
�>���G �A�/�, �?���H�@�y�R�e�k�d�j�y�k

�?�i�i�T�b�,�f�f�?���H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�R�e�k�d�j�y�k

�a�m�#�K�B�i�i�2�/ �Q�M �j�R �P�+�i �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

���M �6�S�:�� �k�.�@�+�Q�M�p�Q�H�m�i�B�Q�M �m�M�B�i �#���b�2�/ �Q�M �i�?�2 �*���S�>
�H���M�;�m���;�2

���#�B�2�H ���;�m�B�H���`�@�:�Q�M�x�€�H�2�x�- �J�B�;�m�2�H ���`�B���b�@�1�b�i�`���/���- �J���/���Q�M �S�û�`�2�x�@�S���i�`�B�+�B�Q�- �C

�*���K���b�@���M�x�m�2�i�Q

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���#�B�2�H ���;�m�B�H���`�@�:�Q�M�x�€�H�2�x�- �J�B�;�m�2�H ���`�B���b�@�1�b�i�`���/���- �J���/���Q�M �S�û�`�2�x�@�S���i�`�B�+�B�Q�- �C �*���K���b�@���M�x�m�2�i�Q�X ���M �6�S�:��
�k�.�@�+�Q�M�p�Q�H�m�i�B�Q�M �m�M�B�i �#���b�2�/ �Q�M �i�?�2 �*���S�> �H���M�;�m���;�2�X �C�Q�m�`�M���H �Q�7 �_�2���H�@�h�B�K�2 �A�K���;�2 �S�`�Q�+�2�b�b�B�M�;�- �a�T�`�B�M�;�2�`
�o�2�`�H���;�- �k�y�R�8�- �I�R�y�X�R�y�y�d�f�b�R�R�8�8�9�@�y�R�8�@�y�8�j�8�@�R�=�X �I�?���H�@�y�R�e�k�d�j�y�k�=

https://hal.archives-ouvertes.fr/hal-01627302
https://hal.archives-ouvertes.fr

Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Abiel Aguilar-Gonz�alez � Miguel Arias-Estrada
� Mada��n P�erez-Patricio � J. L. Camas-Anzueto

An FPGA 2D-convolution unit based on the CAPH
language
Preprint version, the �nal publication and supplementary material are available at
http://link.springer.com/article/10.1007/s11554-015-0535-1

Received: date / Revised: date

Abstract Convolution is an important operation in im-
age processing applications, such as edge detection, sharp-
ening, adding blurring and so on. Convolving video stre-
ams in real-time is a challenging task for PC systems,
however, FPGA devices can successfully be used in these
tasks. In this article, the design and implementation of a
recon�gurable FPGA architecture for 2D-convolution �l-
tering is described. The �ltered frames are calculated at a
rate of 103 frames per second for images up to 1200� 720
pixel resolution. By using a shift-based arithmetic and
circular bu�ers, the developed FPGA architecture al-
lows to reduce the hardware resources consumption up
to 98% compared to the conventional convolution im-
plementations, provides high speed processing and en-
ables to manage large number of di�erent convolution
kernels. On the other hand, by using the CAPH lan-
guage it is possible to reduce the design time up to 75%
compared to the plain VHDL design. Furthermore, to
maintain high
exibility in concordance with the input
video, the developed hardware allows to con�gure the
resolution of the input images with values of 3� Y up
to 1200� Y , and allows scalability for di�erent sizes of
convolution kernels of simple and systematic form. Fi-
nally, the developed FPGA architecture for the proposed
method was implemented and validated in an FPGA Cy-
clone II EP2C35F672C6 embedded in an Altera devel-
opment board DE2.

Abiel Aguilar-Gonz�alez () � Miguel Arias-Estrada
Instituto Nacional de Astrof��sica, �Optica y Electr�onica,
Tonanzintla, Puebla, M�exico.
Recon�gurable computing laboratory.
Tel.: +123-45-678910
E-mail: abiel@inaoep.mx

Mada��n P�erez-Patricio � J. L. Camas-Anzueto
Instituto Tecnol�ogico de Tuxtla Guti�errez,
Tuxtla Guti�errez, M�exico.
Postgraduate and research department.

1 Introduction

Digital image processing involves procedures that are
normally expressed in the form of algorithms. With the
exception of image acquisition and representation, most
functions of image processing can be implemented in
software. The reason for using specialized hardware in
image processing is due to need for higher speed process-
ing in several applications such as, low-light microscopy,
object recognition, computer vision, robotics and so on
[16, 2, 13, 9, 12, 34, 1, 4].

The bus architecture on most computers, except in
a few high performance computers with embedded spe-
cialized image processing technology (for example CUDA
technology or another GPU technology), do not allows
to use the data-rate required for real-time applications.
Due to high speed requirements most the current real-
time image processing systems consist of a combination
of computers, peripherals and specialized image process-
ing hardware, such as FPGA devices or GPGPU devices.
In most cases, the overall operation is controlled by soft-
ware running on the host computer or embedded proces-
sor when the FPGA or GPGPU has one.[19, 18].

1.1 Spatial-domain convolution �lters

2D-convolution is an important concept in several areas
of math and engineering including computer vision, dig-
ital image processing for medical applications, statistics
applications, object recognition and so on [3, 7, 8, 10,
15, 17, 24, 29, 14, 11, 12, 34, 1, 4]. Convolution operates
on two signals in 1D �ltering operation or two images
in 2D �ltering operation. In case of 2D-convolution, one
image is de�ned as the input signal or input image and
the other, called kernel, is de�ned as a �lter on the input
image, producing an output image.

http://link.springer.com/article/10.1007/s11554-015-0535-1

2

Due to 2D-convolution is the type of convolution used
for digital image processing, we will concentrate on the
discrete 2D-convolution. 2D-convolution between an im-
ageI and a convolution maskM of order n is de�ned as
shown in the equation 1, wherew = (n � 1)=2 [19, 18].

C(x; y) =
u = w;v = wX

u = � w;v = � w

I (x+ u; y + v) �M (x+ u+ w+1 ; y+ v+ w+1)(1)

By applying the equation 1, the convolution opera-
tion calculates the intensity value of an image pixel. The
resulting pixel is computed considering the pixels from
the vicinity and based on the weights of the elements of
a spatial �lter or kernel whose dimensions are equal to
the vicinity of the image to be processed. Each of the ele-
ments of the kernel is multiplied with the corresponding
value of the vicinity of the original image. Then, the sum
of products correspond to the value of the pixel in the
new image. Each of the pixels of the vicinity contributes,
with its own value and a percentage to calculate the new
pixel, Fig. 1 [19, 18].

Fig. 1: Convolution process for a 3� 3 convolution
kernel.

1.2 The CAPH language

CAPH [25, 26, 27, 28] is a domain speci�c language
suited to the description and implementation of stream-
processing applications on FPGAs. CAPH relies upon
the actor /data
ow model of computation. Applications
are described as networks of purely data
ow actors ex-
changing tokens through unidirectional channels. The
behavior of each actor is de�ned as a set of transition
rules using pattern matching. The CAPH suite of tools
currently comprises a reference interpreter and a com-
piler producing both Systemic and synthesizable VHDL
code. These tools allow to reduce the design time and
enable high level programing compared with the conven-
tional VHDL design.

1.3 Related works

In aeronautical and automotive applications, image pro-
cessing systems with high speed processing are required.
In order to reduce cost, it is necessary to perform several
pre-processing algorithms like 2D convolution in dedi-
cated hardware such as FPGA devices. Therefore, several
FPGA implementations for 2D-convolution have been re-
ported in the literature. In [22] it is presented an FPGA
edge �lter based on an image convolution in which color
images are convolved with a pair kernels with quater-
nion coe�cients. When the developed �lter is applied
to a color image, the �lter converts areas of smoothly-
varying color to shades of grey and generates colors in
regions where edges occur in the image. An FPGA �lter
based on convolution with hypercomplex masks was in-
troduced by authors of [23]. It was presented three color
edge �lters inspired by the Prewitt, Sobel and Kirsch �l-
ters. The presented �lters produce an almost grayscale
image with color edges when the original image present
a sharp change of color.

Autors of [5] present a two dimensional system ap-
proach exploiting dynamic and partial recon�guration
in order to adapt the system architecture to the cur-
rent requirements of image processing applications. The
developed FPGA architecture allows adapting the pro-
cessing elements as well as the communication infras-
tructure. The authors performed the convolution opera-
tion for a 384� 286 pixel resolution images with a 1.69
ms runtime and a 5� 5 convolution kernel. Finally, in
[6] it is described the design of 2D convolution �lters
with large kernels, up to 50� 50 coe�cients, using the
Impulse CoDeveloperTM high-level synthesis (HLS) tool.
The authors provide a practical guide for designers will-
ing to make the most of an HLS tool like Impulse CoDe-
veloper, and compare the results, in terms of area uti-
lization, minimum clock period and power consumption,
with implementations developed using lower-level design
tools. The results show that RTL based implementations
can achieve higher performance than CoDeveloper-based
ones. However, CoDeveloper can meet the high perfor-
mance requirements of the most demanding real-time ap-
plications, but with less e�ort and shorter design cycles.

1.4 Motivation

In practice, the convolution operation eq. 1 consists of
a sum of products. However, when the algorithms are
implemented in dedicated hardware such as FPGA de-
vices, a high hardware resource consumption is required.
In addition, due to elements of the convolution kernel
2 R the computation of products with �xed point num-
bers is required, which increases the consumption of the
hardware resources.

3

Even if the IEEE's optimized �xed point libraries are
used, the product operation maintains a high hardware
resource demand. Hence, it is possible to a�rm that the
problem resides in the product operation. The high hard-
ware resource demand was our main motivation to search
ways in which the product-operation is substituted by
other operation which allows simple HDL implementa-
tion and enables to process the majority of the kernels
using in industrial applications that involves convolution
operations.

The rest of this paper is organized as follows: thesec-
tion 2 presents the proposed algorithm for the real-time
convolution operation. In the section 3, it is detailed
the design via the CAPH language for the proposed al-
gorithm's FPGA architecture. In addition, a review and
analysis about the CAPH language are shown. Experi-
mental results for di�erent �lters, a comparison regard-
ing to di�erent multiplication algorithms reported in the
literature and a validation via MatLab is reported in the
section 4. Finally, the section 5 concludes this article.

2 The proposed mhetod

Main objective is to demonstrate three contributions by
investigating an FPGA architecture for a 2D-convolution
�lter described with the CAPH language. First, it is pro-
posed a shift-based arithmetic which allows high
exibil-
ity regarding to the convolution operation and enables
both reduction of the hardware resources consumption
(up to 98%) and high speed processing, appropriate for
real-time image processing systems. The �ltered images
are calculated at a rate of 103 frames per second for im-
ages up to 1200� 720 pixel resolution. The novelty lies
in the design of the FPGA architecture for the proposed
method. By the use of strategies such as, the use of shifts-
based operators, and kernels coe�cients de�ned as� � 1

� 2
;

it is possible to manage large number of di�erent con-
volution kernels and maintain low hardware resources
consumption. Furthermore, to maintain high
exibility
regarding to the input video, the developed hardware al-
lows to con�gure the resolution of the input images with
values of 3� Y up to 1200� Y 8 Y 2 N, allows to
con�gure the kernel order with � values 8 � 2 N and
allows scalability for di�erent sizes of convolution kernel
and input image resolution using a simple and systematic
form. Finally, the proposed method performance enables
the resulting hardware can be implemented to a wide
range of real-time image processing applications.

Second, we study the advantages and disadvantages
regarding to the CAPH language and its
exibility with
respect to synthesizable VHDL source codes. Third, we
provide a practical guide for developers willing to design
and implement real-time image processing systems via
the CAPH language.

2.1 The shift-based arithmetic

Considering a convolution kernelM of (n � 2) + 1 � (n �
2) + 1 8 n 2 N, de�ned by coe�cients in the form
mi;j = � � 1

� 2
8 � 2 2k for k 2 N; max(k) = bits per

pixel(bpp) ; all convolution kernel can be expressed as
three matrices, A ; B and C, as shown inequation 2.

mi;j =
i = n;j = nX

i =1 ;j =1

2k

2k = A ; B ; C (2)

In the equation 3 one kernel and its � � 1
� 2

repre-
sentation is shown, while, in the equation 4 the cor-
respondingA ; B and C matrices for the selected kernel
are shown.A is the sum of the k values of the numera-
tor and denominator for the mi;j elements.B is the sign
of the mi;j elements de�ned by equation 5 and C is
de�ned as shown in equation 6.

2

4
� 1 1

4 � 1
1
4 8 1

4
� 1 1

4 � 1

3

5 =

2

6
4

� 20

20
20

22 � 20

20

20

22
23

20
20

22

� 20

20
20

22 � 20

20

3

7
5 (3)

original mask � � 1
� 2

representation

2

6
4

� 20

20
20

22 � 20

20

20

22
23

20
20

22

� 20

20
20

22 � 20

20

3

7
5 =

2

4
0 2 0
2 3 2
0 2 0

3

5 ;

2

4
1 0 1
0 0 0
1 0 1

3

5 ;

2

4
0 1 0
1 0 1
0 1 0

3

5 (4)

� � 1
� 2

mask A B C

b(i; j) =
�

1; mi;j < 0
0; mi;j � 0 (5)

c(i; j) =
�

1; mi;j < 1
0; mi;j � 1 (6)

On the other hand, if G is an image with � bits per
pixel(bpp), his pixel values can be expressed by� bit
size registers and it is possible to de�ne theH and T
operators as shown in theequations 7 and 8. Where
sll � and srl � corresponds to a left or right shift over
a register and the magnitude of the shift is determined
by � and complement represents the two's complement,
applied over a � bit size register.

H r;t;C
i;j;A f Gg =

�
sll (a i;j) (gr;t); if ci;j = 0
srl (a i;j) (gr;t); if ci;j = 1 (7)

4

T r;t
i;j;B f gr;t g =

�
(gr;t); if bi;j = 0
complement(gr;t); if bi;j = 1 (8)

By applying the H and T operators, the convolu-
tion operation between aG image and aM convolution
kernel can be expressed by theC operator as shown in
equation 9. Where gi;j represents the gray scale value
of the (i; j) pixel of the G image, expressed by one� bit
register. n represents the order of the convolution kernel.
bx;y are the elements of theB matrix for the M kernel.
A; B and C are the A ; B and C matrices for the M
kernel, respectively. & applies a concatenation between
registers, andx; y are de�ned by the equations 10 and
11. Finally, the convolution output image Q for a G in-
put image with horizontal resolution equal to r 1, vertical
resolution equal tor 2 and aM convolution kernel of type
� � 1

� 2
can be computed as shown in theequation 12.

CfGg =
u= n;v = nX

u= � n;v = � n

bx;y & T u;v
x;y;B fH u;v;C

x;y;A f gi + u;j + v gg (9)

x =
�

n � 1
2

+ 1
�

+ u (10)

y =
�

n � 1
2

+ 1
�

+ v (11)

q(i; j) =
i = r 1 ;j = r 2X

i =1 ;j =1

CfGg (12)

2.2 Performance and limitations

Before to applying the proposed method it is necessary
to de�ne some restrictions and limitations. First, the pro-
posed method only is applicable if all the coe�cients of
the kernel can be expressed in the form� � 1

� 2
. i.e., a kernel

that includes the 0:173 coe�cient cannot be expressed
in the form � � 1

� 2
, while a kernel with coe�cients such as,

0:25; 0:50 or 0:125 are permissible. The use of kernel's co-
e�cients de�ned by powers of two limits the scope of the
proposed method. However, several applications such as
gauss �ltering, edge �ltering, sharpened operation, pyra-
midal reduction and so on can be successfully applied by
using the proposed method. On the other hand, some ap-
plications such as Gabor �ltering or another directional
�lter cannot take advantages by applying the proposed
method. Second, all the coe�cients of the kernel have
to be simpli�ed, i.e., an coe�cient equal to 2

4 must be
treated as 1

2 , 4
12 as 1

3 , 2
16 as 1

8 and so on. Finally, a con-
sideration for the zero value must be addressed. In all
cases the zero value for any coe�cient from the kernel
will be de�ned as 20

2bpp , where (bpp) is the bits per pixel
in the input image.

On the other hand, the most important di�erence
and advantage of the proposed method is to avoid the
calculation of products and
oating point operations, al-
lowing to use large number of di�erent convolution ker-
nels with positive or negative coe�cients for integers and
fractional numbers. As a result, the proposed method can
maintain a high
exibility regarding to the possible dif-
ferent input convolution kernels, near to 1� 1019 for ker-
nels of order 3. In addition, the proposed method enables
parallel implementation, suitable for FPGA devices.

3 FPGA architecture

An overview of the developed FPGA architecture are
shown in Fig. 2. This architecture consist into three in-
puts. The values corresponding to the horizontal resolu-
tion of the video sequence, size of the convolution ker-
nel and the coe�cients of the kernel are sent via logical
vectors to the FPGA architecture, settings input. The
clk pixel input is de�ned as the pixel rate of the input
image while the input pixel [7:0] input is de�ned as
grayscale values of pixels from the input image. On the
other hand, the �ltered pixels are placed in a logical vec-
tor of 8 bits size, output pixel [7:0] output.

Fig. 2: Black box diagram for the proposed FPGA
convolution unit

3.1 The CAPH design

The main di�erence between conventional HDL design
and the CAPH design is the form by de�ne behavior
of the modules. In any HDL language such as VHDL
or Verilog languages, behavior of the modules is de�ned
via digital approach. Digital approach forces the user
knowledge about digital electronics issues such as clock
signals, control signals, state machines, RTL description
and so on. In addition, in some cases time diagrams and
propagation analysis must be applied. Requirements for
electronic issues coupled with low level programing pre-
sented in the HDL design limits the scope. In most cases
electronic, mechatronic or another similar specialists per-
form the HDL design process.

5

Fig. 3: FPGA architecture for the developed convolution unit

On the other hand, CAPH uses a design based on
high level design. High level design avoids digital elec-
tronics issues. The modules called actors are de�ned via
transition rules. Each rule de�nes an HDL process and
his control signals. However, signals placement and pro-
cess de�nition are performed in automatic form by the
CAPH environment. User only requires knowledge about
structured programming. In addition, the CAPH pro-
graming syntax and operators are similar to the C lan-
guage, therefore, any user with general programming knowl-
edge could develop FPGA architectures, which increases
the scope regarding to the conventional HDL design. Fi-
nally, considering the high level design which avoid the
electronics optimization stage such as time diagrams and
propagation analysis it is possible to decrease the design
time.

In the Fig. 3 the general diagram for the developed
FPGA architecture is shown. The developed CAPH de-
sign consist into two stages. In the �rst stage, thecircu-
lar bu�er stage, stores the necessary data to comput-
ing the convolution operation for the input settings. The
resol [15:0] input is de�ned as the horizontal pixel
resolution for the input frame while the pixel [7:0]
input contain the grayscale value for one pixel from the
input frame and the clk input de�nes the pixel rate.
On the other hand, in the second stage, therecon�g-
urable convolution stage, the pixels and coe�cients
for the convolution kernel, pix � � � [7:0] and a(i,j)[3:0] ,
b(i,j) and c(i,j) , respectively are used to compute the
convolution operation via the proposed method. Finally,
the convolution result is placed in the output pixel
81� [16:0] output. In the following subsections the de-
tails about the developed design are presented.

3.1.1 The circular bu�er stage

All 2D-convolution operation involves passing a 2D ker-
nel over an image, and carrying out a calculation at each
position of the kernel. In this way image memory must be
accessed several times in order to complete a computa-
tion. For processing purposes, the conventional approach
is to store the entire input image into a frame bu�er, ac-
cess the neighborhoods pixels and apply the convolution
operation needed to produce the output image. If real-
time processing is required, considering an n� n kernel,
n� n pixel values are needed to perform the computa-
tions each time the kernel is moved and each pixel in the
image is read up to n� n times. The memory bandwidth
constraints make impossible to obtain all pixels stored
in the memory in only one clock cycle, unless any kind
of local caching is performed.

Conventional approaches are characterized by their
abundant memory directly connected to each process-
ing element. However, we proposed the use of a circular
bu�er schema, [21, 20]. By using pointers of memory ad-
dress it is possible to keep track of the elements being
processed. Input data from the previous n rows can be
stored using the memory bu�ers till the moment when
the kernel is scanned along subsequent rows. To reuse
hardware resources when new image data is processed,
a shift mechanism between bu�er rows is used. Data in-
side the bu�er can be accessed in parallel and each in-
put pixel is fed only once to the FPGA device. Bu�er
elements synchronize the supply of input pixel values to
the processing elements. Furthermore, image bu�ers al-
low performing several window operators in parallel and
enable the possibility to carry out computations with lo-
cal data. Instead of sliding the kernel across the image,
this implementation feeds the image through the kernel
as shown inFig. 4.

6

Fig. 4: Structure for the circular bu�er

In order to implement the circular bu�er scheme in
the CAPH language, the use of theram driver and data
actors is proposed,Fig. 3. Although the circular bu�er
schema allows to storen horizontal lines and the maxi-
mum kernel size could be set asn, design a recon�gurable
FPGA architecture with a large maximum kernel size im-
plies extensive source codes. Furthermore, the majority
of the industrial applications use kernels sizes with values
between 3� 3 to 13� 13. Hence, for practical purposes, in
the developed FPGA architecture the maximum kernel
size is set as 9� 9, enabling to process kernels up to 9� 9.

Considering the maximum kernel size as 9� 9, the
ram driver actor manages an array of 10 BRAM cores
assigning to each one the corresponding address and the
write-read value. The BRAM cores consists of a syn-
chronous single-port block-ram unit. This cores were de-
signed via MegaWizard Plug-In Manager - Quartus II.
The design settings were assigned as: type = synchronous,
width = 8, depth = 1200, operation type = single port
and all others parameters were de�ned as default. These
parameters allow to store the gray scale values for each
pixel contained in a horizontal line from input images up
to 1200 horizontal resolution with 8 bits per pixel (bpp).
The use of an BRAM core array enables to read the
grayscale values of the pixels contained inn horizontal
lines from an image, seeTable 1.

Table 1: Behavior of the used BRAM array

w/r [9:0] Read lines by BRAM 1; 2 ;:::; 10

0000000001 -,-,-,-,-,-,-,-,-,-
0000000010 -,-,-,-,-,-,-,-,-,1
0000000100 -,-,-,-,-,-,-,-,2,1
0000001000 -,-,-,-,-,-,-,3,2,1
0000010000 -,-,-,-,-,-,4,3,2,1
0000100000 -,-,-,-,-,5,4,3,2,1
0001000000 -,-,-,-,6,5,4,3,2,1
0010000000 -,-,-,7,6,5,4,3,2,1
0100000000 -,-,8,7,6,5,4,3,2,1
1000000000 -,9,8,7,6,5,4,3,2,1
0000000001 10,9,8,7,6,5,4,3,2,-
0000000010 10,9,8,7,6,5,4,3,-,11

The ram driver actor consist in one input, (resol)
input, corresponding to the horizontal resolution of the
input image and two outputs, re wr and direc . The
re wr output consist on a logic vector with 10 bits of
size, the write-read value of each of the BRAMs are de-
termined by each one of the bits of the logic vector. The
direc output consist on a logic vector with 11 bits of
size that corresponds to the read/write address for all
the BRAM cores. The maximum horizontal resolution
for the input image is set as 1200 pixels. Hence, the max-
imum possible value for thedirec output is 1199.

In the Fig. 5 the source code for theram driver
actor is presented. As can be seen, the CAPH program-
ing possesses design sequence like structured program-
ing. The CPAH design sequence could be divided into
�ve stages. In the input/output declaration stage, the
input/output de�nitions for a particular actor must be
addressed. In the CAPH environment it is possible to
de�ne multiple actors in same source �le. Hence, the in-
put/output declaration stage and the second, and third
stages must be performed for each actor de�ned in the
�le. The second stage addresses the variable declaration
used into an actor. Then, in third stage the transition
rules for an actor must be de�ned. After, in the fourth
stage the input/output for the general CAPH design
must be speci�ed. Finally, in the �fth stage, the instan-
tiation process between actors de�ned in the source code
could be performing.

Fig. 5: Source code for theram driver actor

The ram driver actor consists into two transition
rules. The �rst, increments the initial value of the read/
write address for all the BRAM cores, and manages the
re wr and direc outputs, Fig. 3. The second rule, as-
signs initial values for the variables used in theram
ram driver actor. Due to each BRAM core only pro-
vides the pixel value of one pixel of the horizontal line
stored inside them, in order to access the others hori-
zontal values necessary for the convolution operation, it
is proposed the use of thedata actor, Fig. 3. The data

7

actor consists into one transition rule. Applying this, the
values of one pixel for the nine lines are read in parallel
at any time instant and placed in the outputs 1-9 of the
data actor, then this values are placed in the outputs
10-18 and the new read data are placed in the outputs
1-9. This process are repeated until storage the 81 pixels
for the 9� 9 selected kernel size is completed.

3.1.2 The recon�gurable convolution stage

The recon�gurable convolution stage,Fig. 3, is com-
prised of three di�erent actors. First, n � n shift ac-
tors performs the corresponding shifts regarding to each
of pixels in the kernel, equation 7. The values of the
A and C matrices serve as inputs of theshift actors,
a(i,j)[3:0] and b(i,j) , respectively. In order to per-
form the right shift over large grayscale values for the
input pixels, all input pixel values are placed in regis-
ters of 16 bits of depth. shift actor consists into two
rules, this rules represent the two possible solutions of the
equation 7, sll or srl . Then, n � n two's complement
actors perform the corresponding complements regard-
ing to each pixels in the kernel, equation 8. The val-
ues of the B matrix and the outputs of the shift ac-
tors serve as inputs of thetwo's complement actors.
The two's complement actor consists into two transi-
tion rules, the rules represent the two possible solutions
of the equation 8. Considering the size of the input
pixels as 16 bits, the equation 8 can be simpli�ed as
shown in equation 13. After, all values generated by
the two's complement actors are concatenated with
the coe�cients of the B matrix. Finally, the adder actor
performed the sum of all input pixels via one signed-sum
unit de�ned in one transaction rule.

T r;t
i;j;B f gr;t g =

�
(gr;t); if bi;j = 0
complement(gr;t); if bi;j = 1

=
�

(gr;t); if bi;j = 0
65536� (gr;t); if bi;j = 1 (13)

3.2 Instantiation

CAPH environment performance regarding to instantia-
tion is limited. In general, it is possible to instantiate be-
tween actors contained in the same source �le. However,
this process is complex in comparison with the design
of the actors and considering the CAPH 2.3 version (re-
leased in July 2014) , the version used in this research,
it is possible indicate that CAPH not allow instantiation
for actors de�ned in di�erent source �les. In addition,
when the source code of the actors is considerable, de�ne
multiple actors in the same source �le is not practical.

Due to limitations regarding to instantiation process,
it is proposed the use of a VHDL instantiation �le. All
actors were compiled via the CAPH compiler and it
was obtained the following �les: complement act.vhd,
data act.vhd, ram driver act.vhd, shift act.vhd and adder
act.vhd. Furthermore, MegaWizard Plug-In provides the

bram.vhd �le. All �les have been instantiated in a VHDL
�le designed in Quartus II Web Edition 10.1SP1.

In order to assign lines in the outputs of thedata ac-
tor in ascending form, i.e. line1 [7:0] = input image
line number l, line2 [7:0] = input image line num-
ber l+1, � � � , line9 [7:0] = input image line number
l+8, the outputs from the BRAM cores in read mode
are assigned to the outputs of thedata actor as seen
in Table 2, the �rst column corresponds to the output
w/r [n+1:0] of the ram driver actor, the second col-
umn corresponds to the numbers of the BRAM cores
assigned to the outputs of thedata actor while in Fig.
3, the instantiations between the BRAM cores and the
data actor is shown.

Table 2: Input assignment for the data actor

w/r [n+1:0] Assignment
lineK [7:0] for K=1,2, � � � ; 9

0000000001 2,3,4,5,6,7,8,9,10
0000000010 3,4,5,6,7,8,9,10,1
0000000100 4,5,6,7,8,9,10,1,2
0000001000 5,6,7,8,9,10,1,2,3
0000010000 6,7,8,9,10,1,2,3,4
0000100000 7,8,9,10,1,2,3,4,5
0001000000 8,9,10,1,2,3,4,5,6
0010000000 9,10,1,2,3,4,5,6,7
0100000000 10,1,2,3,4,5,6,7,8
1000000000 1,2,3,4,5,6,7,8,9

4 Results and discussion

4.1 CAPH's performance and limitations

CAPH language possesses several advantages regarding
to the conventional HDL design. First, the CAPH lan-
guage takes advantages regarding to the conventional
HDL languages due to the possibility to avoid digital
approach which involves time requirements and control
signals de�nitions. In addition CAPH allows a high level
programing and enables to export to synthesizable VHDL
code the source code. In addition, CAPH allows to use
most of the synthesizable VHDL operators such as shifts,
arithmetic operations and so on. Other advantage for to
the CAPH language is the optimized operators for arith-
metic operations. Several arithmetic operators such as
+,-,*,/ and sqrt , produced VHDL optimized codes.
It is useful when complex arithmetic operations such as
products, quotients and radicals need to be implemented
in FPGA devices.

8

CAPH performance regarding to instantiation is lim-
ited. In general, it is possible to instantiate between ac-
tors contained in the same source �le. However, this pro-
cess is complex in comparison with the design of the
actors and considering the CAPH 2.3 version (released
in July 2014), it is possible indicate that CAPH not al-
low instantiation for actors de�ned in di�erent source
�les. In addition when the source code of the actors is
considerable, de�ne multiple actors in the same source
�le is not practical. Furthermore, although the major-
ity of the CAPH instructions are exportable to VHDL,
other limitation are operations between
oating points
and disability to low level programing operations such
as, concatenation between registers and operations be-
tween bits of a register.

4.2 General performance of the developed FPGA
architecture

The main characteristics and di�erences between the de-
veloped FPGA architecture and all the FPGA convo-
lution architectures reported in the literature are two.
First, the possibility to process di�erent resolution re-
garding to input video stream without have to re- syn-
thesize the developed hardware. Second, the possibility
to applying di�erent sizes or coe�cients for the convolu-
tion kernel without have to re-synthesize the developed
hardware. In the Fig. 6 the coe�cients-distribution of
the used convolution kernel is shown. As can be seen the
central pixel corresponds to the 41 index. All the possible
kernels must be centered in the central pixel, e.g., a 3� 3
kernel must contain the pixels with the indexes equal to
31-33, 40-42 and 49-51, while a 5� 5 kernel must contain
the pixels with the indexes equal to 21-25, 30-34, 39-43,
48-52, and 57-61.

Fig. 6: Distribution of the coe�cients for the
convolution kernel

4.3 Simulation results

All modules and cores for the FPGA architecture in Fig.
3 were compiled and synthesized in Quartus II Web Edi-
tion version 10.1SP1. In order to verify functionality of
all the modules individually, post-synthesis simulations
in ModelSim-Altera 6.6c were executed. In order to eval-
uate the behavior of proposed algorithm, the developed
FPGA architecture was simulated using di�erent con-
volution masks and di�erent input image sizes. For this
purpose a VHDL testbench was designed. In this test-
bench the pixels that integrate one frame of a video se-
quence was read each rising edge of a 100 MHz clock,
the settings corresponding to horizontal resolution and
convolution mask were set in test signals, the �ltered
pixels were stored in a txt �le. Finally, the txt output
�le was decoded by Matlab and the �ltered frame was
stored in a .jpg image format. The testbench �le was
ran in ModelSim-Altera 6.6c. The resulting images are
shown in Fig. 7. In a �rst test, an unitary kernel was
applied, Fig. 7b. In a second test, an edge detector �lter
[23] was implemented,Fig. 7e. In a third, a sharpened
operation was applied, as shown inFig. 7h. Finally, the
fourth test consists in a Gaussian blurring operation [6],
Fig. 7k. Due to it were tested both multiple input res-
olutions and di�erent sizes and kernel's coe�cients (in-
cluded rational, positive and negative numbers),Fig. 7
demonstrates the
exibility for the developed FPGA ar-
chitecture regarding to the convolution operation.

In addition, to validate the functionality for each of
the four tests presented in the Fig. 7, a convolution
script that operates considering theequation 1 was de-
signed in MatLab. The output images for the same con-
volution kernels are stored in a .jpj �le. Then, the per-
centage of the number of erroneous pixels (�) and the
RMS error (�) were computed by theequations 14 and
15; whereI 1 is the output image generated for the con-
ventional convolution method. I 2 is the output image
generated for the proposed convolution method.x is the
horizontal resolution of the input image. y is the vertical
resolution of the input image. N is set asx � y and �
is set as 0.01. In theFig. 8 the results of this validation
are shown.

� =
1
N

� 100
i = x;j = yX

i =1 ;j =1

jI 1(i; j) � I 2(i; j)j > � (14)

� = 2

vu
u
t 1

N

i = x;j = yX

i =1 ;j =1

(I 1(i; j) � I 2(i; j))2 (15)

9

(a) original image 512� 512 (b) �ltered image

"
0 0 0
0 1 0
0 0 0

#

(c) convolution kernel

(d) original image 200� 200 (e) �ltered image

"
0 � 1 0

� 1 4 � 1
0 � 1 0

#

(f) convolution kernel

(g) original image 200� 200 (h) �ltered image

2

4
� 1

2
1
4 � 1

2
1
4 2 1

4
� 1

2
1
4 � 1

2

3

5

(i) convolution kernel

(j) original image 512 � 512 (k) �ltered image

2

6
6
6
6
6
6
6
6
4

0 0 0 1
128 0 0 0

0 0 1
128

1
64

1
128 0 0

0 1
128

1
64

1
8

1
64

1
128 0

1
128

1
16

1
8

1
4

1
8

1
16

1
128

0 1
128

1
64

1
8

1
64

1
128 0

0 0 1
128

1
64

1
128 0 0

0 0 0 1
128 0 0 0

3

7
7
7
7
7
7
7
7
5

(l) convolution kernel

Fig. 7: Performance of the developed FPGA convolution unit

10

Fig. 8: Validation of the developed FPGA convolution
unit

By analyzing the Fig. 8 it is possible to a�rm the
correct functionality of the FPGA architecture. The �rst
test, Fig. 7 (a)-(c), involves anything operation due to
the selected kernel is the identity kernel. In this case both
errors � and must be zero as shown inFig. 8, there-
fore it is possible to a�rm the correct functionality of the
developed FPGA architecture. On the other hand, due
to decimal representation of the tests performed in Mat-
Lab in contrast to the integer representation used in the
ModelSim-Altera simulations, small error values for the
second-fourth tests (Fig. 7 (d)-(l)) is expected. However,
due the � and values obtained for these tests, close to
zero, it is possible to ensure the correct functionality of
all actors and cores in the FPGA architecture.

In order to evaluate the performance of the developed
FPGA architecture, several comparisons between di�er-
ent approaches for the conventional convolution method
are presented. For this purpose the developed FPGA ar-
chitecture (Fig. 3) was modi�ed as shown in Fig. 10.
The modi�cation consist in replace any shift actor and
two's complement actor by one multiplication
actor . The multiplication actor performs the mul-
tiplication operation between the pixels and coe�cients
in the convolution kernel, pix � � � [7:0] and k (x,y) , re-
spectively. Due to conventional multiplication stage and
the proposed recon�gurable convolution stage do not re-
quire memory bits consumption, only comparisons be-
tween logic elements requirements were conducted,Fig. 9.
IEEE approach consists into multiplication modules de-
signed using the specialized �xed point libraries devel-
oped by IEEE. Sequential multiplication modules pre-
sented by Stevenson [31] are implemented in Sequential
approach. Booth approach uses the multiplication mod-
ule presented by Takagi et al [33]. In CSA Wallace-Tree
approach, the schema proposed by S.Wallace [32] is im-
plemented. Finally, in Recursive approach, it is used the
architecture proposed by Singh-Parihar and Reddy [30]
which consist in an optimized low level multiplication
unit.

Fig. 9: Comparison of logic elements consumption

By analyzing Fig. 9 it is possible to a�rm that even
if the most e�cient multiplication algorithms are used,
the multiplication operation maintains a high hardware
resources consumption. However Due to the proposed
method consists into a shift-based arithmetic any FPGA
device can take advantages by applying shift operations.
Shift operations are low level operations which involves
only one digital element in contrast with multiplication
operations which involves several digital elements such
as adders and logical elements (and or and so on), which
increase the hardware resources consumption. As can be
seen, if the proposed method is applied the hardware re-
sources requirements can be reduced up to 98%. Reduc-
tion regarding to the hardware resources requirements is
very useful in autonomous applications such as robotic
applications, where the use of small FPGA devices that
implies relatively few hardware resources is needed. On
the other hand, any real-time application will take ad-
vantages if the hardware resources usage decreases.

Due to, in most of the image processing systems such
as, low-light microscopy, object recognition, computer vi-
sion, and so on [3, 7, 8, 10, 15]; a high speed processing is
required, other parameter considered to evaluate perfor-
mance is speed processing. InTable 4, processing speed
comparisons between the same approaches presented in
the Fig. 9 and the proposed method are presented. On
the other hand, in Table 3 processing speed comparisons
for the developed architecture regarding to di�erent in-
put image resolution are shown. As can be observed, the
proposedrecon�gurable convolution stage allows to
maintain processing speed close or equal to the process-
ing speed of all the compared multiplication methods.
Furthermore, the developed FPGA architecture enables
high speed processing for di�erent resolutions of input
video streams,Table 3. Hence, it is possible to a�rm
that the developed architecture is appropriate for real-
time image processing applications. Finally, inTable 5
the full hardware resource consumption for the developed
FPGA convolution unit is shown.

11

Fig. 10: FPGA architecture for the conventional convolution method

Table 3: Processing speed for di�erent resolutions of input images

Method Resolution Frames/s Pixels/s

IEEE 1200 � 720 103 135,005,160

S.Wallace [32] 1200 � 720 103 135,005,160

Singh-Parihar and Reddy [30] 1200 � 720 104 136,614,880

Stevenson [31] 1200 � 720 104 136,614,880

Takagi et al [33] 1200 � 720 104 136,614,880

proposed* 1200 � 720 103 135,005,160

proposed* 512 � 512 526 137,887,744

proposed* 200 � 200 3500 140,000,000

*Operating frequency = 100 MHz

Table 4: Processing speed for di�erent convolution
methods

Method Required time Clock
speci�cation

IEEE 10.0 ns 100 MHz

S.Wallace [32] 10.0 ns 100 MHz

Singh-Parihar
and Reddy [30] 9.61 ns 100 MHz

Stevenson [31] 9.54 ns 100 MHz

Takagi et al [33] 9.54 ns 100 MHz

proposed 10.0 ns 100 MHz

4.4 Implementation results

4.4.1 Post-synthesis implementation

The developed architecture was implemented in an FPGA
Cyclone IIEP2C35F672C6 embedded in an Altera devel-
opment board DE2. The maximum clock frequency was
de�ned as 50 MHz. In order to validate the implementa-

Table 5: Hardware resource consumption for the
developed FPGA convolution unit

Resource Demand

Total logic elements 8,573

Total combinational functions 8,573

Dedicated logic registers 3,351

Total pins 523

Total Memory Bits 163,840

Embedded multiplier elements 0

Total PLLs 0

tion, the frame generator and the settings modules
were designed,Fig. 11. The frame generator module
have stored in this one frame of 200� 200 pixels resolu-
tion and provides grayscale values from the stored frame,
pixel [7:0] . The settings module provides the hor-
izontal resolution value for the input frame, settings
[15:0] and the coe�cients for the convolution kernel,
kernel 81x[5:0] . The architecture that includes the
frame generator and the settings modules was im-

12

plemented in the IIEP2C35F672C6 FPGA device and
was simulated via post-synthesis simulation performed
in ModelSim-Altera 6.6c. The output image is stored in
a text �le. Then, the and � errors (equations 14 and
15) are computed in MatLab, considering the output im-
age for the FPGA implementation and the output image
for the same settings performed in MatLab. The obtained
error values for the and � variables were 0 and 0, re-
spectively. This values con�rms the correct functionality
of the implementation. In Fig. 12 the speci�cations for
the FPGA implementation are shown.

Fig. 11: FPGA architecture for the post-synthesis
implementation

(a) original image 200� 200 (b) �ltered image

"
0 � 1 0

� 1 4 � 1
0 � 1 0

#

(c) convolution kernel

Fig. 12: Speci�cations for the post-synthesis
implementation

4.4.2 Real-time implementation

In order to ensure real-time processing for the developed
FPGA architecture, other FPGA implementation with
maximum clock frequency set as 50 MHz. was performed,

Fig. 13. A TRDB DC2 board was connected in the �rst
port of expansion of the DE2 as video acquisition device.
TRDB DC2 board provides images of 1280� 1024 pixel
resolution in RGB scale at rate of 30 frames per second.
To determine the value in gray scale of the input images
the value of the green channel is used as gray scale value.
The �ltered output for the selected kernel was shown in
a 4,3" LCD screen of 800� 480 pixel resolution of the
terasIC brand connected to the second port of expansion
of the DE2 board, Fig. 14. In this implementation �rst,
the acquisition module provides grayscale values from
pixels contained in frames from an input video stream,
pixel [7:0] output. Then, the developedconvolution
unit performs the convolution operation for the input
settings. The input settings (horizontal resolution and
convolution coe�cients, settings [15:0] and kernel
81x[5:0] , respectively), were de�ned by the switchs and
buttons from the DE2 board. Finally, the �ltered pixels,
output pixel [16:0] , were sent to the LCD display.

Fig. 13: FPGA architecture for the Real-time
implementation

Fig. 14: Real-time implementation

13

5 Conclusions

In this article a new method for the 2D-convolution op-
eration in real-time has been presented. In this method,

oating point operations are translated into low level op-
erations between registers. Low level operations allow to
reduce the hardware resources consumption, near to 98%
compared to the conventional convolution implementa-
tions. In addition, the developed FPGA architecture was
designed via the CAPH compiler. Due to high level pro-
graming and avoid to use electronic digital approach that
involves time diagrams and propagation analysis, CAPH
enables to reduce design time near to 75% compared to
the plain VHDL design. The developed FPGA convolu-
tion unit allows to maintaining high
exibility regarding
to the possible di�erent input convolution kernels, near
to 1 � 1019 for kernels of order 3, 7� 10179 for kernels of
order 9 and high speed processing. High speed processing
and high
exibility regarding to the convolution kernel
enable the developed convolution unit to be implemented
to a wide range of real-time image processing applica-
tions. To validate functionality, post-synthesis simula-
tions of the developed FPGA architecture has been per-
formed. Furthermore, the architecture was implemented
in an FPGA Cyclone II EP2C35F672C6 embedded in
a development board DE2 of Altera. In all cases high
accuracy level have been observed.

One purpose of this research was to explore the po-
tential of the CAPH language for complex image process-
ing tasks, in concordance, the FPGA architecture for the
proposed method was performed in the CAPH environ-
ment which o�ers great advantages regarding to synthe-
sizable VHDL design. Only one important limitation was
detected in this research,
exibility for instantiation pro-
cess. However, a VHDL instantiation �le designed in the
Altera VHDL tools or another VHDL design tool, easy
solves this inconvenience.

Finally, an important characteristic of the presented
architecture is scalability. All the actors, sub-actors and
cores that integrate the FPGA architecture easily allow
adaptation to work with convolution kernel of size ma-
jor than the 9� 9 kernel, and horizontal video resolution
larger than the 1200 resolution which were the values
used in the developed FPGA architecture. Consequently,
it is possible to con�gure a wide variety of �lters with ap-
propriate values to the characteristics of the input video
sequence and the user requirements.

References

1. Acharya KA, Babu RV, Vadhiyar SS (2014) A real-time implemen-
tation of sift using gpu. J Real-Time Image Proc

2. Asgher U, Muhammad H, Hamza H, Ahmad R, Butt S, Jamil
M (2013) A temporal superresolution method applied to low-light
cardiac
uorescence microscopy. In: Proceedings of The 2013 Asilo-
mar Conference on Signals, Systems and Computers, IEEE, Paci�c
Grove, CA, pp 1073{1077

3. Asgher U, Muhammad H, Hamza H, Ahmad R, Butt S, Jamil M
(2014) Robust hybrid normalized convolution and forward error
correction in image reconstruction. In: Proceedings of The 10th
International Conference on Innovations in Information Technol-
ogy, IEEE, Al Ain, United Arab Emirates, pp 54{59

4. Barina D, Zemcik P (2015) Vectorization and parallelization of 2-d
wavelet lifting. J Real-Time Image Proc

5. Braun L, Gohringer D, Perschke T, Schatz V, Hubner M, Becker J
(2009) Adaptive real-time image processing exploiting two dimen-
sional recon�gurable architecture. J Real-Time Image Proc 4:109
125

6. Colodro-Conde C, Toledo-Moreo F, Toledo-Moreo R, Mart��nez-
�Alvarez J, Garrig�os-Guerrero J, Ferr�andez-Vicente J (2014) A
practical evaluation of the performance of the impulse codevel-
oper hls tool for implementing large-kernel 2-d �lters. J Real-Time
Image Proc 9:263279

7. Fiack L, Cuperlier N, Miramond B (2013) Embedded and real-
time architecture for bio-inspired vision-based robot navigation. J
Real-Time Image Proc

8. Fons F, Fons M, Cant�o E, L�opez M (2009) Real-time embedded
systems powered by fpga dynamic partial self-recon�guration: a
case study oriented to biometric recognition applications. J Real-
Time Image Proc 8:229251

9. Hofmann M, Eggeling C, Hell SJS (2005) Breaking the di�raction
barrier in
uorescence microscopy at low light intensities by using
reversibly photoswitchable proteins. Proceedings of the National
Academy of Sciences of the United States of America 42:17,565{
17,569

10. Jiang B, Woodell A, Jobson D (2014) Novel multi-scale retinex
with color restoration on graphics processing unit. J Real-Time
Image Proc

11. Krause M, Alles RM, Burgeth B, Weickert J (2013) Fast retinal
vessel analysis. J Real-Time Image Proc

12. Krause M, Alles RM, Burgeth B, Weickert J (2013) Fast star cen-
troid extraction algorithm with sub-pixel accuracy based on fpga.
J Real-Time Image Proc

13. M Arias Estrada CTH (2000) Real-time fpga arquitectures for
computer vision. In: Proceedings of The Electronic Imaging 2000-
Photonics West, dedicated conference on Machine Vision Applica-
tions in Industrial Inspection VII, San Jose, CA., pp 23{28

14. Mabrouk A, Hassim N, Elsha�ey I (2013) A computationally e�-
cient technique for real-time detection of particular-slope edges. J
Real-Time Image Proc

15. Park H, Park Y, Oh SK (2003) L/m-fold image resizing in block-
dct domain using symmetric convolution. IEEE Transactions on
Image Processing 12:1016{1034

16. Rasnik I, French T, Jacobson K, Berland K (2013) Electronic cam-
eras for low, light microscopy. ELSEVIER ACADEMIC PRESS
INC, San Diego

17. Reichenbach SE, Geng F (2001) Improved cubic convolution for
two dimensional image reconstruction. IEEE Nuclear Science Sym-
posium and Medical Imaging Conference 3:1775{1778

18. Romero-Troncoso R (2004) Sistemas digitales con VHDL. Legaria,
M�exico

19. Romero-Troncoso R (2007) Electrnica Digital y L�ogica Program-
able. Universidad De Guanajuato, M�exico

20. Saldaa G, Arias-Estrada M (2006) Customizable fpga-based archi-
tecture for video applications in real time. In: Proceedings of The
IEEE International Conference on Field Programmable Technol-
ogy, IEEE, Bangkok, Thailand, pp 381{384

21. Saldaa G, Arias-Estrada M (2007) Compact fpga-based systolic
array architecture suitable for vision systems. In: Proceedings of
The 4th International Conference on Information Technology: New
Generations, IEEE, Las Vegas, Nevada, pp 1008{1013

22. Sangwine S (2002) Colour image edge detector based on quater-
nion convolution. Electronics Letters 10:969{971

23. Sangwine S, Ell T (2002) Colour image �lters based on hyper-
complex convolution. IEE Proceedings - Vision, Image and Signal
Processing 147:89{93

24. Savarimuthu TR, Kjaer-Nielsen A, Sorensen AS (2011) Real-time
medical video processing, enabled by hardware accelerated corre-
lations. J Real-Time Image Proc 6:187197

25. SEROT J (2012) Caph : A high-level actor-based language for pro-
gramming fpgas. In: Workshop on Architecture of Smart Cameras
- WASC 2012

26. SEROT J (2013) Caph: A domain specic language for implement-
ing stream-processing applications on recongurable hard. In: First
Workshop on Domain Speci�c Languages Design and Implemen-
tation, URL http://dsldi2013.hyperdsls.org/

27. SEROT J, BERRY F (2013) Caph, un langage d�e di�e �a la synth�ese;
applications
ot de donn�ees sur circuits fpga. In: 24eme Congr�es

14

GRETSI
28. SEROT J, BERRY F, AHMED S (2012) CAPH: A Language

for Implementing Stream-Processing Applications on FPGAs, vol
Embedded Systems Design with F, Springer, chap CAPH: A
La, pp 201{224. URL http://link.springer.com/chapter/10.1007/
978-1-4614-1362-2_9

29. Shi J, Reichenbach S (2006) Image interpolation by two-
dimensional parametric cubic convolution. IEEE Transactions on
Image Processing 54:1857{1870

30. Singh-Parihar RK, Reddy S (2005) E�cient Floating Point 32-
bit single Precision Multipliers Design using VHDL. BIRLA IN-
STITUTE OF TECHNOLOGY AND SCIENCE PILANI 333031,
Pilani

31. Stevenson D (1981) A proposed standard for binary
oating point
arithmetic. IEEE Transactions on Electronic Computers 14:51{62

32. SWallace C (1984) A suggestion for fast multipliers. IEEE Trans-
actions on Electronic Computers 13:1417

33. Takagi N, Yasuura H, Yajima S (2006) High-speed vlsi multiplica-
tion algorithm with a redundant binary addition tree. IEEE Trans-
actions on Electronic Computers 34:789{796

34. Zhou F, Zhao J, Ye T, Chen L (2014) Accelerating embedded im-
age processing for real time: a case study. J Real-Time Image Proc

Author Biographies

Abiel Aguilar-Gonz�alez received the B.Eng.
degree of Mechatronics in June 2012, Universi-
dad Polit�ecnica de Chiapas, Tuxtla Guti�errez,
M�exico. In June 2015 he received the M.Sc.
degree of mechatronics engineering with high-
est honors, Instituto Tecnol�ogico de Tuxtla
Guti�errez, Tuxtla Guti�errez, M�exico. He is cur-
rently pursuing his Ph.D. degree in Computer
Science at the recon�gurable computing labo-
ratory of the Instituto Nacional de Astrof��sica
�Optica y Electr�onica, Cholula, M�exico. His re-
search interests are mainly real-time image pro-

cessing, real-time FPGA-based system design, machine learning and
fuzzy logic applications.

Miguel Arias-Estrada obtained his B.Eng.
in Communications and Electronics, and his
M.Eng in Digital Systems at the FIMEE (Uni-
versity of Guanajuato) in Salamanca, Gto. in
1990 and 1992 respectively. In 1998, he ob-
tained his Ph.D. degree at the Computer Vi-
sion and Systems Laboratory of Universit Laval
(Quebec city, Canada). He was a professor-
researcher at the Computer and Systems Labo-
ratory at Laval University where he worked on

the development of a Smart Vision Camera. Since 1998 he is with the
Computer Science department of INAOE (National Institute of Astro-
physics, Optics and Electronics, Puebla, Mexico) where he continues
his research on FPGA architectures for computer vision. His interests
are Computer Vision, FPGA and GPU algorithm acceleration for 3D
and machine vision.

Mada��n P�erez-Patricio received the Ph.D.
degree of Automation and industrial comput-
ing 2005, Universit�e Lille 1 : Sciences et Tech-
nologies, France. Since september 1997 he is re-
search professor in department of postgraduate
and research, Instituto Tecnol�ogico de Tuxtla
Gutirrez, M�exico. His primary research inter-
est include computer vision and recon�gurable
computing.

Jorge Luis Camas Anzueto received the
PhD degree from Instituto Nacional de As-
trof��sica �Optica y Elctr�onica (INAOE), Puebla,
M�exico in 2004. He is currently a researcher in
Maestr��a en Ciencias en Ingenier��a Mecatr�onica
(MCIM) of the Instituto Tecnol�ogico de Tuxtla
Guti�erez, Chiapas, M�exico. His research inter-
ests include optical sensors, �ber sensors, and
optoelectronics.

	Introduction
	The proposed mhetod

