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Abstract—This paper describes an FPGA Correlation-Edge
Distance approach for real time disparity map generation in
stereo-vision. The proposed method calculates the disparity map
for the input and disparity map for Edge Distance images of a
stereopair. In both cases the approximation algorithm of disparity
map SAD (Sum of Absolute Differences) is used. The nal
disparity map is determined from the previously generated maps,
considering a homogeneity parameter de ned for each point in
the scene. Due to low complexity when implementing stereo-
vision algorithms in FPGA devices, the proposed method was
implemented in a Cyclone Il EP2C35F672C6 FPGA assembled
in an Altera DE2 breadboard. The developed module can process
stereo-pairs of 1280 1024 pixel resolution at a rate of 75 frames/s
and produces 8-bit dense disparity maps within a range of
disparities up to 63 pixels. The presented architecture provides
a signi cant improvement in regions with uniformed texture
over correlation based stereo-vision algorithms in the reported
literature and an accelerated processing rate.

Keywords—FPGA, Verilog, Disparity map.

I. INTRODUCTION

additional step for characteristics extraction, which increases
the computational costs and runtime.

Due to benets regarding to the management of large
amounts of data at high speed of FPGAs devices, there is
currently a wide variety of algorithms for estimating disparity
maps implemented in FPGAs in the reported literature. In
[10], an array of four FPGAs is used to estimate the Cross
Correlation for 256 256 pixel resolution images at a rate
of 7 frames per second. In [11], a hybrid system that uses
digital signal processors with programmable logic devices PLD
is presented. The authors of this paper generated disparity
maps for 256 256 pixel resolution images at a rate of 30
frames per second. In [12], is proposed a four Xilinx Virtex
2000E structure, on which is possible to obtain real-time dense
disparity-maps for 256360 pixel resolution images at a rate
of 40 frames per second. In [13] the use of a single FPGA
is proposed. The developed system processes images at 30
frames per second using 64880 pixel resolution images.

An adaptive window technique in conjunction with SAD is
used in [14]. The presented method processes images up to

Perception of depth values of points contained in a scen&024 1024 pixel resolution at a rate of 47 frames/s and pro-

is one important task of computer vision systems. Recentlyluces 8-bit dense disparity maps within a range of disparities
depth perception has been used in diverse applications su¢tp to 32 pixels. The architecture presented in [15] uses four
as navigation systems for mobile robots, object recognitiof-PGAs to make a real time correction, in on the same paper a
and 3D reconstruction [1]-[4]. Extracting information about leftright consistency check is done to improve the quality of the
the depth from images using a stereo con guration is the mostlisparity map produced. This method processes images up to
used technique. In this technique the correspondence betwe€A0 480 pixel resolution at a rate of 30 frames/s and produces
images and the geometric con guration of the same allows t®-bit dense disparity maps within a range of disparities up
obtain depth images called disparity maps [5]. to 128 pixels. In [16] a module for calculating the real-time

) ) o disparity map is proposed. The module was implemented in

_ To dene a disparity map it is necessary to measure thg, single FPGA of Altera Stratix IV family. The autors of this

S|m|Iar|Fy of content points in the stereo image. Technlques t‘baper processed images up to 6480 pixel resolution at a
determine these similarities are divided into two categoriesyate of 320 frames/s and produces 8-bit dense disparity maps

area-based algorithms [6]-[7], and feature-based algorithmg;ithin a range of disparities up to 80 pixels.
[8]-[9]. In area-based algorithms the gray level of pixels round

the interest pixel are used as similarity measure to produce In this paper an FPGA module to calculate real-time dense
dense disparity maps, i.e., the disparity is calculated for altlisparity maps is presented. The novelty is the architecture
the points in the scene. On the other hand, feature-basatksign and FPGA implementation for the proposed method.
algorithms are based on speci ¢ points of interest. These point§he disparity maps are calculated at a rate of 75 frames/s for
are selected in concordance with appropriate feature detectors280 1024 pixel resolution images and generate 8-bit dense
Feature-based algorithms are more stable against changesdisparity maps within a range of disparities up to 63 pixels.

lighting environment and contrast, because they represent théhe developed module allows simple and systematically scal-
geometric properties of a scene. The main characteristic dbility to different range of disparities, therefore the resulting

using feature-based algorithms is that they do not generateardware could be applied to a wide range of real-time stereo-
dense disparity maps. Therefore, these algorithms must beésion applications such as high-speed tracking, tracking paths,
applied in conjunction with other techniques and require arhigh-speed objects recognition and mobile robot navigation.



Il. THE PROPOSED METHOD

An overview of the proposed method can be seen in Fig. 1.
This method consists in two steps. First, disparity maps for
the input images and edge-distance images are computed,
simultaneously an homogeneity parameteis calculated for
each point in the scene. Followed, based on the disparity
maps previously generated and using thparameter, a nal
disparity map is generated.

Left

Image
#| Disparity map o
Right > SAD 7 Fig. 2: Tsukuba scene, true disparity map.
Image
> Edge Disparity map

distance —» | Composition|—p

SAD Final

disparity
map

W
“»| Computation

A4

Fig. 1: Block diagram of the proposed method.

A. Sum of absolute differences (SAD)

The Sum of Absolute Differences (SAD) is a correlation-
based method mostly used due to its high computational
ef ciency. The general behavior can be described as follow-
ing, given (x;y) coordinates of a pixel in left image and
maximum value of expected dispariax, an correlation
index Crlx;y; s) is calculated for each displacemediof the
correlation window in right image. To calculate the correlation
the following equation is used:

Fig. 3: Tsukuba scene, disparity map SAD= 15 .

UZXV:W
Crl(x;y;s) = jhix+uy+v) Ir(x+u+s;y+v)j (1)

u= wyv= w

as2w+1 is the window size centered on the pixel with position
(x;y). 11, I, are the gray values of the pixels in the left and
right images respectively anl ranges from0 to dmax. The
disparityd(x; y) is de ned asS displacement that minimizes

Fig. 4: Tsukuba scene, disparity map SAD=1.

the correlation index: B. Edge distance
The euclidean distance between each pixel Wijix;y),
d(x:y) = arg minCri(x:y:s 2 I+ (x;y) coordinates, and the nearest left edge is calculated as
(x;y) = arg min,Crl(x;y;s) ) following:
The main problem with this method is to select the correla- CoN - } N
tion window size. High window size values allow to determine Kocy) =1 0cy) 1 (- Ly)] 3)
the true correlation values in areas with uniform texture,
however this window size values imply a high computational
demand and erroneous values at certain points due to the dist n_ =0 k(x;y) < 4
blurring edges and small features eliminated (see Fig. 3). On istancéx;y) = [=1+1; Kk(xy)> 4)

the other hand, small window size values imply low compu-

tational demand but the correlation coef cient measurement igs s the threshold value that de nes an edge anid | or
very sensitive to noise and erroneous values at uniform texture for |eft or right images, respectively.

regions are generated as seen in Fig. 4. Fig. 2 shows the true

disparity map of a Tsukuba scene.



Fig. 5 shows the nearest left edge distance for each point of
the left image of Tsukuba scene. The darker values represent
low value distances while light values represent high value
distances. Fig. 6 shows the disparity map obtained using
images of edge distance as input images for SAD. In this gure
a signi cant improvement in regions with uniform texture is
perceived, on the other hand, an increase of errors in regions
with uneven texture is generated.

Fig. 7: Tsukuba scene, parameter.

D. Composition

Using the parameter it is possible to determine a nal
disparity map by assigning the values obtained from the edge
disparity map (Fig. 6) for points with uniform texture and the
values obtained from the disparity map (Fig. 4) for points with
uneven texture as following:

Fig. 5: Left image of Tsukuba scene, distance to nearest left edge.

. . distancéx;y); X;y)==0; ==
dispaixn) = Gy Gy e
(7
as is determined as following: : 0 < disparity(x;y) >

dmax-

Fig. 8 shown the disparity maps generated by the proposed
method for the Tsukuba scene wheve and parameters
were con gured with values equal fd.; 32, 1g respectively. In
this gure a high improvement in regions of uniform texture
and a low improvement in the points near the edges is obtained.

Fig. 6: Tsukuba edge distance scene, edge disparity map @ADL .

C. Homogeneity parameter

A parameter corresponding to the homogeneity degree
for each point of the left image of stereo pair is determined
as following:

h(x; y) _ u=yov=w | (X iy V)] (5) Fig. 8: Tsukuba scene, disparity map using the proposed methadl .
The proposed method requires less computational load in
contrast to various methods in the reported literature [7]-[8],
N 0; h(xy)=(w+1)2< [15]-[16], however compute a disparity map for a stereo pair of
(xy) = 1, h(x;y)=(w+1)2> (6) 384 288 pixel resolution (Tsukuba scene resolution) implies a
runtime close to 1 second. These runtime values are not accept-
able for real-time applications. This was the main motivation
as is threshold value that determines the homogeneity of @& search ef cient ways to implement the developed method,
point with respect to its corresponding correlation window andopted for an FPGA implementation. In Section Il the detailed
2w + 1 is the window size centered on the pixel with positionimplementation in hardware is presented while in section IV
(x;y). Fig. 7 shows values for all points contained in the the experimental results generated by this implementation are
Tsukuba scene considering=1. shown.
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Fig. 9: General diagram of the developed architecture.
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Fig. 10: Correlation_computation module architecture, disparity=0.
I1l.  FPGA IMPLEMENTATION image respectively were used. The behavior of these vectors

is_similar to a shift register unit, however, due simplicity of

The main advantages of using FPGA devices are: easine ese vectors hardware resources demand is reduced. In general

to re-designed architectures based on speci cations with_ou[ rms, during time zero the pixel valg; 1) is stored in index
incurring in non-recurring engineering and parallel processing . 4o 0, a clock cycle later this value is crossed to index

?hbe'l'tyr’oalg’!ggr;gﬁighm\?vgsroiﬁsﬁe'&gén?ﬁﬁ t;gi]neslz %jvggtnaegelz nd the pixel(1;2) is stored in index). A similar process is
prop P 9 y ‘epeated for all pixels making up the image.

EP2C35F672C6 FPGA assembled in an Altera DE2 brea
board. A 50 MHz clock frequency was used. In order to  To calculate the SAD, a 33 correlation window and
get input stereo pairs, TRDBC2 plate connected in 1st maximum value of expected disparitiax = 63 is used. An
expansion port of DE2 plate is used and provides stereo paitgchitecture of pixel-parallel window-parallel was designed.
to 1280 1024 pixel resolution in RGB scale. On the other The inputs are obtained from the vectors previously con gured,
hand, to determine the grayscale value of input stereo pairs thﬁ;ing appropriate indexes is possible to process the image
green channel value are used as grayscale value. The developgdvideo rate. SAD calculation starts after storing the rst
architecture is described in detail in the following sub-sectionsthree rows of each image. This results ifxa w)*(y  w)

A general diagram of the designed architecture can be seen H]sparity map resolution, ag;y is the resolution values of
Fig. 9. In TABLE I a full description of the physical ports used input image an@w+1 is the correlation window size. Fig. 10

by proposed architecture is shown. shows the architecture for correlation calculation to a disparity
value equal to zero. To calculate the correlation values for
TABLE I: PORTS DESCRIPTION OF THE DEVELOPED ARCHITECTURE the remaining disparities similar architectures implemented in
parallel were used.
Name Type Description . . . . .
o — oo To determine the appropriate disparity value, tmén
npu ixel cloc : : ; : :
Left image Input Logical vectof? : 0] module is used (Flg. 11). First, this module uses the prewously
Right image Input Logical vectd7 : 0] calculated correlation values and using an array of multiplexers
Disparity map Output Logical vectd7 : 0] activated by comparators as Sel 1 > | 2 determines the

correlation value which minimizes the correlation window
. displacement. After, a CASE structure is used to assigned
A. Sum of absolute differences (SAD) the corresponding correlation index fd,, to determining the

To calculate the disparity map by SAD it is necessary todisparity value an equalizer is applied to i as follows:
have stored fragments of images to be processed. In order
to manage the FPGA memory two vectors with capacity ) )
to store three rows of left image and three rows of right disparity= Crlindex (255=0nax) (8)
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Fig. 13:  computation module architecture.

applying equations 5 and 6, tHeomogenity _computation
module determines the correlation homogeneity window cen-

Fig. 12 shows the architecture for nearest left edge distancg ey in the pixel of interest and assigns the corresponding
calculation. First, thetorage vector module stores pixels with value
(x 1;y) and(x;y) coordinates for the left image and right '

images, then, applying equations 3 and 4 nearest left ed
distance is calculated iadge distance module.

C. Homogeneity parameter

%5, Composition

The composition module operates on the principle of a
conventional multiplexer assigning for each po{mty) the
value of one of its two inputs determined by t8el parameter

Fig. 13 shows the architecture for calculating thepa-  see (Fig. 14).
rameter. Thevector_storage module stores three lines of the
left image of the estero pair. Then, using the stored lines and
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error(%)

Finally, generated disparity maps are shown on a 4.3” LCD
screen of terasIC with 800480 pixels resolution connected to 13

I\.

.
the 2nd expansion port of the DE2 board. 4
IV. EXPERIMENTAL RESULTS T 50 100 \1éo 200 250 300
The architecture presented in Section Il was implemented Fig. 16: parameter behavior.

using a top-down approach. All modules were coded in Verilog
and were simulated using ModelSim-Altera 6.6c to verify
its functionality. Quartus Il Web Edition SP1 version 10.1
was used for the synthesis and download in a Cyclone lin the literature [17] are presentetccis the error for points
EP2C35F672C6 FPGA assembled in Altera DE2 breadboaraf occlusion in the input imageslisc is the error for points
Resource consumption of the developed architecture is showwith discontinuities andall is the error for total points in the

in TABLE II. scene. The shown values were obtained from the Middlebury
estereo vision system evalaution [21] with following Image
TABLE II: DEVELOPED ARCHITECTURE SPECIFICATIONS Settings: Tsukuba (384288 resolution,dmax = 15), Venus
(434 383 resolutiondnax = 19), Teddy (450 375 resolution,
Resource Demand dmax = 59) Cones (450 375 resolution,dynax = 59) and
Logic elements (LEs) 16,240 performing re-designs in developed architecture to operate
Memory bits (ALUTS) 33,080 with dmax values equal td 15; 31; 63; 63g respectively. For all

test imagesw, and parameters were con gured values

In order to evaluate the proposed method performancequal tof1;321g respectively, in Fig. 17 disparity maps
the developed architecture was tested using different valuedenerated by the proposed method for the same test scenes is
for and parametersl Tests were performed using théhOWn In TABLE IV the Speed of the deV'eIOped archltepture
Tsukuba scene as test images. Whereas hardware implemerg@mpared with other FPGAs implementations reported in the
tion operates using binary strings and color depth equal t§terature are presented. In TABLE V hardware resources
8 bits, values with base 2 were tested. Fig. 15 shows théemand compared with other FPGAs implementations reported
behavior of the error obtained in the nal disparity map for in the literature are shown.

= f1;8;16;32 64,128 255 and = 1. Fig. 16 shows the
behavior of the error obtained in the nal disparity map for TABLE Ill: QUANTITATIVE RESULTS OF THE PROPOSED METHOD

= f 1, 8, 16, 32, 64, 128 25@ and =1. TO determ|ne the COMPARED TO OTHER METHODS IN THE LITERATURE
number of erroneous pixels, the generated disparity maps were
evaluated using the Middlebury estereo vision system web site Method Scene occ disc all
[21] Tsukuba 21.8% 23.6% 36.9%
Sum of Absolute Venus 26.2% 26.8% 42.1%
Differences (SAD) Teddy 52.6% 54.0% 68.5%
17 4 [ Cones 62.5% 63.3% 76.9%
Tsukuba 21.3% 23.2% 36.5%
16 Sum of Squared Venus 25.0% 25.6% 41.8%
Differences (SSD) Teddy 56.2% 53.2% 67.8%
Cones 60.9% 61.8% 75.8%
& "™ Tsukuba  29.9%  311%  42.5%
5 Normalized Venus 30.6% 31.1% 44.1%
@ Cross-Correlation (NCC) Teddy 55.8% 57.5% 69.2%
44 Cones 56.2%  58.2%  71.5%
— Tsukuba 34.9% 336.3%  46.5%
By 8 / Census Venus 44.4%  44.8%  53.0%
1 ~u » Teddy 69.7% 70.2% 69.2%
Cones 77.5% 77.6% 84.7%
12 . —— . — .
25 tl) 2‘5 5|0 7|5 1(‘30 155 1%0 1%5 260 2é5 2%0 2;5 360 Tsukuba 8.85% 34.0% 10.9%
15 Venus 6.99% 35.9% 6.93%
_ _ Proposed method Teddy 302%  47.8%  34.1%
Fig. 15: parameter behavior. Cones 43.4% 55.9% 46.5%

In TABLE lll, quantitative results for the proposed method By analyzing TABLE Il a signi cant improvement over
with a 3x3 correlation window compared with other methods other methods reported in the literature is observed. This



(a) Tsukuba scene

(d) Venus scene

(g) Cones scene

(j) Teddy scene

(b) True disparity map (c) Disparity map by proposed method

(e) True disparity map (f) Disparity map by proposed method
(h) True disparity map (i) Disparity map by proposed method
(k) True disparity map () Disparity map by proposed method

Fig. 17: Disparity maps generated by the proposed method for different test images.



TABLE IV: PROCESSING SPEED COMPARED WITH OTHER FPGAs [2] X. Rong, J. Huanyu, and Y. Yibin, “Recognition of clustered tomatoes
IMPLEMENTATIONS. based on binocular stereo visiorComputers and Electronics in Agri-

culture, vol. 106, pp. 75-90, 05, 2014.

Method Resolution Frames/s Pixels/s [3] R. Correal, G. Pajares, and J. Ruz, “Automatic expert system for 3d
terrain reconstruction based on stereo vision and histagoram matching,”
[16] 1024X1024 102 106.954.752 Expert Systems with Applicatigngol. 106, pp. 75-90, 09, 2013.
[4] J. A. Delmerico, P. Davidb, and J. J. Corso, “Building facade detection,
(18] 1280 1024 65 85,196,800 segmentation, and parameter estimation for mobile robot stereo vision,”
[19] 640 480 230 70,656,000 Image and Vision Computingol. 31, pp. 841-852, 08, 2013.
[20] 1280 1024 50 65,536,000 [5] O. FaugerasThree Dimensional Computer Vision: A Geometric View-
Proposed* 1280 1024 75 98,304,000 point Cambridge, MA: MIT Press, 1993.

- [6] L.D. Stefano, M. Marchionni, and S. Mattoccia, “A fast area-based stereo
*Operating frequency = 50 MHz matching algorithm,”Image and Vision Computing/ol. 22, pp. 983—
1005, 03, 2004.
[7] M. Jin and T. Maruyama, “A fast and high quality stereo matching
TABLE V: HARDWARE RESOURCE DEMAND COMPARED WITH OTHER algorithm on fpga,Field Programmable Logic and Applications (FPL),
FPGAs IMPLEMENTATIONS. International Conference qrvol. 22, pp. 507-5010, 08, 2012.
. . [8] FeiyangCheng, HongZhang, DingYuan, and MinguiSun, “Stereo match-
Method Logic elements (LEs) Memory bits (ALUTS) ing by usingthe global edge constrainf{eurocomputing vol. 131,
pp. 217-226, 11, 2013.

(26] 86,252 62,669 [9] H. Y. Jung, H. Park, I. K. Park, K. M. Lee, and S. U. Lee, “Stereo
[18] 89,459 84,307 reconstruction using high-order likelihood€bmputer Vision and Image
19] 53.616 60598 Understandingvol. 125, pp. 223-236, 04, 2014.

(20] 31863 47331 [10] O. Faugeras, B. Hotz, H. Mathieu, T. Vieville, P. F. Z. Zhang, E. Theron,

L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy, “Real time
Proposed 12,765 24,048 correlation-based stereo: algorithm, implementations and applications,”
Technical Report Research Report, INRIA Sophia AntipoBs 2013.

[11] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo

. . : . . _ machine for videorate dense depth mapping and its new applications,”
improvement is due to the left-edge distance that like feature- ¢ Computer Vision & Pattern Recognition Conferencel. 15,

based methods represents the geometries of the input scene. pp 196-202, 06, 1996.

Due to mathematical simplicity of the proposed method [12] A. Darabiha, W. MacLean, and J. Rose, “Recon gurable hardware
! implementation of a phase-correlation stereo algorithdgurnal of

in the developed architecture a high processing speed iS \jachine Vision and Applicationsol. 17, pp. 116-132, 03, 2006.
presented. Comparing the processing speed of the develop ‘é] J. Diaz, E. Ros, F. Pelayo, E. Ortigosa, and S. Mota, “Fpga based real-
architecture with other FPGA implementations reported in thé ~ time optical ow system,1EEE Transactions on Circuits and Systems for
literature (TABLE 1V) up to 32,768,000 pixels/s increase is Video Technologyvol. 16, pp. 274-279, 02, 2006.

observed. [14] C. Roh, T. Ha, S. Kim, and J. Kim, “Symmetrical dense disparity

. . . estimation: algorithms and fpgas implementatiolfEEE International
Due to strategies such implementation of storage vectors symposium on Consumer Electronipg. 452-456, 08, 2004

and small correlation windows, the developed architecturgis; p. Masrani and W. MacLean, “A real-time large disparity range stereo-
has a low hardware resources demand (TABLE V). When  system using fpgas/EEE International Conference on Computer Vision
comparing the consumption of logic elements and memory  Systemspp. 13-19, 01, 2006.

bits with other methods reported in the literature up to 76,69416] C. Georgoulas and I. Andreadis, “Fpga based disparity map computation

n 2 r tion w. rved. with vergence control,”"Microprocessors and Microsystemsol. 34,
and 60,259 reduction was observed 0. 250273 06, 2010,

[17] M.-Z. Brown, D. Burschka and G.-D. Hager, “Advances in Compu-
V. CONCLUSIONS tational StereoIEEE transactions on Pattern Analysis and Machine

. . . . Intelligence vol. 25, pp. 993-1008, 08, 2003.
In this paper a module for real-time disparity maps compu- ) . .

tation has been presented. The developed architecture ShO\g\l/g] C. Georgoulas, L. Kotoulas, G. C. Sirakoulis, |. Andreadis, and
p . " . p . A. Gasteratos, “Real-time disparity map computation moduléi¢ro-

a better performance in regions of uniform texture regarding  processors and Microsystemsl. 32, pp. 159-170, 10, 2008.

to other methods mentioned in the literature. The principatig] s. Jin, J. Cho X.-D. Pham, K.-M. Lee, S.-K. Park, M. Kim and J.-

advantage with the developed module it's a high processing W. Jeon, “Real-time disparity map computation moduldjtroproces-

speed and a low consumption of hardware resources, it allows sors and Microsystemsol. 32, pp. 159-170, 10, 2008.

to implement the proposed method in FPGA devices with20] C.Ttos, S. Hadjitheophanous, A.-S. Georghiades, and T. Theocharides,

; ; il ; ination i _ “FPGA Design and Implementation of a Real-Time Stereo Vision
:glatwttaly few .re.source\? wrt1_|ch facilitates its application in real System’ IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR
Ime Stereo vision applications. VIDEO TECHNOLOGYVvol. 20, pp. 15-26, 01, 2010.

Besides, one of the main characteristic of the deve|0pe&l] Middlebury Stereo Vision Page.http://vision.middlebury.edu/stereo/
architecture is its exibility to be recon gured or modi ed
to work with different windows sizes and different maximum
values of expected disparity.
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