4

[3] 3.8% 2.12% 11.85 8.45

[33] 7.5% 4.1% 17.6% 18.4%

[35] 10.4% 12.1% 29.1 25.3

[18] 11.5% 5.27% 21.5 17.5

[10] 7.8 11% 21 16.8

SBAW 7.6% 3.2% 13.6% 16.4%

Furthermore, comparisons with respect to other adap-
tive window algorithms, such as the SMW algorithm [1],
the Census algorithm [39] and the Hirschm•uller (HIR) al-
gorithm [15], were performed. In order to perform com-
parisons, the synthetic image shown inFig. 15 (a) is
used. Two textured objects are present in the synthetic
scene, which appear as a square and as the background
in the image. Fig. 15(b) shows the ground truth map,
where well de�ned edges correspond to depth disconti-
nuities.

(a) Left image (b) Ground truth map

Fig. 15: Test scene stereo pair

Fig. 16 shows the disparity maps computed by all the
evaluated algorithms using a 27� 27 correlation window.

(a) SMW algorithm (b) HIR algorithm

(c) Census algorithm (d) SBAW algorithm

Fig. 16: Results for the test scene (2� w + 1 = 27)
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(a) Tsukuba scene (b) Ground truth map (c) SBAW w = 20

(d) Venus scene (e) Ground truth map (f) SBAW w = 20

(g) Cones scene (h) Ground truth map (i) SBAW w = 20

(j) Teddy scene (k) Ground truth map (l) SBAW w = 20

Fig. 14: Disparity maps generated for di�erent test synthetic stereo pairs

In the areas corresponding to a single object, all the
algorithms estimate the disparity precisely, because the
correlation window is large, however, the averaging e�ect
generates errors at depth discontinuities, which is clearly
visible in the disparity maps of the SMW and HIR algo-
rithms ( Fig. 16(a) and (b)). The HIR algorithm reduces
errors at discontinuities, but there are still false match-
ings due to the central window, which is always used.
Square windows used in the SMW algorithm are well
adapted for this image. However, there are false match-
ings at the corners of the central square object. The per-
formance of the Census algorithm is worse because of the
repetitive pattern in the image. With the SBAW algo-
rithm ( Fig. 16(d)), the estimated disparity map is very
similiar to the ground truth, even near of both depth
discontinuities and at the corners of the central square
object. Table 10 shows the numerical values obtained by
perform this comparison. All values shown in this table
were obtained by Matlab implementations for the HIR,
SMW and Census algorithms. The erroneous pixels were
measured by applying theequation 7; where I 1 is the

ground truth map. I 2 is the generated disparity map by
a particular algorithm. x is the horizontal resolution of
the input image. y is the vertical resolution of the input
image and N is set asx � y. In all the cases a similar
setup was applied and similar behavior for di�erent test
escenes was observed.

� = 2

vu
u
u
t

1

N

i = x;j = yX

i =1 ;j =1

(I 1 (i; j ) � I 2 (i; j )) 2 (7)

Table 10: Errors for the synthetic pair (in %)

Non-occluded Near discontinuities
Algorithm Window size Window size

15X15 21X21 27X27 15X15 21X21 27X27

HIR [15] 2.24 3.51 5.01 27.32 33.05 35.63
SMW [1] 0.53 0.86 1.4 8.9 12.38 16.49

Census [39] 3.21 3.16 3.62 26.97 29.97 33.46
SBAW 0.34 0.34 0.33 4.94 4.53 4.37
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Table 8: Logic elements (combinational functions and logic registers) consumption for di�erent con�gurations of
the developed FPGA architecture

aa
2w + 1

dmax

3 9 15 21 27 33 41

15 7,375 47,286 119,991 143,988 165,586 182,144 191,252

31 14,699 94,099 238,782 286,536 329,516 362,466 380,591

63 29,104 186,316 470,400 561,610 645,851 710,434 726,757

Table 9: Memory bits consumption for di�erent con�gurations of the developed FPGA architecture

aa
2w + 1

dmax

3 9 15 21 27 33 41

5 65,636 163,840 262,144 344,064 442,368 573,440 671,744

31 65,636 163,840 262,144 344,064 442,368 573,440 671,744

63 65,636 163,840 262,144 344,064 442,368 573,440 671,744

In Table 10 only two percentages are computed, one
for all the pixels and one for the pixels near discontinu-
ities, because objects are well textured. The quantitative
comparison demonstrate that the error percentages in-
crease with window size for SMW and HIR algorithms,
but decrease with window size for the SBAW algorithm.
In the SMW algorithm, the window is adapted accord-
ing to the local texture as con�rmed by the low error
percentages, but a large window is not well adapted at
the corners and the error percentages rise up with the
size window. Percentage errors in the Census algorithm
are high due to the repetitive patterns in the image, but
their performance in discontinuities is better than the
HIR algorithm. Applying SBAW algorithm using a small
window, errors are caused by a lack of information in the
correlation window. On the other hand, with large win-
dows, the errors near to depth discontinuities are avoided
with the SBAW algorithm. This behavior is con�rmed by
low error percentages of the SBAW algorithm for pixels
near to depth discontinuities. For the SBAW algorithm,
the best performance is obtained with a large window.
This is a di�erence and an advantage with respect to the
others algorithms where the window size must remain
small.

Tables 8-9 present a comparison of the use of hard-
ware resource regarding to all the synthesized and sim-
ulated con�gurations of the developed FPGA architec-
ture. By analyzing Fig. 12, the acceptable behavior for
the SBAW algorithm can be determined by using a 21� 21
correlation window, in this case the hardware consump-
tion for the developed FPGA architecture is appropriate
for the majority of the medium gamma of FPGA devices
such as the Stratix III family of Altera or Spartan III
family of Xilinx, however, for higher window sizes only
high gamma FPGA devices such as the Stratix V family

of Altera support the hardware resource consumption.
It is the user decision to select the con�guration of the
SBAW algorithm more appropriate to his particular re-
quirements.

Finally, Table 11 presents comparisons of process-
ing speed regarding to other real-time stereo matching
algorithms reported in the literature. Due to the mathe-
matical simplicity of the proposed algorithm, the devel-
oped architecture does not require complex arithmetical
operations such as calculation of quotients and radicals
(which require a high runtime), hence, it maintains a
high processing speed. When comparison of processing
speed is conducted,Table 11, it is observed an increase
with respect to other algorithms implemented in FPGA
devices of up to 93,061,120 pixels per second.

Table 11: Processing speed for di�erents real-time
stereo matching algorithms

Algorithm Resolution Frames/s Pixeles/s

[11] 1280 � 1024 65 85,196,800

[33] 640 � 480 68 20,889,600

[3] 256 � 256 100 6,553,600

[35] 1280 � 1024 50 65,536,000

[10] 384 � 288 1250 138,240,000

[18] 640 � 480 230 70,656,000

[26] 320 � 240 574 44,083,200

[9] 1024 � 1024 102 106,954,752

SBAW* 450 � 375 592 99,900,000

SBAW* 434 � 383 601 99,899,422

SBAW* 384 � 288 904 99,975,168

*Operating frequency = 50 MHz
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6.2 Implementation results

The developed FPGA architecture was implemented in
a FPGA Cyclone II EP2C35F672C6 embedded in the
development board DE2 of Altera and the selected con-
�guration for the SBAW algorithm was dmax = 15, 2 �
w + 1 = 15. In order to acquire input stereo pairs, a
TRDB DC2 board connected in the �rst port of expan-
sion of the DE2 board is used. TRDB DC2 board pro-
vides stereo pairs of 1280� 1024 pixel resolution in RGB
scale. In order to determine the gray scale value of the
input stereo pairs, the value of the green channel was
used as a gray scale value. With the purpose of reaching
appropriate values to the environmental characteristics
of the input scene, the implementation enables to con-
�gure the exposition of the cameras. For assigning the
exposure value of the cameras, 4 push buttons of the
DE2 board are used. The function of each of these push
buttons is detailed in the Table 12.

Table 12: Control of the board TRDB DC2

Name Description

Key0 Reset the frame capture

Key1 Assign the exposure value

Key2 Pause the frame capture

Key3 Continuous frame capture

Output disparity maps was displayed in a terasIC
4,3" LCD screen of 800� 480 pixel resolution connected
to the second expansion port of the DE2 board. The
processing speed of the FPGA implementation is equal
to 76 fps (99,614,720 pixels/s) for the input stereo pairs
of 1280� 1024 pixel resolution. The resource consumption
of the implemented architecture is shown inTable 13.

Table 13: Hardware resource consumption for the
FPGA implementation

Resource Demand

Total logic elements 27,061/33,216 (81%)

Total combinational functions 21,639/33,216 (65%)

Dedicated logic registers 15,180/33,216 (46%)

Total pins 161/475 (34%)

Total Memory Bits 407,472/483,840 (84%)

Embedded multiplier elements 0/70 (0%)

Total PLLs 2/4 (50%)

7 Conclusions

In this article, an area-based algorithm suitable for real-
time stereo matching using an adaptive window tech-
nique based on a grayscale similarity criterion was pre-
sented. Only selected pixels are used in the window ac-
cording to their similarity to the central pixel. Further-
more, a technique to determine similarity criterion has
been described and it was demonstrated that even using
a simple similarity criterion, the SBAW algorithm out-
performs other adaptive window algorithms reported in
the literature. The best performance of the SBAW al-
gorithm was obtained with a large window appropriated
for homogeneous areas. However, since the e�ective size
and shape of the window were adaptive, blurring e�ects
at discontinuities are avoided.

In order to improve its processing speed, the proposed
algorithm was implemented in a FPGA device. The de-
veloped FPGA architecture outperforms other real-time
stereo matching algorithms in the literature, allowing
high accuracy level and enables both increasing the pro-
cessing speed and to be implemented in the majority of
the medium gamma FPGA devices.

Furthermore, an important characteristic of the pre-
sented architecture is the scalability permissible; all the
modules and submodules which integrate the developed
FPGA architecture, easily allow to be adapted for pro-
cessing of larger correlation windows than the simulated
and implemented correlation windows. On the other hand,
the FPGA architecture enables to con�gure di�erent lev-
els of maximum expected disparity (dmax ), consequently,
it is possible to con�gure the module for the computation
of disparity maps with appropriate values to the environ-
mental characteristics of the input video streams. This
allows that the developed architecture can be applied to
a wide range of applications of real-time stereo vision
such as positioning systems for mobile robots and recog-
nition, detection and tri-dimensional reconstruction of
objects.
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