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The Omniscient Garbage Collector: a Resource Analysis Framework
(technical report)

AURELIEN DEHARBE, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
FREDERIC PESCHANSKI, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

In this technical report, we develop a framework for the analysis of resource usage in concurrent systems. We
propose an oracle — the omniscient garbage collector (OGC) — that decides precisely the minimal resource
consumption of a process: its resource index. The underlying theory is developed as a nominal automata
framework, and applied to the specific problem of tracking resource usage. The framework is put into
practice to track resource usage and consumption in pi-calculus processes. Two complementary abstractions
are proposed: the first is based on the labelled transitions, while the second relies on a variant calculus
— slice-pi — that enrich reductions with observations about the resource events. The two abstractions are
tested experimentally on classical pi-calculus examples using a prototype analysis tool. In all the examples
the resource index can be computed very quickly — although in theory it is an NP-complete problem.

1. INTRODUCTION

The analysis of resource usage in computational systems is undoubtedly a fundamental
research topic, especially in the realm of resource-contrained embedded systems. In this pa-
per, we study basic qualitative and quantitative questions about resource usage for systems
involving concurrent activities sharing dynamic resources.

If we abstract from its internal structure, a resource becomes a pure name [Gordon 2000],
i.e. an object with a globally unique and testable identity. This is the specialty of nominal
calculi in general, and the 7m-calculus [Sangiorgi and Walker 2001] in particular. Despite their
lack of structure, the pure names display the primordial life-cycle of resources: (1) dynamic
allocation, (2) arbitrary usage orderings, and (3) non-trivial garbage collection semantics,
the latter point being central in our study.

Our starting point is the resource graph : a resource-focused view of the state-space
of a process. From a qualitative perspective, our principal means of abstraction from the
low-level details of the graphs (e.g. their branching structure) is the resource profile : a
trace-semantics of resource usage. Traces of resource profiles are words of formal languages
— that we name v-languages — defined over infinite alphabets of fresh names. To recognize
resource profiles, we introduce the v-automata, which are variants of register automata.
Using these devices, we show that the r-languages corresponding to resource profiles are
quasi-reqguar [Kaminski and Francez 1994]. On the positive side, this means that many
results about quasi-regular languages can naturally be lifted to resource profiles. On the
more negative side, a basic question such as the equivalence-testing of resource profiles can
easily be shown difficult.

To reason about the quantitative notion of resource consumption, we refine the v-language
characterization by considering finite restrictions of their alphabets. The corresponding
bounded resource profiles provide a natural measure of resource consumption of process
behaviors. An interesting indicator is the resource bound which confines the number of
resources required for the correct execution of a given system. Ultimately, the least of such
bounds — namely the resource index — represents a profound semantic characteristic of
the behavior under study. We provide the Omniscient Garbage Collector (OGC) : a static
analysis approach for resource bound and resource index closely related to the mazimal
independent sets problem and thus graph coloring [Jensen and Toft 2011]. We show, in
particular, that computing the resource index is a NP-complete problem, but tight resource
bounds can be computed with simple and efficient polynomial algorithms.

Beyond the theory, we aim at the development of practical tools for the analysis of re-
source usage in concurrent systems. Using a prototype, we propose a couple of experiments
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of resource consumption in the realm of the w-calculus. To illustrate the versatiliy of the
approach, we propose two different resource abstractions for mw-processes: one based on the
labelled transitions for open systems, and another one for closed systems. Pure reductions
are opaque and to circumvent this, we introduce slice-w, a rather standard m-calculus ex-
tended with an alternative restriction operator allowing the observation of names flowing
between processes. In all the experiments we observe the same phenomenon — which rein-
forces a strong belief — that the apparent intractability of some of the proposed algorithms,
especially the computation of the resource index, is largely compensated by the small size
of the objects on which they apply. Indeed, most of the examples we explored (especially
some classical m-calculus benchmarks) yield very small conflict graphs in comparison to the
state space of the analyzed processes: in the order of at most a few dozen nodes for systems
with more than 100 000 states.

The outline of the paper is as follows. In Section 2 we introduce the basic features and
properties of resource graphs. The resource profiles are presented in Section 3. The related
v-automata theory is developed in Section 4. In Section 5 we discuss the quantitative aspects
most notably the resource bounds and indices as well as the OGC framework for resource
analysis. Our experimental study with the m-calculus is described in Section 6. A panorama
of related work is given in Section 7.

This paper is based on a previous publication [Deharbe and Peschanski 2014] that focuses
on the algorithmic aspects. Thus, the latter can be seen as a companion for the present paper
whose purpose is to dig much deeper into the underlying automata-based theory. Most proofs
(except for the shorter ones) are detailed in a dedicated Appendix (cf. page 21).

2. RESOURCE GRAPHS

As a starting point we propose a simple yet accurate characterization of resource usage in
concurrent, processes. The resource graphs correspond to the transition systems of processes
in which we only observe the events related to resource usage.

Definition 2.1 (Resource graph). Let R be a countably infinite set of resource variables
ranging over X,Y, Z,... A resource graph G is a directed graph (R,V, E, a, 7, ) with:

— R C R a finite set of resource variables, also denoted by vars(G).

— V a finite set of vertices, and £ C V x V a finite set of edges, such that there is a unique
root v € Vst. Vo eV, (v,v1) ¢ E and a unique tail vt € V s.t. Yo € V, (vT,v) ¢ E.

—a: V — 2% to record resource allocations,

—~: V — 28 to record resource uses,

— 6§ :V — 2% to record deletions.

An example of a resource graph is depicted on Fig. 1. It has 8 resource variables A ... H
and is sufficiently non-trivial so that it exhibits most of the “corner cases” of the model.

Most of the properties of resource graphs we will consider can be characterized as prop-
erties about finite paths, falling in two categories: complete paths and lasso expansions.

Definition 2.2 (Complete path and lasso). A complete path of a resource graph G with
edge set F is of the form p = (vy,...,v,) of pairwise distinct vertices such that v; — v;11 €
Eforanyi, 1<i<n-—1,and vy = vy, v, =vT. A lasso p = (v1,...,0e_1 | Vey...,0p) is
a sequence of pairwise distinct vertices such that v; = v;41 € E for any i, 1 <i <n — 1,
vy =v) and Jde,1 < e < n,v, = v € E. The vertex v, is called the entry of the lasso and
v, its exit. These are respectively denoted by ve = entry(p) and v, = exit(p). The finite

ezpansion of depth k of the lasso is denoted by p* = (v1,...,ve_1 | Ve,...,vn)¥, which
corresponds to the finite path:
(U1« oy Ver15Vey -y UnyennsVeyennyUp,vr) Of length e+ k* (n — e+ 1).

k times
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Fig. 1. Example of a resource graph

We denote by ¥(G) (resp. \/I}(G)) the finite sets of all complete paths (resp. lassos) of G.

There are only two complete paths in the graph of Fig. 1: (v, vy, vg, ..., vg, Vs, V11, VT)
with v = vg or vg = vs. There are six lassos, an example being (v, ,v1,v3 | v4,. .., Vg, Vs)
with entry v4. Lasso entries are the emphasized vertices, while dashed edges represent the
loop closing connections from the exit to the entry of the lasso. In [Deharbe and Peschanski
2014], we describe a polynomial algorithm to compute the complete paths and lassos of a
resource graph using a decomposition in nested strongly-connected components.

We impose only minimal constraints on the nature and usage of resource events that are
carried by resource graph vertices, although some usage patterns must be enforced.

Definition 2.3 (Correct resource usage). A resource graph G has correct resource usage
iff for each resource X € vars(G) it has at most one vertex v such that X € a(v), and for
each finite path p = (v1,...,v,) of G there is at most one vertex v in p such that X € §(v).
Moreover, ¥j, 1 <j<nst. X € y(v;), Fi, 1 <i<jst X € alv) and:

—if p is a complete path then: 3k, j < k <ns.t. X € §(vg).

—if p is a lasso with entry v, then:
— (dynamic) 3k, j <k <nst. X €d(vy)ifi>eorVl, e<l<n, X ¢~(v),
— (static) Vk, 1 <k <n,X ¢ §(vx) otherwise.

Most of the constraints are obvious: a given resource is allocated only once globally, and
deleted at most once in each path. For a resource used in a given path, a basic principle
is that it must be preceded by an allocation and followed by a deletion. However, some
subtlety arise because of the cyclic nature of the lassos. Suppose a resource X allocated at
some vertex v; and used at v; (j > ¢) in a lasso with entry v.. There are two cases to consider
depending on whether X should “survive” the cycle or not. In the dynamic case X must be
deleted at some vertex v, with k& > j. This corresponds to two possible situations: (1) the
allocation is performed after the lasso entry (thus, within the cycle), or (2) the resource is
not used within the cycle. Considering the lasso (v, v1,v3 | v4,...,vs,,vs) in Fig. 1, then
situation (1) applies to resources A and B and situation (2) applies to resource H which is
allocated before the entry but not used within the cycle. Complementarily, if the allocation
of X is performed before the entry of a lasso p and it is used within its cycle, then X must
“survive” the cycle and is thus said a static resource for p. We denote by static(p) the set
of variables that are static for the lasso p. For example, in the lasso (v ,vy | vs,...,v11)
the resources E (allocated at v1 and used at v3) and G (allocated at v3 and used at vs) are
static resources.
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Fig. 2. The conflict relation f for the resource graph of Fig. 1.

This leads to a fundamental classification between inactive (i.e. unused), static, and oth-
erwise dynamic resources.

Definition 2.4 (Resource classification). Let G be a resource graph with vertex set V.

inactive(G) = {X |[Yv € V, X ¢ v(v)}
static(G) & {X | Vp € U(G), X € static(p)}
dynamic(G) = vars(@) \ (static(G) U inactive(G))

In our example the sets are static(G) = {E, G}, inactive(G) = {F} and dynamic(G) =
{A,B,C,D,H}. A central concept is the notion of conflict in resource uses.

Definition 2.5 (Conflict relation). Let X,Y € vars(G) be two distinct resources and p a
path of G. A conflict between X and Y occurs in p = (v1,...,v,) at position j, 1 < j <mn,
denoted by XY, if any of the following conditions holds:

— there exists two vertices v;, vy, of p (i < j < k) such that X € y(v;) Ny(vi) and Y € v(v;).
— whenever p is a lasso (vi,...,Ve—1 | Ue,...,vp) in which X is static, e < j < n and
Y € 7y(vy)-

If there is a position 7 in a path p such that Xf/Y or Y#,X then X and Y are said in
conflict, which is denoted XY O

The conflict graph obtained for our illustrative example is depicted on Fig. 2 (for the
moment, we ignore the numeric annotations of the nodes). For example we have a conflict
BYD generated by the sub-path (v, vg,v10) since D € v(v7), B € y(v9) and D € ~y(v1p).
This corresponds to the first case of the definition. For the second case, a conflict such as
A$G comes from the fact that A € v(v4) and G € y(vs) with vs occurring in a lasso after
its entry vy and before its exit (in this case vg).

Two events play an important role in the life-cycle of a resource: its first use and its last
use. There is also one special case to consider: when a resource must be fetched for a later
use, which as we will see allow a form of non-local freshness. These can be characterized on
the finite paths of a resource graph.

Definition 2.6 (First use, last use and resource fetch). Let G be a resource graph, p ei-
ther a complete path (vi,...,v,) or a lasso (vi,...,0e—1 | Ve,...,Vp), and v; one of the
vertices of p (1 < j < n). For a resource X of G:

—X € first,(v;) iff X € v(v;) and Vi, 1 < i < j, X ¢ ~(v;) and if p is a lasso and

X € static(p) then j <e.
— X € last,(v;) iff X € y(v;) \ static(p) and Vk, j <k <n, X & v(vi)
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— X € fetch,(v;) iff p is a lasso, X € static(p), j =e—1and Vi, 1 <i<j, X ¢ v(v;)

For the example of Fig. 1, we consider the resource E in the complete path p =
(vi,v1,v2,...,v6, 08,011, vT). Its first use is at vertex vy (i.e. E € first,(v2)) while its last
use is at vertex vs (i.e. E € last,(v2)). Note that these are path-specific notions since in the
other complete path (not going through wvy) the resource E is both first-and-last used at
vertex vs. Now we consider the lasso p = (v, v1,vs | v4, v5, v6, vs) and resource G. Since G
is static in p it has no last use. Moreover, it has no first use also because what would be its
first use is within the cycle. Hence at vertex v, (the entry of the lasso) the variable G must
be fetched (i.e. pre-allocated), thus G € fetch;(vs).

3. RESOURCE PROFILES

Resource graphs provide quite a low level view over concurrent process behaviors wrt. re-
source usage. All the properties we aim to study can be characterized at a more abstract
level considering only traces of resource uses. The most fundamental aspect of these trace
sets is that they involve dynamically bound resources, whose identity is not known in ad-
vance. This naturally leads to languages involving pure names, that is, sets of words with
symbols freshly generated that we name v-languages.

Definition 3.1 (v-language). Let V be a (potentially) countably infinite set of pure names
ranging over vy, vy, . ... A v-language LL over alphabet V is a set of words in (2¥)*.

The definition makes v-language quite similar to traditional formal language, although
defined over potentially infinite alphabets. This way, when a new resource is needed for
a given system to perform an action, a fresh identity for the resource is always available.
Reasoning on languages with infinite alphabets is in general very difficult [Isper 1989] so we
must define a proper language subset that fits our reasoning requirements.

Our objective is to precisely characterize the v-language corresponding to the expected
behavior of a resource graph. The first step is to explain how pure names are consumed by
the processes.

Definition 3.2 (Allocator, Allocation). An allocator T is a partial one-to-one function
from a finite set of variables to the alphabet of a v-language. Let p be a finite path of a
graph G and v one of its vertices an I' an allocator. An allocation alloc, (I, a, v) of a v-symbol
a (a set of pure names) is such that « can be decomposed as old(a) U trans(a) U new(c)
with:

old(a) = {v e ran(I") | 3X € y(v) \ first,(v), ['(X) = v}
trans(a) is a set T' C o\ old(«) such that card(T") = card(first,(v) N last,(v))
new(a) is a set N C o\ (old(cr) Utrans(av)) such that card(N) = card(first,(v) \ last,(v))

The definition above explains how a v-symbol « is consumed, which corresponds to re-
source uses at vertex v. The subset old(«) corresponds to the pure names already bound in
I (old bindings). The pure names in new(a) corresponds to simultaneous allocations and
uses at vertex v (new bindings). The remaining consumed names in trans(«) are for a special
case: when the names are allocated, used and released in an atomic way. In this case there
is no need to record any binding.

The second ingredient is the binding of variables, i.e. the storage of the allocated pure
names.

Definition 3.3 (Binding). Let I' be an allocator, a a set of symbols and v a vertex of a
finite path p. The binding of « to I is an allocator bind, (T, o, v) = I, U}, UT'{,, with:
[ = (X 1 T(X) | X ¢ last, (1)}
new = {X = v | v € new(a) A X € first,(v) \ last,(v)}
Ilien = {1 X = v |v¢anX efetch,(v)}
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The definition separates the binding in three disjoint subsets: the old bindings that must
be preserved from the previous steps (i.e. for allocated resources that are not release at
vertex v and the new bindings that must be recorded for further uses. A special case if
for the pure names that are allocated but not used at vertex v, which we call fetching a
resource. Based on the previous two definitions we can properly define the trace sets of
resource usage.

Definition 3.4 (Resource profile). The resource profile R of a resource graph G is a
v-language such that w = a3 ---a,, € R if and only if there exists a finite path p =
(vo,...,vp) (either a complete path or a finite expansion of a lasso) such that, for each
To=10

position k, 0 < k < n, we have alloc,(I'x_1, o, vg) with: Wj >0, T; = bind,(T;_1,a;, ;)

Two properties summarize in essence the v-languages characterized by the definition
above: the binding condition that impersonates the identity of resources, and the conflict
freedom that is the main requirement of resource profiles.

PROPOSITION 3.5 (BINDING CONDITION). For a position k, 1 < k <n of a finite path
p=(vi,...,u,) (either a complete path or a finite expansion of a lasso) then T'y(X) = v
if and only if either there exists i, 1 < i < k such that X € first,(v;) U fetch,(v;) and
Li(X) = v, provided 3, i < j < k such that X € last,(v;).

PROPOSITION 3.6 (CONFLICT FREEDOM). If Xﬂ’;Y then I'p(X) # Tr(Y).
PRrROOF. cf. Appendix A.1 page 21. O

4. AUTOMATA-THEORETIC FRAMEWORK

It is possible to work directly at the level of resource graphs to characterize many properties
of the resource profiles. This is basically what it is done in [Deharbe and Peschanski 2014].
However, if this is interesting from an algorithmic point of view, we overlook many important
theoretical issues. Moreover, the automata-theory developed in this section provides a much
more solid ground for the statements of the properties and their proof.

4.1. v-automata

Our first step is the definition of recognizers for an interesting subset of v-languages.

Definition 4.1 (v-automaton). A v-automaton is a pair (X, A), where X is a finite dis-
joint set of variables, and A = (Q, ¢init, A, F') is a finite state automaton over the alphabet
Y = 2w X, XPXIXEX} with ( a finite set of states, ginir € Q the initial state, A CQ x ¥ x Q
the transition relation and F' C @ the set of accepting states.

A v-automaton is similar to a finite-memory automaton (FMA [Kaminski and Francez
1994]) except that the transitions allow to explicitly bind or unbind a symbol. For example
it is possible to fetch a fresh symbol without actually consuming it. Also, it is possible to
release a name stored in memory. Moreover, the symbols are in fact sets of pure names, which
amounts to consider simultaneous resource uses. Hence, v-automata are resource-oriented
variants of traditional FMA’s.

As recognizers, the v-automata correspond to a generalization of the resource profiles
characterized by Def. 3.4.

Definition 4.2 (v-language of a v-automaton).
Let a v-automaton be A = (X, A), with A = (Q, ginit, A, F'). For ¢ € Q an actual state
of A is a configuration ¢¢ = (¢,T') with T' an allocator. We denote by Q° the set of all

configurations of automaton A. The initial configuration is ¢¢;, = (ginit, ) and F© = {(¢,T") |

g € F AT is an allocator } is the set of accepting configurations. The transition relation A
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{vB,B}
vA
init —) {Vc7c7yc}
{B,vB} {A,VAUB}

Fig. 3. An example of av-automaton A.

induces the relation A® C Q¢ x X x Q¢ such that ((¢,T),, (¢/,I”)) € A if and only if there
exists a label A € 2{vX.XPXIXEX} and an allocator TY such that (¢, \,¢’) € A and:

— « can be decomposed as qolg U Qirans U Qipew With:
dod ={veran(l) | X e AANvX ¢ AANT(X) = v}
Qtrans = {V €V \ o | X EAAVX € ANTX € A}
new = {V €V \ (old U rans) | X EAAVX € AANTX ¢ A}
—I'={X—T(X)|7X ¢ )}
U{X = v |veEanw AvX e AATX ¢ A}
U{X v ivdaAnvX e ANX ¢ ANTX ¢ A}

Let w = aqas - - - o, be a v-word over alphabet 2V. A run of A on w consists of a sequence
of configurations cg, c1,. . ., ¢, such that ¢g = ¢5;, and for all i,1 <3 < mn, (¢;_1, 04, ¢;) € A"
For a word w, an accepting run of w is a run cg, ¢y, ..., ¢, such that ¢, € F°. An automaton
A accepts a word w if there exists an accepting run of w. The v-language of automaton A
is the of set of v-words L(A) = {w | A accepts w}.

Ezample. Consider a v-automaton A = ({A,B,C}, {q0,q1,q2, 43}, 90, A, {a3}))
with A = {(qov{VA}7ql)7(qla{l/BaB}aq2)7(Q27{BaPB}7q1)a(Q27{VC7CaPC}aQ2)a
(q2,{A,7A,UB},q3),(g3,{},q0)}- Its graphical representation is depicted on Fig. 3,
and its behavior is as follows. From the initial state gy to ¢, an arbitrary (but finite) set
of pure names is fetched for variable A, but only an empty-set of pure names is consumed
along the transition. The states ¢; and ¢o form a kind a sub-automaton comparable to a
FMA recognizing the repetition of a symbol. From ¢; to g2 a symbol is is first read from
the input and bound to variable B. Then an arbitrary number of symbols are read but
not stored (this is a transient binding) in the self-loop of g;. Then B is release either by
reentering the loop starting from ¢; or before acceptance by final state gs. The transition
from ¢o to g3 is interesting since variable the variable A fetched initially is now used. This
means that the pure names consumed must be distinct from all the names previously used.
Thus, the v-automaton implements a form of non-local freshness unavailable in FMA. This
is neither a fresh register automaton (FRA [Tzevelekos 2011]) which require global freshness
while here, the pure names bound to A can be reused if after the transition from ¢3 to qo.

4.2. Resource profile recognizers

The investigation of the r-automata in isolation — although an interesting goal — would
go beyond the scope of the present paper. We are more interested in using v-automata as
recognizers of resource profiles.

Definition 4.3. Let G = (R,V,E,«,~,0) be a resource graph. Its induced v-automaton
Ag is defined as follows: Ag = (vars(G), (Q, qv, , A, {qu- })), with:
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Q= {1y | € WA VTG0 € p\ {07} Ul 00}
— A= {(quips 1, s Gus0) | p € U(G)UU(G), 05 — v; € p} ~
U {(Qvn,ﬁa |b|5n_>ve7%c,ﬁ)7 (q’un,ﬁa {}aQUT) | ﬁ: < o | Vey - - - 7Un> S ‘I’(G)}

with: Ibl?_, = {vX | X € first,(v") V (X € fetch,(v") Av # exit(p)}
U{X | X ey(v)}U{TX | X € last,(v)}

The construction of the v-automaton from a given resource graph relies on a decomposi-
tion of the latter in terms of its complete paths and lassos (cf. Def. 2.2). Note that there is
no one-to-one correspondence between the vertices of the resource graph G and the states
of the automaton. However, each vertex v of a given pat p is in one-to-one correspondence
with a state named g, , in AC. Tt is a simple fact that the v-automaton corresponding to a
resource graph can be of an exponential size, since we enumerate the paths of the graph. In
practice, we show in [Deharbe and Peschanski 2014] that it is often possible to work directly
at the graph level.

We must now show that the construction is sound, i.e. that the automaton we build from
a resource graph G indeed recognizes its resource profile R¢.

LEMMA 4.4. Let G a resource graph. Then L(Ag) = Re.
PRrROOF. cf. Appendix A.2 page 21. O

The v-automaton of Fig. 3 can be easily shown not to correspond to any possible resource
graph. It it thus interesting to characterize more precisely the sub-class of v-automata
recognizers of resource profiles. One interesting argument is that this sub-class is (strictly)
contained in the quasi-regular languages.

THEOREM 4.5. Let G be a resource graph. The R¢ is quasi-reqular.

PRrROOF. The proof is both non-trivial and tedious. The rough sketch is as follows. First,
we provide an alternative construction of v-automata from resource graphs, in which all the
lassos are expanded exactly once. This allows to remove the first use vs. fetch subtlety. Then,
we show that this new construction still characterizes the resource profiles. Moreover the
v-words accepted by these automata can be transformed by a simple homomorphism so that
they can be recognized by finite-memory automata (FMA), demonstrating the membership
result. The detailed sketch is explained in Appendix A.3 page 22. O

It is important to emphasize the obtained FMA are in an order of magnitude larger than
the original v-automata. For example the translation of the resource graph of Fig 1 (with
13 vertices) yield a v-automaton with 32 states. In comparison, the translated FMA has
408 states, and the growth can be show exponential. Note that the translation to FMA does
not work for arbitrary v-automata.

5. RESOURCE ANALYSIS

We are now interested in quantifying the amount of resources the system under study
requires to behave correctly. To address this question, we introduce an oracle — the Omni-
scient Garbage Collector (OGC) — that decides a priori the maximum amount of resources
a system can consume. We rely on a simple although far-reaching principle : if the OGC
under-estimates the consumption of the system, then a resource conflict would occur.

5.1. Bounded resource profiles

Although v-language are defined over infinite alphabets, the individual v-words may only
consume a finite amount of resources.
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Definition 5.1 (Consumption). Let L be a v-language. The consumption of a v-word
w=ai...a, in Lis {(w) = card (J]_, a,). The consumption of the v-language itself is

§(L) = card (Uw:al...anelL Uizt O‘n)

If a v-word consumption is inherently finite (they have a finite length), this is not the
case of v-languages that are in most cases infinite sets of words. However, it is natural to
introduce such a restricted class.

Definition 5.2 (Bounded v-language). A k-bounded v-language Ly is a v-language de-
fined over a finite alphabet Vj of cardinality k.

PROPOSITION 5.3. A k-bounded v-language has resource consumption at most k.
Proor. This is trivial by Def. 5.1. O
The notion of bounded v-language can be naturally lifted to resource profiles.

Definition 5.4 (Bounded resource profile). A k-bounded resource profile R, of a resource
graph G is a k-bounded v-language satisfying Def. 3.4. The measure k is named the resource
bound of the graph G.

This restricted definition implies a major requirement for the resource bound k: it must
be large enough so that the constraints imposed by Def. 3.4 can be fulfilled.

An important property of bounded v-language is that they are insensitive to bijective
renamings of pure names.

Definition 5.5 (Renaming). Let V and V' be two disjoint sets of pure names. A renaming
¢ is a mapping of V — V'. The renaming by ¢ of :

—a v-symbol o CVis {(a) = {¢(v) | v € a},
—av-word w = aj - -a, € (2¥)*is ((a1) - - C(am),
— a v-language LL over alphabet V is (L) = {{(w) | w € L}.

PROPOSITION 5.6. Let G be a resource graph, and R’& R/(];“ two k-bounded resource
profiles defined over respective alphabets Vi, and V;,. Then there is a bijective renaming ¢ of

Vi = V. such that RE, = ((Rf).

ProOF. It is a simple fact that in Def. 3.4 only the equality of the pure names in V is
exploited, which is the basic principle of the pure names. As such, if Rg is assumed to be a
k-bounded resource profile, then renaming its pure names by another set of at least k£ pure
names would not contradict Def. 3.4. O

From now on, we will thus consider the k-bounded resource profile iRg, implicitly consid-
ering the whole family of resource profiles that can be obtained by bijective renamings of
their alphabets.

The central question remains: is there in general a bound k such that i)%’é is defined? In
this paper, we only study finite resource graph, which means that we only capture processes
that consume only a finite amount of resources at any given point of execution. Moreover,
this amount must be bound by the memory of the resource graph, i.e. its resource variables.
Thus a worst-case bound does exists, and it is determined thanks to the following Lemma.

LEMMA 5.7. Let G be a resource graph such that inactive(G) = 0. If k = card(vars(G))
then RE, exists and is recognized by AE, which is automaton Ag (of Def. 4.3) restricted to
alphabet Vi, = {vx | X € vars(G)}.

ProOF. The principle of the proof is to apply a renaming of the alphabet that associates
a single pure name vx to each resource variable X of vars(G). The complete proof is in
Appendix A.4 page 23. O
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COROLLARY 5.8. card(vars(G)) is a resource bound for resource graph G.

This provides us with a starting point for our quantitative resource bound analysis. The
bound k& = card(vars(G)) is the nominal resource bound of G. Before going further in our
quantitative study, we provide alternative — and arguable simpler — proofs for some results
presented in the companion paper [Deharbe and Peschanski 2014].

THEOREM 5.9. Let G be a resource graph with resource bound k. Then %g 18 reqular.

ProOF. This is a simple Corollary of Lemma 4.5, for the languages of FMA over finite
alphabets are proved regular in [Kaminski and Francez 1994].

COROLLARY 5.10. Bounded resource profile equivalence is PSPACE-hard.

5.2. The Omniscient Garbage Collector

Obviously, a process cannot require more resources than the amount of available memory.
However, it may be the case that less memory is enough so that it still behaves correctly.
One thing leading to another, we may ask what is the miminal amount of needed memory.
To adress these questions, we develop in this section a static analysis that can determinate
lower bounds of resource consumption direcly from the resource graphs. The objective is to
compute a measure k that guarantees the existence of a k-bounded resource profile for a
given graph G. The greatest of such bounds is of course the number of resource variables of
G, according to Lemma 5.7. To decrease the bound, the only possible way is thus to unify
variables of the translated v-automata.

Definition 5.11 (Unifying variables in v-automata). Let A = (X, A) be a v-automaton
with A = (Q, Ginit, A, F'). The unification of variables £ C X with Z ¢ X is:

unify pox (A) = (X' \ E) U{Z}, unifyp,x (A)) provided:

unify pox

<Q7 Ginity uninyQX(A)a F>
Un'f}’E‘qX {(

4) =
A) = {(g; {unifypox (1) | L€ A}, ¢) | (0, A, ¢') € A}
X) = { ZifXeFE
~ | X otherwise
unify pox (¥ X) = vunify g (X)

unify pox (TX) = Dunify g (X)

Let IT = {E; | i € [1;n]} be apartition of vars(G), and let Z = {Z; ... Z,} aset of n variables
distinct from those vars(G). Then unifyr,z (A) = unifyg, oz, (.. unifyg oz (A)) for an

(
(
(
(

arbitrary permutation mq, ..., m, of [1;n].

The unification process is relatively technical but intuitively quite simple: each reference to
any of the variables of F in the automaton is replaced by the fresh variable Z. The unification
is also lifted to partitions of the set of variables. The unification of each indepedent subset
can be performed in an arbitrary order (trivially the outcome is the same since the sets are
disjoint).

A fundamental requirement is that the unified variables must correspond to non-
conflicting resources.

LEMMA 5.12. Let G be a resource graph and RE, its bounded resource profile such that
k = card(vars(G)), and A, its recognizer. Moreover let E C vars(G) such that, VX;, X; €

, 1 #j = ~(XitX;). Then mgﬁcard(E)H is recognized by unify g, (AL) provided
Z ¢ vars(G).
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ProOOF. The proof is similar to that of Lemma 5.7, except that we do not consider
a simple renaming of pure name, but a unification of variables. The proof details are in
Appendix A.5 page 24. O

Similarly to the unification process, the reduction scheme can be lifted to the partition
of the resource variables wrt. the conflict relation.

LEMMA 5.13. Let G be a resource graph and RE, its bounded resource profile such that
k = card(vars(@)), and A% its recognizer. Moreover let I1 = {E1,...,E,} a partition of

vars(G) such that, VE = {X1,..., X} € I Vi, j,i #j — —(X;tX,). Then RS s
recognized by unifyp .,z (AL) provided Z Nvars(G) = 0.

PRrROOF. cf. Appendix A.5 page 24. O

Of course, the reduction process must stop at some point, since a minimal amount of
memory is required for a process to behave correctly. Hence, a resource graph G has a
minimal resource bound which we name its resource index. The basic principle is to minimize
the parameter card(II) of Lemma 5.13.

LEMMA 5.14 (RESOURCE INDEX). Let G be a resource graph and II the set of mazimal

independent subsets of vars(G) wrt. the conflict relation §. Then card(Il) is the resource
index of G.

PrROOF. cf. Appendix A.6. O

From an algorithmic point of view, the computation of the maximal indepedents sets is
based on grap coloring [Jensen and Toft 2011]. In Fig. 2, the numbered labels of the nodes
correspond to colorings of the conflicts corresponding to the resource graph of Fig. 1. The
numbers on the left (before the open parenthesis) correspond to first-fit coloring using the
node ordering H,G, A, B,C, D, E. First, H can be colored by (location) 1 and so is G since
it is not connected to H. Next, A and B must use color 2 since they are connected to G. The
color 1 can be reused for C since it is not yet connected to a colored node. The node D is
connected to C' (color 1) and B (color 2) and thus must be colored 3. Finally, E is connected
to nodes colored up-to 3 and thus has color 4. The independent sets we consider form the
partition geie = {{C, G, H},{A, B},{D},{E}}. The corresponding resource bound is 4.

To obtain the maximal independent sets, we require the perfect coloring of the relation
graph. In Fig. 2 this corresponds to the numbers within parentheses. The strategy here is
to use the color 2 for both B and C. This way D can reuse color 1 and thus E has color 3
instead of 4. We obtain the partition Ipetect = {{D, G, H},{A, B,C},{E}}. The resource
index of the resource graph is thus 3 (which is also the chromatic number of the conflict
graph). Unfortunately, the finding of a perfect coloring is notoriously a difficult problem.

THEOREM 5.15. Computing the resource index of a resource graph is NP-complete.
PRroOF. cf. e.g. [Jensen and Toft 2011] for a detailed proof. 0O

This can be seen as a somewhat negative result, although we remark that the perfect
coloring algorithm only applies to the conflict graph and not the complete resource graph. In
most practical cases the former should be much smaller than the latter. Moreover, interesting
properties of separability can often be exploited (cf. [Deharbe and Peschanski 2014]). Last
but not least, less tight but still interesting resource bounds can be found in polynomial
time. One such example is through the use of first-fit coloring.

PROPOSITION 5.16. Let G be a resource graph with conflict graph . A resource bound

for G lower than de + 1 where de & maxXx evars()1Y | X4Y'} can be computed in linear
time in the size of §.
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Process P, Q Definition

n= 0 (inert) o -y der
| new(z) P (observable) .. D(z) = P
| local(z) P (inobservable) f‘?‘cmof @ (silent)
| a.P (prefix) L
| P|Q (parallel) | ab (ogtpu‘z)
| Dld] (call) | al@) (input)

Fig. 4. The syntax of the mw-calculus (with slices).

—— (step) ———,— (output) Lng)) (input)
T.P—P ab.P — P a(x).P — P
PSP a#x rese {new, local} (open) P35 P xda resc {new,local} (ves)
— res
res(z) P %% P res(z) P % res(x) P’

P P bn(a)Nnfn(Q) =0 P2p Q%
(par)

a . (sync)
PlQ%PQ PIQLP|Q

P=P P 5Q Q=q
P5Q

(struct)

Fig. 5. The early labelled transition semantics of the w-calculus.

PRrROOF. Let d be the maximum out-degree of a graph. It is a classical result that a
k-coloring bounded by d + 1 can be computed in linear time by a first-fit coloring based on
an arbitrary ordering of the graph vertices. O

6. APPLICATION: RESOURCE ANALYSIS OF 7-CALCULUS PROCESSES

In this section we describe the experimental application of our framework for the analysis
of resource consumption in w-calculus processes.

6.1. A m-calculus refresher

The syntax of the variant of the 7-calculus we cover in the experiment® is given in Fig. 4.
We also remind the structural congruence between two processes, which is the least relation
on processes satisfying:

— P = @ by a renaming of bound variables
—P[Q=Q|P, Pl (QIR)=(P[Q)[Rand P|0=P

— D[a] = P{a/7} if D(T) = P

— for res € {new, local},res(xz) (P | Q) = P | res(z) @Q provided = ¢ free(P)

The semantics of the language is recalled in Fig.5. Informally, the process 0 has no tran-
sition. The scope of a name x can be restricted by either new(z) of local(x) and for now,
the two constructs are assumed synonymous (this will be different in reduction semantics).
A prefixed process «.P denotes a transition with a label corresponding to the action « and
continuing as process P. There are four kinds of labels depending on the action a:

1For the sake of concision, we omit the constructs of non-deterministic choice and match/mismatch. Note
that our prototype tool has support for both
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—a label 7 is generated by a silent action 7 or by a synchronization.

—a label ab is generated by an input action a(b) for any name b received along channel a
and bound to the variable z (in early semantics).

—a label @b is generated by an output action ab of datum b along channel a, under the
provision that a and b are not restricted (i.e. in the scope of a new or a local.

—a label avb is a bound output generated by an output action ab where b is restricted,
unlike a.

The construct P | @ expresses the parallel composition (in terms of interleaving) of
the sub-processes P and (). These cover the independent evolution of the processes, of
alternatively the synchronization for a composition of the form @b.P | a(z).Q. The latter
generates a transition with label 7 and a continuation of the form: P | Q{a/z}. Finally,
the language has tail calls that corresponds to possibly recursive unfoldings of process
definitions.

6.2. Abstracting transition labels

The first step of our experiment is to generate a resource graph that reflects the behavior
of a m-calculus process in terms of resource usage. A natural interpretation consists in
interpreting almost directly the labelled transition system (LTS) as a resource graph. Under

this interpretation, each transition P £ Q is associated to three vertices vp, v, and vg and
the edges (vp,v,) and (v,,vg). The resource usage is then specified by the values associated
to a(v,), v(v,) and 6(v,). Schematically, we have:

o avb P
— a transition P — () creates a resource X; and is interpreted as:

vp = a{ X} v {Xp },0{} = v

— a transition P 2% Q such that there is a resource X, for b is interpreted as:

vp af} v {Xs},6{} vQ

— any other transition P £ Q is interpreted as:
vp af}v{}.6{} vQ

In this first abstraction, the rationale is: every data sent to the environment count as
resource uses. Hence, any bound output counts as the creation of a fresh resource as well
as a use, and each output of a name associated to a resource counts as a simple use. There
are possible variations, such as counting the channel itself as a use (e.g. recording a use
with ba in case b is associated to a resource X3), or also taking input into consideration. It
is then possible to distinguish between input or output resource uses. In all these possible
interpretations, the leitmotiv is that resource profile equivalence should be a necessary (al-
though insufficient) condition for bisimilarity?. We also require the destruction of resources
through ¢’s. A simple and effective heuristic is to insert a 6{X;} when there is no further
free occurrence of the name b in the process.

Let us consider as a first example the following process:

P = new(c) ac.be.P

This is a special case of a common pattern for generating fresh names. Here, the restricted
name c is sent first along a and then b towards the environment. The whole process is then
iterated, leading to the following derivations:

2We do not provide in this report a formal proof that “bisimilarity implies resource profile equivalence” but
this is rather trivial since the traces of resource profiles encode all the information stored in the transition
labels.
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P24 e P p s ...
The first output along a corresponds to a bound output since c¢ is restricted but the
further output is not bound anymore. Given a resource variable X, representing the name
¢ once required fresh, we obtain the following resource graph:

[ X} 8{Xc} L

V2 vT

D—” OC{XC},’Y{XC}
v v1

A theoretically acceptable alternative would to have an infinite system generating an
infinite number of resources. Although the version with the least fixpoint shows that exactly
one resource is required for this behavior, the resource index is invariantly 1 because there
can be no conflict for this process in any acceptable interpretation.

A minimal conflict can be generated by e.g.:

new(a) new(b) ca.¢b.ca.0

A slightly complexified variant of this process is as follows:
Q = new(a) new(b) ca.ch.da.d(z).cx.0
C[X] = new(d) [Q | X]
The resource graph corresponding to C[d(y).dy.0] is®:

[ F—{ et Xadr{Xa} ] ad X} 2{ X0} ]
v U1

v2

e S
vT Vs

This maintains the conflict XX} and thus the resource index of the system is 2, whereas
if we consider the variant C[d(y).dc.0] then the resource graph becomes:

[ F—{ X}t Xa} o af X} { X0} 0 (X0}
v U1 V2

v3

1 b |

vT Vs V4

Vg

The conflict X X}, is no more and hence the resource index is 1 in this case. This
illustrates the profoundly semantic nature of the proposed resource abstraction. Indeed, the
behavior of X within the context C[X] can be as complex as required so that in the general
case (beyond finite control) one cannot decide whether the conflict should take place or not.

3A single-hole process context C[X] is a function from process expression extended by a single occurrence
of a variable X to process expressions, such that C[P] = C[X]|{P/X} for a standard notion of substitution

of variables by processes. Here for example C[d(y).dy.0] = new(d) [Q | d(y).Ey.O].
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Model LTS Resource graph  Resource index

heap, 700 86 3
heap; 8476 303 4
heapg 126125 1094 5
buffer, 596 339 4
buffers 7173 3621 5
bufferg 106878 49246 6
GSM 489 56 3
GSMy,f 164 56 3
GSMgy 2183 56 3

Fig. 6. Experimental results for the resource abstraction on labelled transitions.

This abstraction has been implemented in a prototype tool and we analyzed several
examples from the HAL environment [Ferrari et al. 1998]. At present, the tool only support
finite control processes and the construction of the resource graph is purely semantic. Since
we do not need to preserve the whole branching structure, we can apply a few heuristics to
reduce the size of the resource graphs, but in the worst case it can be as large as (although
no larger than) the full LTS e.g. as produced by HAL. The problem of producing the
smallest possible resource graph is open and we conjecture that its complexity is high.
Fig. 6 gives the figures we obtain for the examples that are particularly interesting for the
considered abstraction. For each example, we give the size of the LTS produced by HAL
and we compare it with the size of the resource graph we obtain. This measure is not really
significant but it still emphasizes the fact that there is an important potential of abstraction
when constructing the resource graphs. A metric much more significant is the resource index
that we obtain using our omniscient garbage collector. A detailed comment of the results
is provided in [Deharbe and Peschanski 2014] but the main outcome of the experiment is
that the conflict graph in all the examples is very small, hence its perfect coloring is always
an affordable task. Moreover, the resource index always convey an important information
regarding the process behaviors. As an illustration, we can relate the number n of competing
cells in heap,,,; (resp. buffer,) to the resource index n. In the GSM cases, the resource
graph (and thus resource index) does not change, which says that despite their important
syntactical difference, they all exhibit exactly the same resource usage.

6.3. Refining reductions

Abstracting from the labelled transitions is quite natural but requires a very powerful
observer. In comparison, the reduction semantics are much less demanding. However, they
only apply on closed systems. An intermediate approach is to model part of the observer
within the system. For this we allow a process behavior to be sliced from the point of view
of the environment. A process of the form local(z) P considers x as a classical m-calculus
restriction but explicitly decorated by a tag inobservable. In comparison, in new(z) P the
name z is tagged observable. Names can also be assigned the tag observed although not in
their initial state. Now, a standard reduction P — @ of the mw-calculus is refined so that it
produces a “labelled” reduction of the form A - P £ A’ - Q in the slice-w variant. The
component A is a set of names tagged as observable. A name a with the observable tag but
lacking the observed tag is such that a € A. Otherwise, if it is observable observed then
a € A. Of course, it cannot be the case that {a,a} C A.

Each reduction P — (@ is now reinterpreted as either:

— an open reduction of the form:
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S (step)
AF7P =S ARP
AU{z}FPE NP z¢A AFSANEP 2¢ AN,
m (obs m (inobs)
At new(z) P> AN+ P A local(z) P — A+ P

acAU{b}VaeA
AF (b} FabP | a(@).Q 25 AU{b) - P | Q{b/z)

(sync-fresh)

aceAVaeA b¢gA

; (sync-open)
AFab.P|a(@).R - AUb) - P | R{b/z)

ac€AVaeAU{b}
AU{bFab.P|a(z).Q > AU{b} - P | Q{b/a}

(sync-obs)

a ¢ A
AF@b.P|a(z).R> A+ P | R{b/zx}

(sync-inobs)

AFPENEP P=P A-P 5HNFQ Q=Q
par
AFP[QBNEPQ AFPANEQ

(struct)

Fig. 7. The semantics of the slice-m calculus.

AP Y (A\ {b}) U{b} F @ when the reduction is a synchronization passing an
observable or inobservable but not yet observed name b along an observable channel a. As
a side-effect, the name b is tagged as observable and also as observed.

— a transparent reduction of the form:

AFPY AR @ when the reduction is a synchronization passing an observed name b (i.e.
b € A) along an observable channel (i.e. a € A).
— an opaque reduction of the form:

AF P 3 AF Q in any other case.

The complete operational semantics of the slice-w calculus is provided in Fig. 7. In terms
of resource graphs, the interpretation is now quite similar to the labelled abstraction:

b
—a reduction A - P Q) A’ + @ creates a resource X, and is interpreted as:

VAFP a{ Xy}, {Xs},0{} VAFQ

—areduction AFP % AF () such that there is a resource X for b is interpreted as:

varP = o b {Xp},6{} - VARQ

— any other reduction A F P 2 A F Q is interpreted as:

[ VAEP af{}v{},o{} . VARQ
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{} F new(a) new(b) S(a,b)

2, fa,b,a1} + Pla) | Q(a,b) | Q(a,b) | R(D)
L2, {a,b, w1, 20} - Pla) | Q'(a,b) | Q'(a,b) | R(b)
2 fa,bar, 20} F Pla) | Qa,b) | Q'(a,b) | R(b)
22y {a,b,z1, 22} S(a,b)

{}  local(a) new(d) S(a,b)

5 (b} b P(a) | Q'(a,) | Qla.b) | R()

25 {b, 21,22} F P(a) | Q(a,b) | Q'(a,b) | R(D)
L2, b, 21,00}  Pa) | Q(a,b) | Q'(a,b) | R(D)

220, b 2y, w0} - S(a,b)

Fig. 8. Reductions of slice-m processes with a observable (top) or inobservable (bottom).

To illustrate the abstraction, we consider the processes new(a) new(b) S(a,b) vs.
local(a) new(db) S(a,b) with:

Fig. 8 shows representative reductions of the first process with a observable (on the left)
and a inobservable (on the right). In the observable case the names a and b are recorded
in the first reduction as observable (i.e. put explicitly in the A component of the state). In
the same reduction, the name z generated by P is opened (i.e. marked observed) by the
synchronization with the leftmost process ). A “second” x is opened in the next reduction by
the synchronization between P and the rightmost ). The “two” z’s must be alpha-converted
hence the introduction of x7 and x5 in the reductions. The A component of the transition
contains {x1,x2} because these two observable names are actually observed. If we compare
this behavior with the one of the right-hand side, a is there tagged inobservable since it
is introduced by the local construct. This means it is not a member of the component A
of the state, unlike b. Hence the names x; and x5 are now introduced as observable but
not yet observed because they are transmitted along a. In terms of resources graphs, the
left-hand side reductions yield a conflict X, #X,, that is absent in the rightmost process.
The processes have indeed a different resource index: respectively 2 and 1. We thus obtain
a level of flexibility that is quite comparable to the labelled abstraction, but without the
need for an idealistically powerful observer.

Based on this abstraction, we designed a simple example inspired by the classical dining
philosophers problem. The idea is that the environment is modeled as a process that ac-
knowledges through an observable channel eat the fact that a philosopher actually starts
eating. All the other channels (ending points for the philosophers, the forks, etc.) are created
inobservables (hence restricted with local instead of new). The resource conflicts occur when
distinct philosophers eat at the same time on the table, by transmitting the philosopher
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Model  # Processes Reductions Resource graph Resource index

philos, 7 133 20 1
philos; 10 2992 136 1
philos, 13 98245 4148 2

Fig. 9. Experimental results for the resource abstraction on reductions.

channel along the environment observable eat. As a side effect, the philosophers, initially
inobservable, inherit both the observable and observed tags in a dynamic way.

The results for some instances of the philo,, examples are listed in Fig. 9. The size of the
reduction graph grows exponentially since we modelled various sub-processes running in
parallel (e.g. 13 processes for philo,). The resource graphs we obtain using similar heuristics
as in the labelled case are much smaller but in a similar order of magnitude in terms of
growth. The resource index (and hence the maximum conflict) is quite reassuring in that the
number of philosophers actually competing for food remains below the number of fork pairs,
ensuring the correctness of the protocol. Although simpler analyzes are of course possible for
this specific example, the experiment emphasizes the fact that the resource index captures
a deep semantic information, tightly related to the chosen resource abstraction.

Last but not least, none of our experiments (except those made on purpose) expose a large
resource index. In fact, the perfect coloring of the conflict graphs was almost immediate in
all the examples, despite the high complexity of the algorithm. In the current version of
the tool we use a simple and rather slow CSP-solver for the task. This largely covers our
current needs but state-of-the art SAT solvers could be used for more demanding scenarios.
In cases perfect coloring would become unfeasible, we can still compute less tight but still
interesting resource bounds very efficiently, using e.g. first-fit coloring.

7. RELATED WORK

Resource control and analysis is a vast topic of research. Considered in their purest form,
resources are pure names naturally leading to nominal calculi [Gordon 2000] in general,
and in particular the m-calculus [Sangiorgi and Walker 2001] and its numerous variants.
This is a rather abstract and open-ended setting, thus not a very prolific source of effective
analysis algorithms. One approach is to enrich the semantics, as e.g. in [Amadio and Dal-
Zilio 2006] where a resource bound analysis is proposed for a reactive synchronous variant
of the m-calculus. For more classical (and abstract) variants, related studies address decid-
ability issues often in connection with Petri nets, such as e.g. [Amadio and Meyssonnier
2002; Rosa-Velardo and de Frutos-Escrig 2010] and [Hiichting et al. 2013]. The latter in-
troduces the name-bounded processes, a significant class of infinite-state systems for which
the boundedness question is answered positively. It is particularly remarkable that reach-
ability is also decidable for this class. In comparison, we assume the finiteness of resource
graphs, and deliberately de-emphasize the means by which they are obtained practically.
Indeed, a key feature of our framework is its independence from any particular formalism.
Furthermore, for a given formalism multiple resource abstractions can be experimented as
illustrated in Section 6. The abstraction of active restrictions proposed in [Hiichting et al.
2013] only applies on reductions for closed systems. It is also different from the resource
model we propose around the slice-w calculus, and to illustrate this aspect we consider the
following process:

P(a) = new(z) [az.0 | a(y).P(y)] | .new(z) Za.0

In the abstraction we propose, the resource index of new(a) P(a) is 1 because the processes
new(z) za are deadlocked after the initial 7. However, since the name a is always free in
these deadlocked processes the whole process has an infinite number of active restrictions.
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This particular example can be of course optimized but the deadlocked process can be
complexified at will. Hence, we discuss a finer-grained abstraction that cannot be decided
locally. Relying on an essentially semantic abstraction is not without consequences. For
instance, our current implementation only works with finite control 7-calculus processes. It
is a very intriguing and open question whether interesting sub-classes of infinite systems with
finite resource graphs could be determined, probably starting with variants of the name-
bounded class itself. Another related abstraction is that of barbed semantics [Sangiorgi and
Walker 2001] that also refine reductions but considering in this case the non-restricted
channels as observables. This is to ultimately characterize an adequate notion of process
equivalence — namely strong barbed congruence — when the reductions with observables are
closed under context. While we could observe the channels instead of (or together with)
the data, we require our refinement to remain in one-to-one correspondence with the plain
reductions. Also particularly notable in [Hiichting et al. 2013] is the prominent role played by
the notion of garbage collection something already observed in e.g. the history-dependent-
automata [Ferrari et al. 1998] or in the m-graphs [Peschanski et al. 2013]. This is a side
note but to our knowledge, HD-Automata Laboratory (HAL) is the only tool allowing the
generation of early labelled transition system from (finitary) m-calculus processes. Indeed,
the generation of the early LTS is not trivial especially because it requires the determination
of the active names [Montanari and Pistore 1995], a notion tightly connected to the live
variables of resource graphs.

Graph coloring relates to the very well-known problem of register allocation in compiler
back-ends [Chaitin 2004]. However, the behavior of registers is quite specific. For example,
one can always choose not to allocate a register, or release it prematurely and defer to
the central memory. Hence, the coloring can be both partial and imperfect, allowing many
optimization heuristics that do not apply at all in our case. This still naturally connects our
study with the well-studied notion of register automata and related formalisms, especially
finite memory automata (FMA) [Kaminski and Francez 1994] and fresh register automata
(FRA) [Tzevelekos 2011]. Although the theory of v-automata shall be further investigated,
we suggest in the paper that they represent quite an expressive formalism. For instance,
the automaton depicted in Fig 3 can be easily shown not simulable by either a FMA or
a FRA. However, we show that resource profiles are quasi-regular languages recognizable
by FMA. In this specific case, the v-automata are still relevant since they can trivially be
shown exponentially smaller than their FMA counterparts. To our knowledge, the problem of
reducing the memory of FMA has only been investigated in the deterministic case [Benedikt
et al. 2010]. Our study suggests an approach for non-deterministic FMA but only to reduce
the storage size. Finally, we think that r-automata represent an interesting formalism to
address resource control issues as in e.g. [Degano et al. 2012] (automata-based approach)
or [Kobayashi et al. 2006] (typechecking-based approach). This investigation is the next
natural step of our study.
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A. APPENDIX: PROOF DETAILS
A.1. Proof of Propositions 3.5 and 3.6 (binding condition and conflict freedom)

Proo¥. (Proposition 3.5) There are two cases to consider. First, if the binding X — v
is not created at position k then it is said an old binding. By Def. 3.3 if there isno j, j < k
such that X € last,(v;) vertex v (as assumed) then this binding must have been created at
a previous position ¢ < k. If the binding is new, then it is a simple fact that ¢ = k. O

ProoF. (Proposition 3.6) We proceed by induction on k. First, for ¥ = 0 we have no
possible conflict and T'g = @) so that the property vacuously holds. Now suppose that the
property is true for any position j, 0 < j < k — 1. We proceed by contradiction, showing
that it cannot be the case it does not hold anymore at position k. We thus assume X ﬁ’;Y
and I'y(X) = T'y(Y). There are three cases to consider. First, if Y € first,(vy) \ last,(vs)
then it must consume a symbol vy in the subset new(ay) of Def. 3.2. The same definition
imposes that this symbol must not be already present in the range of I'y_;. As such,
if Ty_1(X) = vx for some name vx then it must be the case that vy # vx. Hence,
I'i(X) # Tk(Y), contradicting the hypothesis. If otherwise X ¢ dom(I'x_1) then the conflict
imposes that X € first,(vi) U fetch,(vy). If X consumes a name vx at position k£ then we
must have vx € new(ay) or vx € trans(ag). In both case a simple cardinality argument
imposes that vx # vy. The second case is if Y € first,(vi) Nlast,(vy), hence it is a transient
binding. In this case there is no new binding recorded, so there is nothing left to do. Finally,
if the use at position vy is not a first use, then the binding condition (cf. Prop. 3.5) imposes
that there is a position i < k such that Y € first,(v;) U fetch,(v;). By the hypothesis of
induction we have that T';(X) # I';(Y) hence the contradiction. This finishes the proof. O

A.2. Proof of Lemma 4.4 (resource profile recognizers)

The proof requires two auxiliary propositions. The first one relates the structure of the
graph G and the one of the Ag.

PrOPOSITION A.1. Let G be a resource graph. There is a one-to-one correspondence
between W(G)UW(G) and the graph of Ag. Moreover, for each automata path 6, (resp. 05 )

corresponding to a complete path p (resp. finite expansion p* of a lasso p) its starting state
is initial and ending state is accepting.

ProoOF. By Def. 4.3 each vertex v; of a complete path p = (v1,...,v,) (resp. of a
lasso p = (v1,...Ve—1 | Ve,...,vy,) there is a corresponding state ¢, , (resp. q,, ) in the
automaton Ag. Moreover, for each edge (v;, v;41) of p (resp. p) there exists a unique label [
such that (qu, p, [, Gu,;1,p) (resp. (¢u, 5,1, @v,.,,5)) in the transition relation of Ag. For a lasso,
there is also an exit transition (g, 5, {}, ¢»+ ) and there is no other state or transition defined,
hence the one-to-one correspondence. Each finite path (vy,...,v,) of G corresponding to
either a complete path or the k-th expansion of a lasso, by Def. 2.1 we have: v; = v, and
vp, = vT. Hence ¢,, = ¢q,, — which is initial — and ¢,, = ¢,; — which is accepting — by
construction. 0O

The second proposition relates the transition labels of Ag to the resource events (use,
first and last use, etc.).

PROPOSITION A.2. Let Ibl?_, , be a transition label of Ac. Then:
Xelbll_ , iff X ey()

o fetch,(v') if v # exit
vX €lbl_, , iff first,(v/) U othf’e(mzsg 7 exit(p)

vX elbl?_, . iff X € last,(v)
Proo¥r. This is direct by Def .4.3. O
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ProoF. (Lemma 4.4) We have to prove the equivalence w = a1 -+ a,, € Rg <= w €
L with L the language of Ag. Consider the path p = (vy,...,v,) used to recognize word
w as in Def. 3.4. By Prop. A.1 there is a corresponding path 6, = (qu, , @u; p»- - - Gun,p) I
the graph of Ag. Consider now the run ¢ = (gv, ,I0), (¢v1,p:T'1), - -+ (qu,.,p, I'n) such that
for each position k, 1 < k < n, I'i is built from I'y_; according to Def. 3.3. We must show
that o is an accepting run of w by showing that each symbol «ay of the word is consumed
by the configuration (g, ,,I'x) and moreover each I';, can be built as in Def. 4.2. For the
consumption part, we can use the decomposition of ay as the disjoint subsets old(«y),
trans(ay) and new(ay) of Def. 3.2. According to the construction of Def. 4.3 we know that
(Gur_1,p5IbI5, 50+ Quy,p) is a tramsition of Ag. Hence, by Prop. A.2 we can deduce the

following equalities: old(ax) = a9, trans(ay) = ™™ and new(ax) = al®¥ (the latter sets
as defined in Def. 4.2). Thus, « is fully consumed by the configuration (g,,,,,'x). Moreover,
also thanks to Prop. A.2 the construction of I'y from I'y_1, as governed by Def. 3.3, is a
correct construction according to Def. 4.2. Hence, the configuration (qy, ,,I'x) is accepting,
as is the whole run o since we left the position k arbitrary. Exactly the same reasoning steps

can be followed in the converse way: from Def. 4.2 to Def. 3.4. This concludes the proof. O

A.3. Proof of Theorem 4.5 (resource profiles are quasi-regular)

The objective is to show that the resource profile of a graph G is quasi-regular, i.e. that it
can be recognized by a finite memory automaton (FMA) accepting it. The reference paper
for FMA is [Kaminski and Francez 1994]. For convenience, we adopt a slightly different
notation, consisting in indexing the windows (i.e. registers) of FMA by variable names
instead of integers, which can be trivially put in one-to-one correspondence.

Since we cannot encode the fetching (i.e. allocation without consumption) of a fresh
symbol in FMA (this would at least require the power of fresh register automata), we have
to find a way to remove the fetching phase. This is possible for the subclass of v-automata
recognizing the resource profiles. The idea is to unfold exactly once each lasso of the resource
graph when building the recognizer.

Definition A.3. Let G = (R,V,E,a,~,J) be a resource graph, and \Tll(G) the set of
unfolded lassos such that:

THG) = {(v1, o Vet Veys oy Uny | Vegsee s Uny) | (V1,0 Vet | Ve, vn) € U(G)}
The v-automaton induced by G is Aff® = (vars(G), (Q, ¢v, , A, {qu- })), with:

7@ = {q%P | pE \IJ(G) U \III(G)a'U € P\A{'UJJUT}} U {ququT}
— A= {(qu,p,Ibly;,qv;,0) | p € V(G)U UHG),v; — v; € p}
U {(qvn2ﬁ7 lblve2 ) qvﬂQvi)\)7 (QUnl 0 {}7 qu)ﬂ (gvn,2ﬁ7 {}v qu) |
D=(V1, ey VeyseeeyUny | Vegse-sUny) € VHG)}

with: Ibl, = {vX | X € first,(v)} U{X | X € y(0)} U{7X | X € last,(v)}

The first proof step is to show that the language of the new construction is still the
expected resource profile.

LEMMA A.4. Let G be a resource graph. Then L(Ag) = L(A™?).

The difference between Ag and A2 is that in the latter, all the allocations are now
performed jointly with a use, hence no fetch event is required anymore.
The construction of a FMA from the v-automaton A‘g"a is as follws.

Definition A.5. Let A = (X (Q, ginit, A, F)) as in Def. A.3. The induced FMA is

def

jvl_,alf(';"a = <Xa S, Sinit, W, Py s Flv >7 such that:
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— 8 ={si,s; | 5i = s; € u}
—u={X — #| X € X} U{Start — Start, End — End, Flush — #}
— p(sinr0) =X if I(gi, {rl,..., 7}, q;) €EAst. O(rp) =7 A (1 =vX Vi =1v0X)
, X i 3g, {rl,. .. ,retq) € Ast O(rw) =T A (rp =X Vi =vDX)
P55 1r0) = Flush otherwise

0 0(rn
— = {5 22 5i,1,0 AU A LGN Simi10 2 s5 |
(gi, A, qj) € A, 0 is a permutation function on dedup(X) = {ry,..., 7, }}

fF/:{Si‘inF}

with:

[dedup(A) = A\ ({X | vX e AVDX e \JU{vX,7X | {vX, 07X} CA}))
U{voX | {vX,7X} C A}

vX X ; Flush

S == 8; =8 — §; —

i
X X, Flush
Si:>8j:Si—>8i—)Sj

Sj

7X X ., X
si:>5j7*5i‘_)$i‘_>5j
VX X, X
S == 8; =8; — S; — Sj

The encoding of transitions is made in two steps. First, each label set dedup()), in which
we deduplicate bind and usage (resp. unbind and usage) of a same variable, is splitted
into single events, by enumeration of all possible permutations of its elements. Then, each
obtained transition is doubled. The goal is to correctly handle unbinds of variables, which
must consume a symbol and place a fresh symbol into the corresponding window register.
According to this translation, v-words have to be also transformed in order to be accepted
by the FMA device. The v-word encoding consists in placing tags to keep the information
about where starts and ends a set of symbols. Then each occurence of v-symbol is followed
by the occurence of a fresh symbol taken in a separate namespace V. This new information
is mandatory to reset window registers when the corresponding variables must be unbound.
This addition must follow each symbol occurence since it is not possible to find the binding
and unbinding instant starting only with a v-word. Formally, encoding of a v-word is defined
as follows:

- [[w]]fma = [[al]]fma tet [[anﬂfma
— [i]fma = Start. @lgjgn(e(ui).m)fnd
with a; = {r1,...,7m} and 6 an arbitrary permutation function on «;

The last step of the correspondance proof is to show that the language of a v-automaton
obtained from a resource graph and the language of its induced FMA are the same (upto
the encoding of the v-words).

LEMMA A.6. Let Ag‘a be the v-automaton induced by a resource graph G, and MAfga
the finite memory automaton induced by AfM2. Then L(AM™?) = {w | [w]ima € L(M gima) }-

Since there exists an encoding of resource graph v-automata in FMA, we can conclude
that resource graph v-automata language are quasi-regular.

A.4. Proof of Lemma 5.7 (nominal resource bound)

PRrOOF. (of Lemma 5.7) First, the hypothesis inactive(G) = ) is simply because an
unused resource can be trivially removed from the resource graph G without any impact on
the resource profile. Failing to remove them gratuitously complexifies the bound calculations.
Our proof scheme is to rely on Lemma 4.4, which says that :

w € MR¢ iff there exists a path p = (v1,...,v,) in G and an associated run o =
(¢v,,T0)s (qwysT1)s -+, (qu,,'n) such that o accepts w.
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Based on the latter assumption, we define a renaming ¢ from V (infinite alphabet of A¢)

to V. First, the renaming of the run o is as follows :
C(o) = (qu,,T0)s (qu,,C(T'1)); - - -5 (qw,,, (L))
Vi, 0<i<n, ((I') ={vx | X € dom(I';)}

Hence, in all the bindings I'; we just bind variables to their corresponding pure name in
V). To preserve the acceptance relation, we thus have to rename the word w so that the
symbols recorded in the T';’s now get recorded in the ((T';)’s.

For this, we use the decomposition of a; of w as the disjoint sets a$' (consumption from
old bindings), ¢ (transient bindings) and a?" (new bindings) as in Def. 4.2.

Let (o) = {vx | T4(X) = v Av € a9}, Thus for an old binding of variable X, we
have ¢(T;)(X) = vx and thus the renamed binding is still accepted at position i of the
renamed run. Next, ((of®") = {vx | X € first,(v;) N last,(v;)}, hence there are enough
fresh names so that the transient bindings are also consumed in the renamed run. Finally,
Claf®™) ={vx | Tix1(X) =vAv eaM™}if i <nand ((af®™) = o™ = ) (since there is no
new binding in the final step of the run). Since ((I';+1)(X) = vx the latter subset gets also
consumed as required. Thus, ((«;) is naturally consumed by configuration (g, ,,((I';)).

Hence, ((o) accepts ((w) = ((aq) - - ((an) thus ((w) € ((Rq) iff ((o) accepts w, which
concludes the proof. O

old

A.5. Proof of Lemma 5.12 and Lemma 5.13 (unifying variables)

The following proposition will play an important role in a later result. It says that non-
conflicting resources may not be used at the same time (otherwise a conflict would occur).

PROPOSITION A.7. Let G be a resource graph, p = (v1,...,v,) a finite path of G and
E C vars(G) a set of resource variables. If VX,Y € E, =(Xt)Y) for a given position
i, 1 <i<n then card(y(v;)) N E < 1.

Proor. We proceed by contradiction. If we suppose card(y(v;)) N E > 2, then there
must be X,Y € E such that X #Y and {X,Y} C 7(v;). By Def. 2.5 we would have X{}Y

(and also Y'#! X) which contradicts the hypothesis ~(X#,Y). O

PROOF. (of Lemma 5.12) Our main hypothesis is: w € Rf, iff there is a path p =
(v1,...,v, and arun o = (qv,,10), (quy ,,T1)s -+, (qu,,, Tn) Of AE such that o accepts w.
We also consider that the alphabet of pure names is Vi, = {vx | X € vars(G)}. Now, for
each position i, 1 <i <n, we let :

uninydZ(Fi) = {X = Ux | X e dom(Fl) \ E} @] {Z = Vz | X € dom(Fl) N E}

and UninyqZ (U) = (qu_ ) FO)? (qM,pv UninyqZ(Fl))7 R (qvn,p’ unifYEqZ(Fn))'

Hence, in each binding context I'; the variables of E are all replaced by the unique
mapping Z — vz and the other variables are left unchanged.

We now apply the renaming corresponding to the unification on the symbols of w. We
consider the decomposition of each a; as the disjoint union a$'¢ Ut Uaf®. And we let :

unify 2 (094) = {vx € a2 | X € dom(D;)\ B} U | §v2) T AV € B0 Gl firsty(vr))

The symbols of a?'d that are left unchanged are trivially consumed by configuration
(qv,,» unify 7 (I';)) since in this case the binding context is left unchanged. If a variable Y’
of FE is used at position ¢, then it must be bound to a dedicated pure name, which we name
vz. By Proposition A.7 only one pure name is enough. And since unify 5 (I';)(Z) = vz (cf.
above) the configuration at step ¢ also accepts v,. If otherwise no variable of E is used at
step i then there is nothing left to test.

For the transient and new bindings, the proof scheme is exactly the same, based on the
following definitions:
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unify gz (i) = {vx € aj™™ | X € (first,(v;) Nlast,(v;)) \ E'}
U {vz}if Y € E, Y € first,(v;) N last,(v;)
() otherwise
unify o (@) = {vx € af* | X € (first,(v;) \ last,(v;)) \ E'}
U [{yz} if Y € B, Y € first,(v;) \ last,(v;)
0 otherwise

We deduce that unify g, (a;) = unify g, (a%'®) U unify g, (ai™) U unify p, (af®V) is ac-

cepted by configuration (g, ,, unify 7 (I';)). Thus w is accepted by run unifyp (o) as ex-
pected. This run is trivially a possible run of uninyQZ(A’é), which concludes the proof. O

PROOF. (of Lemma 5.13) The proof is almost the same as the one for Lemma 5.12 except
that we consider a complete partition of vars(G). It is a simple fact that the unification of
IT can be done in an arbitrary order since the renamings operate on a distinct domain (a
subset F of variables and their unifier Z) and distinct range (the name vz corresponding
to the unifier Z). Moreover, by iterating Lemma 5.12 we have that RF—L pen card(F)-+card(I)
is recognized by unifyy .z (Af). And since Y- pop card(E) = card(vars(G)) we obtained the
expected bound card(II). O

A.6. Proof of Lemma 5.14 (resource index)

We first show that unifying conflicting variables would contradict the process of recognizing
resource profiles.

LEMMA A8, Let w = «ay---a, be a v-word accepted by a run o =
(@v.:T0), (qvy,,T1)s - (@, Tn) of a v-automaton AY (with k variables) of a resource
graph G. Then unify x yy 7 (w) is accepted by unify  x yyq7(0) iff Vi, 1 <i <n, =(XfY)A
—.(Y]j;X).

ProOOF. We proceed by contradiction. Suppose there is a position j of p such that Xﬁ{,Y
(the symmetric case is similar). This means that Ji,k, 1 < i < j < k < n such that
X € y(v;) Ny(vg) and Y € v(v;). There must be a pure name vy such that VI, ¢ <1 <
k, T(X) = vx (by the binding condition, cf. Prop. 3.5). And at position j the variable
Y must be either bound to a name vy (old or new binding), or the latter name must be
consumed immediately (transient binding). In both cases, vy must be distinct from vx
otherwise the conflict freedom property (cf. Prop.3.6) would fail. However, unify; y y14z(0)
rename both vy and vy by a single name vz, thus trivially the run cannot accept w
anymore. [

PrOOF. We start with the resource profile %grd(n) recognized by the automaton A with

variables X = { X1, ..., Xcara(m) }- Suppose the resource profile ML, such that k = card(IT) -1
is recognizable.

Then two independent subsets of vars(G) must be unified, which means there are two
variables X,Y € X such that X{Y (since they are dependent wrt. the partition of f)
provided RE, is recognized by unify ¢ v y14z (A) for some Z ¢ X. But this would contradict
Lemma A.8, hence there is no resource bound lower than card(Il). O



