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Lp-Lq MAXIMAL REGULARITY FOR SOME OPERATORS ASSOCIATED
WITH LINEARIZED INCOMPRESSIBLE FLUID-RIGID BODY PROBLEMS

D MAITY AND M. TUCSNAK

Abstract. We study an unbounded operator arising naturally after linearizing the system
modelling the motion of a rigid body in a viscous incompressible fluid. We show that this
operator is R sectorial in Lq for every q ∈ (1,∞), thus it has the maximal Lp-Lq regularity
property. Moreover, we show that the generated semigroup is exponentially stable with respect
to the Lq norm. Finally, we use the results to prove the global existence for small initial data,
in an Lp-Lq setting, for the original nonlinear problem.

Key words. Fluid Structure interaction, Incompressible flow, Maximal Lp regularity AMS
subject classifications. 76D03, 35Q30,76N10

1. Introduction and main results

The aim of this work is to show that the semigroup associated to the equations obtained by
linearizing some systems modelling fluid-structure interactions has the maximal Lp-Lq regularity
property. This result can be seen as an improvement of those in [22, 21], where the result was
proved in a Hilbert space setting and in [24], where it has been shown that the corresponding

semigroup is analytic in L
6
5 (R3) ∩ Lq(R3), for q > 2. We then apply this result in proving a

global existence and uniqueness result, for small data, for the original nonlinear problem. Such
a result seems new in an Lp-Lq setting. The references [22, 21] and [11] contain closely related
results and methods which are often used in the present paper.

Let us first remind the original free boundary system which motivates this work. We will
come back to this system later on, in order to prove the global existence of solutions for small
initial data. The smallness is measured in a Besov space and the solutions lie in function spaces
which are Lp with respect to time and Lq with respect to the space variable. As far as we know,
global existence results of this type were known only in an L2 setting.

Consider a rigid body immersed in a viscous incompressible fluid and moving under the action
of forces exerted by the fluid only. At time t > 0, this solid occupies a smooth bounded domain
ΩS(t). The fluid and rigid body are contained in a bounded domain Ω ⊂ R3 with smooth
boundary ∂Ω. We assume that there exists a constant α with

dist (ΩS(0), ∂Ω) > α > 0. (1.1)

At any time t > 0, we denote by ΩF (t) = Ω \ ΩS(t) the domain occupied by the fluid. We
assume that the motion of the fluid is governed by the incompressible Navier-Stokes equations,
whereas the motion of the structure is governed by the balance equation for linear and angular
momentum. The full system of equations modelling the rigid body inside the fluid can be
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written as

∂tu+ (u · ∇)u− div σ(u, π) = 0, t ∈ (0,∞), x ∈ ΩF (t),

div u = 0, t ∈ (0,∞), x ∈ ΩF (t),

u = 0, t ∈ (0,∞), x ∈ ∂Ω,

u = a′(t) + ω(t)× (x− a(t)), t ∈ (0,∞), x ∈ ∂ΩS(t), (1.2)

ma′′(t) = −
∫
∂ΩS(t)

σ(u, π)n dγ, t ∈ (0,∞),

Jω′(t) = (Jω)× ω −
∫
∂ΩS(t)

(x− a(t))× σ(u, π)n dγ, t ∈ (0,∞),

u(0, x) = u0(x) x ∈ ΩF (0),

a(0) = 0, a′(0) = `0, ω(0) = ω0.

In the above equations, u(t, x) denote the velocity of the fluid, π(t, x) denote the pressure of
the fluid, a(t) denote the position of the centre of the mass and ω(t) denote the angular velocity
of the rigid body. The domain ΩS(t) is defined by

ΩS(t) = a(t) +Q(t)y, ∀y ∈ ΩS(0), ∀t > 0,

where Q(t) ∈ M3×3(R) is the orthogonal matrix giving the orientation of the solid. More
precisely, ω(t) and Q(t) are related to each other through the following relation

Q̇(t)Q(t)−1y = A(ω(t))y = ω(t)× y, ∀y ∈ R3, Q(0) = I3, (1.3)

where the skew-symmetric matrix A(ω) is given by

A(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω ∈ R3.

The constant m > 0 denote the mass of the rigid structure and J(t) ∈ M3×3(R) its tensor
of inertia at time t. This tensor is given by

J(t)a · b =

∫
ΩS(0)

ρS(y)(a×Q(t)y) · (b×Q(t)y) dy, ∀a, b ∈ R3, (1.4)

where ρS > 0 is the density of the structure. One can check that

J(t)a · a > CJ |a|2 > 0, (1.5)

where CJ is independent of t > 0. In the above, we have denoted by ∂ΩS(t) the boundary of
the rigid structure at time t and by n(t, x) the unit normal to ∂ΩS(t) at the point x directed
towards the interior of the rigid body. The Cauchy stress tensor σ(u, π) is given by

σ(u, π) = −πI3 + 2νε(u), ε(u) =
1

2

(
∇u+∇u>

)
, (1.6)

where the positive constant ν is the viscosity of the fluid.
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Linearizing the above equations around the zero solution we obtain a system coupling Stokes
equations in a fixed domain and an ODE system. The corresponding equations read as

∂tu− ν∆u+∇π = f, div u = 0, t ∈ (0,∞), y ∈ ΩF (0),

u = 0, t ∈ (0,∞), y ∈ ∂Ω,

u = `+ ω × y, t ∈ (0,∞), y ∈ ∂ΩS(0),

m`′ = −
∫
∂ΩS(0)

σ(u, π)n dγ + g1, t ∈ (0,∞), (1.7)

J(0)ω′ = −
∫
∂ΩS(0)

y × σ(u, π)n dγ + g2, t ∈ (0,∞),

u(0, y) = u0(y), y ∈ ΩF (0),

`(0) = `0, ω(0) = ω0,

where n is the unit normal to ∂ΩS(0) directed towards the interior of the rigid body.
Let us now define the operator associated with the above linear fluid-structure interaction

problem, which was first introduced in [22, 21]. The idea is to extend the fluid velocity u by
`(t) + ω(t)× y in ΩS(0). More precisely, for any 1 < q <∞ we define

Hq(Ω) =
{
ϕ ∈ Lq(Ω)3 | div ϕ = 0 in Ω, ε(ϕ) = 0 in ΩS(0), ϕ · n = 0 on ∂Ω

}
(1.8)

We define

D(A) =
{
ϕ ∈ W 1,q

0 (Ω)3 | ϕ|ΩF (0) ∈ W 2,q(ΩF (0))3, div ϕ = 0 in Ω, ε(ϕ) = 0 in ΩS(0)
}
.

(1.9)

For all v ∈ D(A) we set

Av =


−ν∆v in ΩF (0),

2νm−1

∫
∂ΩS(0)

ε(v)n dγ +

(
2νJ(0)−1

∫
∂ΩS(0)

y × ε(v)n dγ

)
× y in ΩS(0),

and

Av = PAv, (1.10)

where P is the projection from Lq(Ω)3 onto Hq(Ω). The existence of such projector P can be
found in [24, Theorem 2.2].

Takahashi and Tucsnak [22] proved that the operator A defined above generates an analytic
semigroup on H2(Ω) when Ω = R2. When Ω is a smooth bounded domain in R2 the same result
was proved by Takahashi [21]. Later, Wang and Xin [24] proved that the operator A generates
an analytic semigroup on H6/5(R3) ∩ Hq(R3) if q > 2 and when the solid is a ball in R3 the
operator A generates an analytic semigroup on H2(R3) ∩ Hq(R3) if q > 6. In this article, as a
corollary of our main result, we prove that the operator A generates an analytic semigroup on
Hq(Ω) for any 1 < q <∞.

Before we state our main result, we introduce the notion of maximal Lp-regularity. Let us
consider the following Cauchy problem:

z′(t) = Az(t) + f(t), z(0) = z0, (1.11)
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where A is a closed, linear densely defined unbounded operator in a Banach space X with
domain D(A), f : R+ 7→ X is a locally integrable function and z0 ∈ X .

Definition 1.1. We say A has maximal Lp-regularity property for 1 < p < ∞, on [0, T ),
0 < T 6∞, if for z0 = 0 and for every f ∈ Lp(0, T ;X ) there exists a unique z ∈ W 1,p

loc [0,∞);X )
satisfying (1.11) almost everywhere and such that z′ and Az belong to Lp(0, T ;X ). We denote
the class of all such operators by MRp([0, T );X ).

Remark 1.2. In the above definition we do not assume that z ∈ Lp(0, T ;X ). In fact, if T <∞
or 0 ∈ ρ(A), where ρ(A) is the resolvent set of A, z′ ∈ Lp(0, T ;X ) can be replaced by z ∈
W 1,p(0, T ;X ) ([6, Theorem 2.4]).

We now state our first main result:

Theorem 1.3. Let 1 < p, q < ∞ and T < ∞. Then A ∈ MRp([0, T ];Hq(Ω)). In particular,
the operator A generates an analytic semigroup on Hq(Ω) for any q ∈ (1,∞).

To prove the above result we use the characterization of maximal Lp regularity due to Weis
([25, Theorem 4.2]), which says that maximal Lp regularity property in a UMD Banach space,
in particular for Lq spaces, is equivalent to the R-sectoriality property of the operator (see
Section 2 for definition and properties of R-sectorial operators).

The maximal Lp-Lq regularity property in finite time interval of the system (1.7), when
Ω = R3, was already proved in [11, 13]. However, the approach of those papers is different from
our approach. In fact, in those papers, fluid and structure equations are treated separately
and maximal Lp-Lq regularity property of the linear system (1.7) is proved by a fixed point
argument. In our approach, we solve the fluid and structure equations simultaneously. In the
study of fluid-structure interactions, this method is known as a monolithic approach. We refer
to Maity and Tucsnak [18] where a similar approach has been used to prove maximal Lp-Lq

regularity for several other fluid structure models.
The main advantage of such approach is that, by studying resolvent of the linear operator A,

we can conclude that the operator A generates a C0-semigroup of negative type. This allows
us to obtain the maximal Lp-Lq regularity of the system (1.7) on [0,∞). As a consequence, we
obtain global existence and uniqueness for the full non-linear system (1.2) under a smallness
condition on the initial data.

In order to state global existence and uniqueness result, we introduce some notation. Firstly
W s,q(Ω), with s > 0 and q > 1, denote the usual Sobolev spaces. We introduce the space

Lqm(Ω) =

{
f ∈ Lq(Ω) |

∫
Ω

f = 0

}
and we set

W s,q
m (Ω) = W s,q(Ω) ∩ Lqm(Ω).

Let k ∈ N. For every 0 < s < k, 1 6 p < ∞, 1 6 q < ∞, we define the Besov spaces by real
interpolation of Sobolev spaces

Bs
q,p(Ω) = (Lq(Ω),W k,q(Ω))s/k,p.

We refer to [23] for more details on Besov spaces. We also need a definition of Sobolev spaces in
the time dependent domain ΩF (t). Let Λ(t, ·) be a C1-diffeomorphism from ΩF (0) onto ΩF (t)
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such that all the derivatives up to second order in space variable and all the derivatives up to
first order in time variable exist are continuous. For all functions v(t, ·) : ΩF (t) 7→ R, we denote
v̂(t, y) = v(t,Λ(t, y)). Then for any 1 < p, q <∞ we define

Lp(0, T ;Lq(ΩF (·))) = {v | v̂ ∈ Lp(0, T ;Lq(ΩF (0)))} ,
Lp(0, T ;W 2,q(ΩF (·))) =

{
v | v̂ ∈ Lp(0, T ;W 2,q(ΩF (0)))

}
,

W 1,p(0, T ;Lq(ΩF (·))) =
{
v | v̂ ∈ W 1,p(0, T ;Lq(ΩF (0)))

}
,

C([0, T ];B2(1−1/p)
q,p (ΩF (·))) =

{
v | v̂ ∈ C([0, T ];B2(1−1/p)

q,p (ΩF (0))
}
.

Theorem 1.4. Let 1 < p, q < ∞ satisfying the conditions
1

p
+

1

2q
6= 1 and

1

p
+

3

2q
6

3

2
. Let

η ∈ (0, η0), where η0 is the constant introduced in Theorem 4.1. Then there exist two constants
δ0 > 0 and C > 0, depending on p, q, η and ΩF (0), such that, for all δ ∈ (0, δ0) and for all

(u0, `0, ω0) ∈ B2(1−1/p)
q,p (ΩF (0))3 × R3 × R3 satisfying the compatibility conditions

div u0 = 0 in ΩF (0),

u0 = `0 + ω0 × y on ∂ΩS(0), u0 = 0 on ∂Ω if
1

p
+

1

2q
< 1

and u0 · n = (`0 + ω0 × y) · n on ∂ΩS(0), u0 · n = 0 on ∂Ω if
1

p
+

1

2q
> 1,

and

‖u0‖B2(1−1/p)
q,p (ΩF (0))3

+ ‖`0‖R3 + ‖ω0‖R3 6 δ, (1.12)

the system (1.2) admits a unique strong solution (u, π, `, ω) in the class of functions satisfying

‖eη(·)u‖Lp(0,∞;W 2,q(ΩF (·)))3 + ‖eη(·)u‖W 1,p(0,∞;Lq(ΩF (·)))3 + ‖eη(·)u‖
L∞(0,∞;B

2(1−1/p)3
q,p (ΩF (·)))

+ ‖eη(·)π‖Lp(0,∞;W 1,q
m (ΩF (·))) + ‖a‖L∞(0,∞;R3) + +‖eη(·)a′‖Lp(0,∞;R3)

+ ‖eη(·)a′′‖Lp(0,∞;R3) + ‖eη(·)ω‖W 1,p(0,∞;R3) 6 Cδ. (1.13)

Moreover, dist (ΩS(t), ∂Ω) > α/2 for all t ∈ [0,∞). In particular, we have

‖u(t, ·)‖
B

2(1−1/p)
q,p (ΩF (t))

+ ‖a′(t)‖R3 + ‖ω(t)‖R3 6 Cδe−ηt.

Remark 1.5. When p = q = 2, the above result was proved in [21, Corollary 9.2].

Remark 1.6. Our proof of Theorem 1.4 also applies to the 2 dimensional case. In this case, we

have to choose 1 < p, q <∞ such that
1

p
+

1

2q
6= 1 and

1

p
+

1

2q
6

3

2
.

The plan of this paper is as follows. In Section 2, we recall the definition and some basic
properties of R-sectorial operators. In Section 3, we prove Theorem 1.3. The stability of the
operator A is proved in Section 4. Maximal Lp-Lq regularity of the linear fluid structure system
on (0,∞) is studied in Section 5. Finally, in Section 6 we prove Theorem 1.4.
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2. Some background on R-sectorial operators

In this section we recall some definitions and basic results concerning maximal regularity
and R-boundedness in Banach spaces. For detailed information on these subjects we refer to
[25, 16, 5] and references therein. For θ ∈ (0, π) we define the sector Σθ in the complex plane
by

Σθ = {λ ∈ C \ {0} | |argλ| < θ}. (2.1)

In order to state Weis’ theorem concerning maximal Lp-regularity of the Cauchy problem
(1.11) we need to introduce so-called UMD spaces.

Definition 2.1. Let X be a Banach space. The Hilbert transform of a function f ∈ S(R;X ),
the Schwartz space of X -valued rapidly decreasing functions, is defined by

Hf(t) =
1

π
lim
ε7→0

∫
|s|>ε

f(t− s)
s

ds, t ∈ R.

A Banach space X is said to be of class HT , if the Hilbert transform is bounded on Lp(R;X )
for some (thus all) 1 < p <∞.

These spaces are also called UMD Banach spaces, where UMD stands for unconditional
martingale differences. Hilbert spaces, all closed subspaces and quotient spaces of Lq(Ω) with
1 < q < ∞ are examples of UMD spaces. We refer the reader to [1, pp. 141-147] for more
information about UMD spaces.

We next introduce the notion of R-bounded family of operators and R-sectoriality of a
densely defined linear operator.

Definition 2.2 (R - bounded family of operators). Let X and Y be Banach spaces. A family
of operators T ⊂ L(X ,Y) is called R- bounded on L(X ,Y), if there exist constants C > 0
and p ∈ [1,∞) such that for every n ∈ N, {Tj}nj=1 ⊂ T , {xj}nj=1 ⊂ X and for all sequences
{rj(·)}nj=1 of independent, symmetric, {−1, 1} valued random variables on [0, 1], we have∥∥∥∥∥

n∑
j=1

rj(·)Tjxj

∥∥∥∥∥
Lp([0,1];Y)

6 C

∥∥∥∥∥
n∑
j=1

rj(·)xj

∥∥∥∥∥
Lp([0,1];X )

.

The smallest such C is called R-bound of T on L(X ,Y) and denoted by RL(X ,Y)(T ).

Definition 2.3 (R-sectorial operator). Let A be a densely defined closed linear operator on a
Banach space X with domain D(A). Then A is said sectorial of angle θ ∈ (0, π) if σ(A) ⊆ Σθ

and for any θ1 > θ the set
{
λ(λI − A)−1 | θ1 6 |arg(λ)| 6 π

}
is bounded. If this set is

R-bounded then A is R-sectorial of angle θ.

We now state several useful properties concerning R-boundedness, which will be used later
on

Proposition 2.4.

(1) If T ⊂ L(X ,Y) is R-bounded then it is uniformly bounded with

sup {‖T‖ | T ∈ T } 6 RL(X ,Y)(T ).
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(2) If X and Y are Hilbert spaces, T ⊂ L(X ,Y) is R-bounded if and only if T is uniformly
bounded.

(3) Let X and Y be Banach spaces and let T and S be R-bounded families on L(X ,Y).
Then T + S is also R-bounded on L(X ,Y), and

RL(X ,Y)(T + S) 6 RL(X ,Y)(T ) +RL(X ,Y)(S).

(4) Let X ,Y and Z be Banach spaces and let T and S be R-bounded families on L(X ,Y)
and L(Y ,Z) respectively. Then ST is R-bounded on L(X ,Z), and

RL(X ,Z)(ST ) 6 RL(X ,Y)(T )RL(Y,Z)(S).

The following characterization of maximal Lp regularity is due to Weis ([25, Theorem 4.2])

Theorem 2.5. Let X be a Banach space of class HT , 1 < p <∞ and let A be a closed, densely
defined unbounded operator with domain D(A). Then A has maximal Lp-regularity on R+ if and
only if

RL(X )

{
λ(λ− A)−1 | λ ∈ Σθ

}
6 C for some θ > π/2. (2.2)

In other words, A has maximal Lp-regularity if and only if −A is R-sectorial of angle θ < π/2.

Next we state a perturbation result due to Kunstmann and Weis [15], which states that
R-boundedness is preserved by A small perturbations.

Proposition 2.6. Let X be a Banach space let A be a closed, densely defined unbounded
operator with domain D(A). Let us assume that there exist γ0 > 0 and θ ∈ (0, π) such that

RL(X )

{
λ(λ− A)−1 | λ ∈ γ0 + Σθ

}
6 C.

Let B be a A-bounded operator with relative bound zero, i.e., for all δ > 0 there exists C(δ) > 0
such that

‖Bz‖ 6 δ‖Az‖+ C(δ)‖z‖ for all z ∈ D(A). (2.3)

Then there there exists µ0 > γ0 such that

RL(X )

{
λ(λ− (A+B))−1 | λ ∈ µ0 + Σθ

}
6 C.

We conclude this section by stating an existence and uniqueness result for the abstract Cauchy
problem (1.11) on R+, which we will use to prove maximal Lp-Lq regularity of the system (1.7)
(see [6, Theorem 2.4]).

Theorem 2.7. Let X be a Banach space of class HT , 1 < p <∞ and let A be a closed, densely
defined unbounded operator with domain D(A). Let us assume that A ∈MRp([0, T ];X ) and the
semigroup generated by A has negative exponential type. Then for every z0 ∈ (X ,D(A))1−1/p,p

and for every f ∈ Lp(0,∞;X ), (1.11) admits a unique strong solution in Lp(0,∞;D(A)) ∩
W 1,p(0,∞;X ). Moreover, there exists a positive constant C such that

‖z‖Lp(0,∞;D(A)) + ‖z‖W 1,p(0,∞;X ) 6 C
(
‖z0‖(X ,D(A))1−1/p,p

+ ‖f‖Lp(0,∞;X )

)
. (2.4)
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3. R-sectoriality of the operator A.

Let us recall the operator A introduced in (1.10). The aim of this section is to prove Theo-
rem 1.3. Due to Theorem 2.5, it is enough to prove the following theorem:

Theorem 3.1. Let 1 < q <∞. There exists µ0 > 0 and θ ∈ (π/2, π) such that µ0 + Σθ ⊂ ρ(A)
and

RL(Hq(Ω))

{
λ(λI − A)−1 | λ ∈ µ0 + Σθ

}
6 C. (3.1)

Let us remark that when q = 2 the above theorem is already proved in [22]. To prove the
above theorem we will first obtain an equivalence formulation of the resolvent equation.

3.1. Reformulation of the resolvent equation. Given λ ∈ C, f ∈ Lq(ΩF (0))3 and (g1, g2) ∈
C3 × C3, we consider the system

λu− ν∆u+∇π = f, div u = 0 in ΩF (0),

u = 0 on ∂Ω,

u = `+ ω × y y ∈ ∂ΩS(0),

λm` = −
∫
∂ΩS(0)

σ(u, π)n dγ + g1, (3.2)

λJ(0)ω = −
∫
∂ΩS(0)

y × σ(u, π)n dγ + g2,

of unknowns (u, π, `, ω). Following [21, 22] we have the following equivalence

Proposition 3.2. Let 1 < q < ∞. Let us assume that f ∈ Lq(ΩF (0)) and (g1, g2) ∈ C3 × C3.
Then (u, π, `, ω) ∈ W 2,q(ΩF (0))3 ×W 1,q

m (ΩF (0))× C3 × C3 is a solution to (3.2) if and only if

(λI − A)v = PF (3.3)

where

v = u1ΩF (0) + (`+ ω × y)1ΩS(0), F = P
(
f1ΩF (0) +

(
m−1g1 + J(0)−1y × g2

)
1ΩS(0)

)
.

Next, we derive another equivalent formulation of the resolvent equation (3.2). In this case,
we do not extend the fluid velocity by the structure velocity everywhere in the domain Ω, rather
we work on the fluid domain ΩF (0). The idea is to eliminate the pressure from both the fluid
and the structure equations. To eliminate the pressure from the fluid equation we use Leray
projector

P : Lq(ΩF (0))3 7→ Vqn(ΩF (0)) :=
{
ϕ ∈ Lq(ΩF (0))3 | div ϕ = 0, ϕ · n = 0 on ∂ΩF (0)

}
.

Note that the projector P is different from the projector P used in (1.10). Following [19],
first, we decompose the fluid velocity into two parts Pu and (I − P)u. Next, we obtain an
expression of pressure, which can be broken down into two parts, one which depends on Pu
and another part which depends on (`, ω). This will allow us to eliminate the pressure term
from the structure equations and rewrite the system (3.2) as an operator equation of (Pu, `, ω).

The advantage of this formulation is that we can prove the R-boundedness of the resolvent
operator just by using the fact that Stokes operator with homogeneous Dirichlet boundary



9

conditions is R-sectorial and a perturbation argument. This idea has been used in several fluid-
solid interaction problems in the Hilbert space setting and when the structure is deformable
and located at the boundary (see, for instance, [20, 17] and references therein).

Let 1 < q < ∞ and q′ denote the conjugate of q, i.e.,
1

q
+

1

q′
= 1. Let n denote the normal

to ∂ΩF (0) exterior to ΩF (0). For 1 < q <∞, we first introduce the space

Wq,div(Ω) =
{
ϕ ∈ Lq(Ω)3 | div ϕ ∈ Lq(Ω)

}
,

equipped with the norm

‖ϕ‖Wq,div(Ω) := ‖ϕ‖Lq(Ω)3 + ‖div ϕ‖Lq(Ω).

It is easy to check that Wq,div(Ω) is a Banach space. We have the following classical lemma:

Lemma 3.3. Let Ω be a bounded domain with smooth boundary. The linear mapping

ϕ 7→ γnϕ := ϕ|∂Ω · n

defined on C∞(Ω)3 can be extended to a continuous and surjective map from Wq,div(Ω) onto
W−1/q,q(∂Ω).

Proof. For proof see [9, Lemma 1]. �

Let us set

Vqn(ΩF (0)) = {ϕ ∈ C∞c (ΩF (0)) | div ϕ = 0}
‖·‖Lq

.

As ΩF (0) is bounded, we actually have

Vqn(ΩF (0)) =
{
ϕ ∈ Lq(ΩF (0))3 | div ϕ = 0, ϕ · n = 0 on ∂ΩF (0)

}
.

We have the following Helmholtz-Weyl decomposition of Lq(ΩF (0))3

Proposition 3.4. The space Lq(ΩF (0))3 admits the following decomposition in a direct sum:

Lq(ΩF (0))3 = Vqn(ΩF (0))⊕Gq(ΩF (0)),

where

Gq(ΩF (0)) =
{
∇ϕ | ϕ ∈ W 1,q(ΩF (0))

}
.

The projection operator from Lq(ΩF (0))3 onto Vqn(ΩF (0)) is denoted by P . The projector P :
Lq(ΩF (0))3 7→ Vqn(ΩF (0)) is defined by

Pu = u−∇ϕ,

where ϕ ∈ W 1,q(ΩF (0)) solves the following Neumann problem

∆ϕ = div u in ΩF (0),
∂ϕ

∂n
= ϕ · n on ∂ΩF (0).

Proof. For the proof of the above result we refer to Section 3 and Theorem 2 of [9]. �

Let us denote by A0 = νP∆, the Stokes operator in Vqn(ΩF (0)) with domain

D(A0) = W 2,q(ΩF (0)) ∩W 1,q
0 (ΩF (0))3 ∩ Vqn(ΩF (0)).
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Proposition 3.5. The Stokes operator −A0 is R-sectorial in Vqn(ΩF (0)) of angle 0. In partic-
ular, there exists θ ∈ (π/2, π) such that

RL(Vq
n(ΩF (0)))

{
λ(λI − A0)−1 | λ ∈ Σθ

}
6 C. (3.4)

Moreover, A0 generates a C0-semigroup of negative type.

Proof. For proof we refer to Theorem 1.4 and Corollary 1.4 of [12]. �

Now we are going to rewrite the first three equations of (3.2) in terms of Pu and (I − P)u.
Let us consider the following problem

−ν∆w +∇ψ = 0, div w = 0, y ∈ ΩF (0),

w = 0, y ∈ ∂Ω,

w = `+ ω × y, y ∈ ∂ΩS(0),∫
ΩF (0)

ψ dy = 0.

(3.5)

Lemma 3.6. Let (`, ω) ∈ C3 × C3 and let {ei} denote the canonical basis in C3. Then the
solution (w, π) of (3.5) can be expressed as follows

w =
3∑
i=1

`iWi +
6∑
i=4

ωi−3Wi, ψ =
3∑
i=1

`iΨi +
6∑
i=4

ωi−3Ψi, (3.6)

where (Wi,Ψi), i = 1, 2, · · · , 6 solves the following system

−ν∆Wi +∇Ψi = 0, divWi = 0, y ∈ ΩF (0),

Wi = 0, y ∈ ∂Ω,

Wi = ei, for i = 1, 2, 3 and Wi = ei−3 × y, for i = 4, 5, 6, y ∈ ∂ΩF (0),∫
ΩF (0)

Ψ dy = 0.

(3.7)

Moreover, 
∫
∂ΩS(0)

σ(w,ψ)n dγ∫
∂ΩS(0)

y × σ(w,ψ)n dγ

 = B
(
`
ω

)
,

where

Bi,j =

∫
ΩF (0)

DWi : DWj. (3.8)

and the matrix B is invertible.

Proof. The expressions of w and π are easy to see. The expression of the matrix B follows easily
by putting the expressions of w and π and by integration by parts. The proof of invertibility
of the matrix B can be found in [14, Chapter 5]. �

Let us introduce the following operators:
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• The Dirichlet lifting operator D ∈ L(C6,W 2,q(ΩF (0))) and Dpr ∈ L(C6,W 1,q
m (ΩF (0)))

defined by

D(`, ω) = w, Dpr(`, ω) = ψ, (3.9)

where (w,ψ) is the solution to the problem (3.5).

• The Neumann operator N ∈ L(W
1−1/q,q
m (∂ΩF (0)),W 2,q

m (ΩF (0))) defined by Nh = ϕ,
where ϕ is the solution to the Neumann problem

∆ϕ = 0 in ΩF (0),
∂ϕ

∂n
= h on ∂ΩF (0). (3.10)

We set

NSh = N(1∂ΩS(0)h) for h ∈ W 1−1/q,q
m (∂ΩS(0)). (3.11)

We now rewrite the equations satisfied by u in system (3.2) as a new system of two equations,
one satisfied by Pu and another by (I −P)u. More precisely, we have the following proposition

Proposition 3.7. Let 1 < q <∞. Let us assume that (f, `, ω) ∈ Vqn(ΩF (0))×C3 ×C3. A pair
(u, π) ∈ W 2,q(ΩF (0))×W 1,q

m (ΩF (0)) satisfies the system
λu− ν∆u+∇π = f, div u = 0, y ∈ ΩF (0),

u = 0 y ∈ ∂Ω,

u = `+ ω × y y ∈ ∂ΩS(0),

(3.12)

if and only if 
λPu− A0Pu+ A0PD(`, ω) = Pf,
(I − P)u = (I − P)D(`, ω)

π = N(ν∆Pu · n)− λNS((`+ ω × y) · n).

(3.13)

Proof. Let (u, π) ∈ W 2,q(ΩF (0))3 ×W 1,q
m (ΩF (0)) satisfies the system (3.12). We set

ũ = u−D(`, ω), π̃ = π −Dpr(`, ω).

The pair (ũ, p̃) satisfies the following system

λũ+ λD(`, ω)− ν∆ũ+∇p = f, div ũ = 0, in ΩF (0),

ũ = 0 on ∂ΩF (0).

Note that ũ ∈ D(A0) and Pũ = ũ. Thus applying the projection P on the above system it is
easy to see that Pu satisfies the following

λPu− A0Pu+ A0PD(`, ω) = Pf.

Since (I − P)ũ = 0, we obtain

(I − P)u = (I − P)(ũ+D(`, ω)) = (I − P)D(`, ω).

Note that, from the expression of P in Proposition 3.4, it follows that ∆(I−P)u = 0 in ΩF (0).
Therefore the first equation of (3.12) can be written as

λu−∆Pu+∇π = f in ΩF (0).
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By applying the divergence and normal trace operators to the above equation, we obtain that
π is the solution of the problem∆π = 0 in ΩF (0),

∂π

∂n
= ν∆Pu · n− λu · n on ∂ΩF (0).

(3.14)

Since div∆Pu = 0 it follows that ν∆Pu · n belongs to W−1/q,q(∂Ω) and satisfies the following
condition

〈ν∆Pu · n, 1〉W−1/q,q ,W 1−1/q′,q′ = 0

Since ΩF (0) is a smooth domain, (3.14) admits a unique solution in W 1,q
m (ΩF (0)) ([8, Theorem

9.2]) and the expression of π in (3.13) follows from the definition of the operators N and NS.
Conversely, let (u, π) ∈ W 2,q(ΩF (0))3 ×W 1,q

m (ΩF (0)) satisfies the system (3.13). Since (I −
P)u = (I − P)D(`, ω) we get ũ := u−D(`, ω) ∈ D(A0). Thus (3.13)1 can be written as

P (λũ− A0ũ) = P(f − λD(`, ω)).

Therefore, there exists π̃ ∈ W 1,q
m (ΩF (0)) such that (ũ, π̃) satisfies

λũ− ν∆ũ+∇π̃ = f − λD(`, ω), div ũ = 0 in ΩF (0), ũ = 0 on ∂ΩF (0).

Then (u, π), with π = π̃ +Dpr(`, ω), satisfies the system (3.12). �

Using the expression of the pressure π obtained in (3.7), we rewrite the equations satisfied
by ` and ω in (3.2) in the form

λm` = −2ν

∫
∂ΩS(0)

ε(u)n dγ +

∫
∂ΩS(0)

πn dγ + g1

= −2ν

[∫
∂ΩS(0)

ε(Pu)n dγ +

∫
∂ΩS(0)

ε((I − P)D(`, ω))n dγ

]
+

∫
∂ΩS(0)

N(∆Pu · n)n dγ − λ
∫
∂ΩS(0)

NS((`+ ω × y) · n)n dγ + g1,

and

J(0)λω = −2ν

[∫
∂ΩS(0)

y × ε(Pu)n dγ +

∫
∂ΩS(0)

y × ε((I − P)D(`, ω))n dγ

]
+

∫
∂ΩS(0)

y ×N(∆Pu · n)n dγ − λ
∫
∂ΩS(0)

y ×NS((`+ ω × y) · n)n dγ + g2.

The above two equations can be written as

λK
(
`
ω

)
= C1Pu+ C2

(
`
ω

)
+

(
g1

g2

)
, (3.15)
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where

K =

(
mI3 0

0 J(0)

)
+ M, M

(
`
ω

)
=


∫
∂ΩS(0)

NS((`+ ω × y) · n)n dγ∫
∂ΩS(0)

y ×NS((`+ ω × y) · n)n dγ

 , (3.16)

C1Pu =

 −2ν

∫
∂ΩS(0)

ε(Pu)n dγ +

∫
∂ΩS(0)

N(∆Pu · n)n dγ

−2ν

∫
∂ΩS(0)

y × ε(Pu) n dγ +

∫
∂ΩS(0)

y ×N(∆Pu · n)n dγ

 , (3.17)

and

C2

(
`
ω

)
=

 −2ν

∫
∂ΩS(0)

ε((I − P)D(`, ω))n dγ

−2ν

∫
∂ΩS(0)

y × ε((I − P)D(`, ω))n dγ

 . (3.18)

In the literature, the matrix M defined above is known as the added mass operator. We are
now going to show that the matrix K is an invertible matrix.

Lemma 3.8. The matrix K defined as in (3.16) is an invertible matrix.

Proof. The proof may be adapted from that of [10, Lemma 4.6] (see also [11, Lemma 4.3]). Let
us briefly explain the idea of the proof. We are going to show that the matrix M is symmetric
and semipositive definite. For that, we first derive an representation formula of the matrix M.
Let us consider the following problem

∆πi = 0 in ΩF (0),
∂πi

∂n
= 0 on ∂Ω,

∂πi

∂n
= ei · n for i = 1, 2, 3 and

∂πi

∂n
= (ei−3 × y) · n for i = 4, 5, 6, y ∈ ∂ΩS(0),

where {ei} denote the canonical basis in C3. Therefore, it is easy to see that

NS((`+ ω × y) · n) =
3∑
i=1

`iπ
i +

6∑
i=4

ωi−3π
i.

We define

mij =


∫
∂ΩS(0)

πinj for 1 6 i 6 6, 1 6 j 6 3,∫
∂ΩS(0)

πi(ej−3 × y) · n for 1 6 i 6 6, 4 6 j 6 6.

One can easily check that, M = (mij)16i,j66. With this representation and Gauss’ theorem, we
can verify that M is symmetric and semipositive definite. �
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Let us set

X = Vqn(ΩF (0))× C3 × C3. (3.19)

and consider the operator AFS : D(AFS) 7→ X defined by

D(AFS) = {(Pu, `, ω) ∈ X | Pu− PD(`, ω) ∈ D(A0)} ,
and

AFS =

(
A0 −A0PD

K−1C1 K−1C2

)
. (3.20)

Combining the above results, below we obtain an equivalence formulation of the system (3.2).

Proposition 3.9. Let 1 < q <∞. Let us assume that (f, g1, g2) ∈ Vqn(ΩF (0))×C3 ×C3. Then
(u, p, `, ω) ∈ W 2,q(ΩF (0))×W 1,q

m (ΩF (0))× C3 × C3 satisfy the system (3.2) if and only if

(λI −AFS)

Pu`
ω

 =

Pfg̃1

g̃2

 , (3.21)

(I − P)u = (I − P)D(`, ω),

π = N(ν∆Pu · n)− λNS((`+ ω × y) · n),

where (g̃1, g̃2)> = K−1(g1, g2)>.

We end this subsection with the following lemma

Lemma 3.10. The map

(Pu, `, ω) 7→ ‖Pu‖W 2,q(ΩF (0)) + ‖`‖C3 + ‖ω‖C3 ,

is a norm on D(AFS) equivalent to the graph norm.

Proof. The proof is similar to that of [20, Proposition 3.3]. �

3.2. R-boundedness of the resolvent operator. In this subsection we are going to prove
Theorem 3.1. In view of Proposition 3.2 and Proposition 3.9, it is enough to prove the following
theorem

Theorem 3.11. Let 1 < q < ∞. There exist µ0 > 0 and θ ∈ (π/2, π) such that µ0 + Σθ ⊂
ρ(AFS) and

RL(X )

{
λ(λI −AFS)−1 | λ ∈ µ0 + Σθ

}
6 C. (3.22)

Proof. We write AFS in the form AFS = ÃFS +BFS where

ÃFS =

(
A0 −A0PD
0 0

)
, BFS =

(
0 0

K−1C1 K−1C2

)
.

We first show that ÃFS with D(ÃFS) = D(AFS) is a R-sectorial operator on X . Observe that

λ(λI − ÃFS)−1 =

(
λ(λI − A0)−1 −(λI − A0)−1A0PD

0 I

)
.
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Since

−(λI − A0)−1A0PD = −λ(λI − A0)−1PD + PD,
we get

λ(λI − ÃFS)−1 =

(
λ(λI − A0)−1 −λ(λI − A0)−1PD + PD

0 I

)
.

Therefore by Proposition 3.5 and Proposition 2.4, there exists θ ∈ (π/2, π) such that

RL(X )

{
λ(λI − ÃFS)−1 | λ ∈ Σθ

}
6 C. (3.23)

Let us now show that, C1 ∈ L(D(AFS),C3 × C3). By Lemma 3.10, for any (Pu, `, ω) ∈
D(AFS) we have (Pu, `, ω) ∈ W 2,q(ΩF (0)) × C3 × C3. Therefore, by trace theorem ε(Pu)n ∈
W 1−1/q,q(∂ΩS(0)) and hence

∫
∂ΩS(0)

ε(Pu)n dγ ∈ C3. On the other hand, ∆Pu ∈ Lq(ΩF (0))

and div ∆Pu = 0. Therefore by Lemma 3.3, the term ∆Pu ·n belongs to W−1/q,q(∂ΩF (0)) and
satisfies the following condition

〈∆Pu · n, 1〉W−1/q,q ,W 1−1/q′,q′ = 0.

Thus by [8, Theorem 9.2], N(∆Pu ·n) ∈ W 1,q(ΩF (0)) and

∫
∂ΩS(0)

N(∆Pu ·n)n dγ ∈ C3. Other

terms of the operator C1 can be checked in a similar manner. Thus C1 ∈ L(D(AFS),C3 × C3).
Similarly, one can easily verify that C2 ∈ L(C3 × C3,C3 × C3). Therefore the operator BFS

with D(BFS) = D(AFS) is a finite rank operator. By [7, Chapter III, Lemma 2.16], BFS is a

ÃFS-bounded operator with relative bound zero. Finally using Proposition 2.6 we conclude the
proof of the theorem. �

4. Exponential stability of linear fluid-structure interaction operator

The aim of this section is to show that the operator A or equivalently the operator AFS
generates an exponentially stable semigroup. More precisely, we prove:

Theorem 4.1. Let 1 < q < ∞. The operator AFS generates an exponentially stable semi-
group

(
etAFS

)
t>0

on X . Equivalently, the operator A generates an exponentially stable semigroup(
etA
)
t>0

on Hq(Ω). In other words, there exist constants C > 0 and η0 > 0 such that∥∥etAFS(u0, `0, ω0)>
∥∥
X 6 Ce−η0t

∥∥(u0, `0, ω0)>
∥∥
X . (4.1)

To prove this theorem we first show that the set {λ ∈ C | Reλ > 0}, i.e, the entire right half
plane is contained in the resolvent set of AFS .

Theorem 4.2. Assume 1 < q < ∞ and λ ∈ C, with Reλ > 0. Then for any (f, g1, g2) ∈ X ,
the system (3.2) admits a unique solution satisfying the estimate

‖u‖W 2,q(ΩF (0))3 + ‖p‖W 1,q
m (ΩF (0)) + ‖`‖C3 + ‖ω‖C3 6 C‖(f, g1, g2)‖X . (4.2)
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Proof. Let us recall, by Proposition 3.9, the system (3.2) is equivalent to

(λI −AFS)

Pu`
ω

 =

Pfg̃1

g̃2

 ,

(I − P)u = (I − P)D(`, ω), (4.3)

π = N(ν∆Pu · n)− λNS((`+ ω × y) · n),

where (g̃1, g̃2)> = K−1(g1, g2)>. By Theorem 3.11, there exists λ̃ > µ0 such that (λ̃I −AFS) is
invertible. Consequently, (4.3) can be written asPu`

ω

 =
[
I + (λ− λ̃)(λ̃−AFS)−1

]−1 (
λ̃−AFS

)−1

Pfg̃1

g̃2

 ,

(I − P)u = (I − P)D(`, ω), (4.4)

π = N(ν∆Pu · n)− λNS((`+ ω × y) · n).

Since
(
λ̃−AFS

)−1

is a compact operator, in view of Fredholm alternative theorem, the ex-

istence and uniqueness of system (4.4) are equivalent. Therefore, in the sequel we show the
uniqueness of the solutions (3.2). Once we prove the uniqueness, the estimate (4.2) follows easily
from (4.4). Let (u, π, `, ω) ∈ W 2,q(ΩF (0))3 ×W 1,q

m (ΩF (0))×C3 ×C3 satisfies the homogeneous
system

λu− ν∆u+∇π = 0, div u = 0, in ΩF (0),

u = 0 on ∂Ω,

u = `+ ω × y on ∂ΩS(0),

λm` = −
∫
∂ΩS(0)

σ(u, π)n dγ, (4.5)

λJ(0)ω = −
∫
∂ΩS(0)

y × σ(u, π)n dγ.

We first show that (u, π) ∈ W 2,2(ΩF (0))3 ×W 1,2
m (ΩF (0)). If q > 2, this follows from Hölder’s

estimate. Assume 1 < q < 2. In that case, we can rewrite (4.5) as follows

(λ̃I −AFS)

Pu`
ω

 = (λ̃− λ)

Pu`
ω

 ,

(I − P)u = (I − P)D(`, ω), (4.6)

π = N(ν∆Pu · n)− λNS((`+ ω × y) · n).

SinceW 2,q(ΩF (0)) ⊂ L2(ΩF (0)) and (λ̃I−AFS) is invertible, we deduce that (u, π) ∈ W 2,2(ΩF (0))3×
W 1,2
m (ΩF (0)).
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Multiplying (4.5)1 by u, (4.5)4 by ` and (4.5)5 by ω, we obtain after integration by parts,

λ

∫
ΩF (0)

|u|2 dy + 2ν

∫
ΩF (0)

ε(u) : ε(u) dy + λm|`|2 + λJ(0)ω · ω = 0.

Taking real part of the above equation we obtain

Reλ

∫
ΩF (0)

|u|2 dy + 2ν

∫
ΩF (0)

|ε(u)|2 dy + Reλm|`|2 + Re(λJ(0)ω · ω) = 0.

Since Reλ > 0, we have

2ν

∫
ΩF (0)

|ε(u)|2 dy = 0.

The above estimate and the fact that u = 0 on ∂Ω imply that u = 0. Next, using u = `+ω× y
for y ∈ ∂ΩS(0), we get ` = ω = 0. Finally, as π ∈ W 1,q

m (ΩF (0)), we have π = 0. �

Proof of Theorem 4.1. From Theorem 4.2, we have

{λ ∈ C | Re λ > 0} ⊂ ρ(AFS).

Also, by Theorem 3.11 we have the existence of a constant C > 0 such that for any λ ∈ µ0 + Σθ

with θ ∈ (π/2, π), ∥∥(λ−AFS)−1
∥∥
L(X )
6 C.

Since {λ ∈ C | Re λ > 0} \ [µ0 + Σθ] is a compact set, we deduce the existence of a constant
C > 0 such that for any λ ∈ C with Re λ > 0∥∥(λ−AFS)−1

∥∥
L(X )
6 C.

This yields that

{λ ∈ C | Re λ > −η} ⊂ ρ(AFS),

for some η > 0. As AFS generates an analytic semigroup, applying Proposition 2.9 of [3, Part
II, Chapter 1, pp 120], we obtain exponential stability of AFS in X . �

5. Maximal Lp-Lq regularity of the system (1.7)

In this section we prove the maximal Lp-Lq regularity of a version of the system the (1.7)
with non zero divergence. Treating a non zero divergence term will be useful in the next section
in order to tackle some terms coming from a simple change of variables. More precisely, we
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consider the system

∂tu− ν∆u+∇π = f, div u = div h t ∈ (0,∞), y ∈ ΩF (0),

u = 0 t ∈ (0,∞), y ∈ ∂Ω,

u = `+ ω × y t ∈ (0,∞), y ∈ ∂ΩS(0),

m
d

dt
` = −

∫
∂ΩS(0)

σ(u, π)n dγ + g1 t ∈ (0,∞), (5.1)

J(0)
d

dt
ω = −

∫
∂ΩS(0)

y × σ(u, π)n dγ + g2 t ∈ (0,∞),

u(0, y) = u0(y) y ∈ ΩF (0),

`(0) = `0, ω(0) = ω0.

We set

W 2,1
q,p (QF

∞) = Lp(0,∞;W 2,q(ΩF (0))) ∩W 1,p(0,∞;Lq(ΩF (0))),

with

‖u‖W 2,1
q,p (QF

∞) := ‖u‖Lp(0,∞;W 2,q(ΩF (0))) + ‖u‖W 1,p(0,∞;Lq(ΩF (0))).

We prove the following theorem

Theorem 5.1. Let 1 < p, q <∞ such that
1

p
+

1

2q
6= 1. Let η ∈ [0, η0), where η0 is the constant

introduced in Theorem 4.1. Let us also assume that `0 ∈ R3, ω0 ∈ R3 and u0 ∈ B2(1−1/p)
q,p (ΩF (0))

satisfying the compatibility conditions

div u0 = 0 in ΩF (0),

u0 = `0 + ω0 × y on ∂ΩS(0), u0 = 0 on ∂Ω if
1

p
+

1

2q
< 1 (5.2)

and u0 · n = (`0 + ω0 × y) · n on ∂ΩS(0), u0 · n = 0 on ∂Ω if
1

p
+

1

2q
> 1.

Then for any eηtf ∈ Lp(0,∞;Lq(ΩF (0)))3, eηth ∈ W 2,1
q,p (QF

∞)3, eηtg1 ∈ Lp(0,∞;R3) and eηtg2 ∈
Lp(0,∞;R3) satisfying

h(0, y) = 0 for all (t, y) ∈ (0,∞)× ΩF (0) and h|∂ΩF (0) = 0,

the system (1.7) admits a unique strong solution

eηtu ∈ Lp(0,∞;W 2,q(ΩF (0))3) ∩W 1,p(0,∞;Lq(ΩF (0))3)

eηtπ ∈ Lp(0,∞;W 1,q
m (ΩF (0)))

eηt` ∈ W 1,p(0,∞;R3), eηtω ∈ W 1,p(0,∞;R3).



19

Moreover, there exists a constant CL > 0 depending only on Ω, p and q such that

‖eη(·)u‖W 2,1
q,p (QF

∞)3 + ‖eη(·)π‖Lp(0,∞;W 1,q(ΩF (0))) + ‖eη(·)`‖Lp(0,∞;R3)

+ ‖eη(·)ω‖Lp(0,∞;R3) 6 CL

(
‖u0‖B2(1−1/p)

q,p (ΩF (0))
+ ‖`0‖R3 + ‖ω0‖R3

+ ‖eη(·)f‖Lp(0,∞;Lq(ΩF (0))) + ‖eη(·)h‖W 2,1
q,p (QF

∞)3 + ‖eη(·)g1‖Lp(0,∞;R3) + ‖eη(·)g2‖Lp(0,∞;R3)

)
. (5.3)

Proof. We first consider the case η = 0. Let us set v = u − h. Then (v, π, `, ω) satisfies the
following system

∂tv − ν∆v +∇π = F, div v = 0 in (0,∞)× ΩF (0),

v = 0 on (0,∞)× ∂Ω,

v = `+ ω × y on (0,∞)× ∂ΩS(0),

m
d

dt
` = −

∫
∂ΩS(0)

σ(v, π)n dγ +G1 t ∈ (0,∞), (5.4)

J(0)
d

dt
ω = −

∫
∂ΩS(0)

y × σ(v, π)n dγ +G2 t ∈ (0,∞),

v(0, y) = u0(y) in ΩF (0),

`(0) = `0, ω(0) = ω0,

where

F = f − ∂th+ ν∆h, G1 = g1 −
∫
∂ΩS(0)

ε(h)n dγ, G2 = g2 −
∫
∂ΩS(0)

y × ε(h)n dγ.

Proceeding as Proposition 3.9, it is easy to see that, the above system is equivalent to
d

dt

Pv`
ω

 = AFS

Pv`
ω

+

PFG̃1

G̃2

 ,

Pv(0)

`(0)

ω(0)

 =

Pu0

`0

ω0

 ,

(I − P)v = (I − P)D(`, ω),

(5.5)

where

G̃1 =

∫
∂ΩS(0)

N((F −∇ϕ) · n)n dγ +G1, G̃2 =

∫
∂ΩS(0)

y ×N((F −∇ϕ) · n)n dγ +G2,

and ϕ is the solution of the problem

−∆ϕ = div F in ΩF (0), ϕ = 0 on ∂ΩF (0).

(see also [20, Section 4.2] or [17, Proposition 3.7]). The operator AFS is defined as in (3.20).
Let us recall that the operator AFS is an R-sectorial operator in X (Theorem 3.11). One can

easily verify that, under the hypothesis of the theorem, (PF, G̃1, G̃2) ∈ Lp(0,∞;X ) and

‖(PF, G̃1, G̃2)‖Lp(0,∞;X ) 6 C
(
‖f‖Lp(0,∞;Lq(ΩF (0))) + ‖h‖W 2,1

q,p (QF
∞)3

+ ‖g1‖Lp(0,∞;R3) + ‖g2‖Lp(0,∞;R3)

)
.
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From [2, Theorem 3.4], we obtain (Pu0, `0, ω0) ∈ (X ,D(AFS))1−1/p,p. Then by Theorem 2.7,
the system (5.5) admits a unique solution (Pv, `, ω) ∈ Lp(0,∞;D(AFS))∩W 1,p(0,∞;X ). From
the expression of (I−P)v together with Lemma 3.10, one can easily check that v ∈ W 2,1

q,p (QF
∞)3

and thus u ∈ W 2,1
q,p (QF

∞)3. The estimate (5.3) is easy to obtain.
The case η > 0 can be reduced to the previous case by multiplying all the function by eηt and

using the fact that AFS + η generates an C0-semigroup of negative type for all η ∈ (0, η0). �

6. Global in time existence and uniqueness

In this section we are going to prove Theorem 1.4. As the domain of the fluid equation for
the full nonlinear problem is also a unknown of the problem, we first rewrite the system in a
fixed spatial domain.

6.1. Change of variables. We describe a change of variable to rewrite the system (1.2) in a
fixed spatial domain. We follow the approach of [4]. Let us assume that (1.1) is satisfied and
we also assume

‖a‖L∞(0,∞;R3) + ‖Q− I3‖L∞(0,∞;R3×3)diam(ΩS(0)) 6
α

2
. (6.1)

With the above choice we have dist (ΩS(t), ∂Ω) > α/2 for all t ∈ [0,∞). We consider a cut-off
function ψ which satisfies

ψ ∈ C∞(Ω), ψ = 1 if dist(x, ∂Ω) > α/4, ψ = 0 if dist(x, ∂Ω) < α/8. (6.2)

We introduce a function ξ defined in (0,∞)× Ω by

ξ(t, x) = a′(t) + (x− a(t)) +
|x− a(t)|2

2
ω(t)

and Λ in (0,∞)× Ω by

Λ(t, x) = ψ(x) (a′(t) + ω(t)× (x− a(t)) +


∂ψ

∂x2

(x)ξ3(t, x)− ∂ψ

∂x3

(x)ξ2(t, x)

∂ψ

∂x3

(x)ξ1(t, x)− ∂ψ

∂x1

(x)ξ3(t, x)

∂ψ

∂x1

(x)ξ2(t, x)− ∂ψ

∂x2

(x)ξ1(t, x)

 .

With the above definitions, it is easy to see that Λ satisfies the following lemma

Lemma 6.1. Let us assume that a ∈ W 2,p(0,∞) and ω ∈ W 1,p(0,∞). Let Λ be defined as
above. Then we have

• Λ(t, x) = 0 for all t ∈ [0,∞) and for all x such that dist(x, ∂Ω) < α/8.
• divΛ(t, x) = 0 for all t ∈ [0,∞) and x ∈ Ω.
• Λ(t, x) = a′(t) + ω(t)× (x− a(t)) for all t ∈ [0,∞) and x ∈ ΩS(t).
• Λ ∈ C([0,∞) × Ω;R3). Moreover, for all t ∈ [0,∞), Λ(t, ·) is a C∞ function for all
x ∈ Ω, the function Λ(·, x) ∈ W 1,p(0,∞;R3).
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Next we consider the characteristic X associated to the flow Λ, that is the solution of the
Cauchy problem

∂tX(t, y) = Λ(t,X(t, y)) (t > 0),

X(0, y) = y ∈ Ω. (6.3)

We have the following lemma

Lemma 6.2. For all y ∈ Ω, the initial value problem (6.3) admits a unique solution X(·, y) :
[0,∞) 7→ R3, which is a C1 function in [0,∞). Furthermore X satisfies the following properties

• For any t ∈ [0,∞), X(t, ·) is a C1- diffeomorphism from Ω onto Ω and ΩF (0) onto
ΩF (t).
• For all y ∈ Ω and t ∈ [0,∞), we have

det ∇X(t, ·) = 1.

• For each t > 0, we denote by Y (t, ·) = [X(t, ·)]−1 the inverse of X(t, ·).

Proof. See [4, Lemma 2.2]. �

We consider the following change of variables

ũ(t, y) = Q−1(t)u(t,X(t, y)), π̃(t, y) = π(t,X(t, y)) (6.4)˜̀(t) = Q−1(t)ȧ(t), ω̃(t) = Q−1(t)ω(t), (6.5)

for (t, y) ∈ (0,∞)× ΩF (0).

Then (ũ, p̃, ˜̀, ω̃) satisfies the following system

∂tũ− ν∆ũ+∇p̃ = F , div u = div H, t ∈ (0,∞), y ∈ ΩF (0),

ũ = 0, t ∈ (0,∞), y ∈ ∂Ω,

ũ = ˜̀+ ω̃ × y, t ∈ (0,∞), y ∈ ∂ΩS(0),

m˜̀′ = −∫
∂ΩS(0)

σ(ũ, p̃)n dγ + G1, t ∈ (0,∞), (6.6)

J(0)ω̃′ = −
∫
∂ΩS(0)

y × σ(ũ, p̃)n dγ + G2, t ∈ (0,∞),

u(0, y) = u0(y) y ∈ ΩF (0),

`(0) = `0, ω(0) = ω0,

where

Q̇ = QA(ω̃), Q(0) = I3, (6.7)

is the rotation matrix of the solid at instant t,

X(t, y) = y +

∫ t

0

Λ(s,X(s, y)) ds, and ∇Y (t,X(t, y)) = [∇X]−1(t, y), (6.8)

for every y ∈ ΩF (0) and t > 0. Using the notation

Z(t, y) = (Zi,j)16i,j63 = [∇X]−1(t, y) (t > 0, y ∈ ΩF (0)), (6.9)
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the remaining terms in (6.6) are defined by

Fi(ũ, π̃, ˜̀, ω̃) = −[(Q− I3)∂tũ]i − (ω ×Qũ)i + ∂tX · ZT∇(Qũ)i − ũ · ZT∇(Qũ)i (6.10)

+ ν
∑
l,j,k

∂2(Qũ)i
∂yl∂yk

(Zk,j − δk,j)Zl,j + ν
∑
l,k

∂2(Qũ)i
∂yl∂yk

(Zl,k − δl,k)

+ ν [(Q− I)∆ũ]i + ν
∑
l,j,k

Zl,j
∂(Qũ)i
∂yk

∂Zk,j
∂yl

−
(
(Z> − I3)∇p̃

)
i
,

H(ũ, π̃, ˜̀, ω̃) = (I3 − [ZQ]T )ũ, (6.11)

G1(˜̀, ω̃) = −m(ω̃ × ˜̀), G2(˜̀, ω̃) = J(0)ω̃ × ω̃. (6.12)

6.2. Estimate of nonlinear terms. In this section, we are going to estimate the nonlinear
terms F ,H,G1 and G2 defined as in (6.10) - (6.12).

Throughout this section we assume 1 < p, q < ∞ satisfying the conditions
1

p
+

1

2q
6= 1 and

1

p
+

3

2q
6

3

2
. Let p′ denote the conjugate of p, i.e.,

1

p
+

1

p′
= 1. Let us fix η ∈ (0, η0), where η0

is the constant introduced in Theorem 4.1 and we introduce the following ball

Sγ =
{

(ũ, π̃, ˜̀, ω̃) | ρ̃(t, y) =
∥∥∥(ũ, π̃, ˜̀, ω̃)

∥∥∥
S
6 γ

}
,

where∥∥∥(ũ, p̃, ˜̀, ω̃)
∥∥∥
S

:= ‖eη(·)ũ‖Lp(0,∞;W 2,q(ΩF (0)))3 + ‖eη(·)ũ‖W 1,p(0,∞;Lq(ΩF (0)))3

+ ‖eη(·)p̃‖Lp(0,∞;W 1,q(ΩF (0))) + ‖eη(·)˜̀‖W 1,p(0,∞;R3) + ‖eη(·)ω̃‖W 1,p(0,∞;R3). (6.13)

Our aim is to estimate the nonlinear terms in (6.10) - (6.12).

Proposition 6.3. Let us assume 1 < p, q < ∞ satisfying the condition
1

p
+

3

2q
6

3

2
. There

exist constants γ0 ∈ (0, 1) and CN > 0 both depending only on p, q, η and ΩF (0) such that for

every γ ∈ (0, γ0) and for every (ũ, π̃, ˜̀, ω̃) ∈ Sγ, we have

‖eη(·)F‖Lp(0,∞;Lq(ΩF (0))) + ‖eη(·)H‖W 2,1
q,p (Q∞F )

+ ‖eη(·)G1‖Lp(0,∞;R3) + ‖eη(·)G2‖Lp(0,∞;R3) 6 CNγ
2. (6.14)

Proof. The constants appearing in this proof will be denoted by C and depends only on p, q, η
and ΩF (0). Let us first show that, there exists γ0 ∈ (0, 1), such that, for every γ ∈ (0, γ0) and

for every (ũ, π̃, ˜̀, ω̃) ∈ Sγ the condition (6.1) is verified.
The solution of (6.7) satisfies Q ∈ SO(3) and thus |Q(t)| = 1 for all t > 0. We can rewrite Q

as follows

Q(t) = I +

∫ t

0

e−ηseηsω̃(s)×Q(s) ds.
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Therefore

‖Q− I3‖L∞(0,∞;R3×3) 6
∫ ∞

0

e−ηseηs|ω̃(s)| ds

6

(∫ ∞
0

e−p
′ηt dt

)1/p′

‖eη(·)ω̃‖Lp(0,∞;R3) 6

(
1

p′η

)1/p′

γ. (6.15)

Similarly,

‖a‖L∞(0,∞;R3) 6
∫ ∞

0

e−ηteηt|Q(s)||˜̀(t)| dt 6 ( 1

p′η

)1/p′

γ. (6.16)

Combining (6.15) and (6.16), we get

‖a‖L∞(0,∞;R3) + ‖Q− I3‖L∞(0,∞;R3×3)diam(ΩS(0)) 6 γ

(
1

p′η

)1/p′

(1 + diam(ΩS(0))).

Let us set

γ0 = min

{
1,

α

2Cp,η(1 + diam(ΩF (0)))

}
, with Cp,η =

(
1

p′η

)1/p′

. (6.17)

With the above choice of γ0, we can easily verify the condition (6.1).
Let X be defined as in (6.8). Differentiating (6.8) with respect to y we obtain

∇X(t, y) = I3 +

∫ t

0

∇Λ(s,X(s, y))∇X(s, y) ds

From the definition of Λ and X we obtain

‖∇X(t, ·)‖C2(Ω)

6 1 + C

∫ t

0

e−ηseηs
(
|ω̃(s) + |˜̀(s)|) ‖∇X(s, ·)‖C∞(Ω) ds

6 1 + C
(
‖eη(·)˜̀‖L∞(0,∞;R3) + ‖eη(·)ω̃‖L∞(0,∞;R3)

)∫ t

0

e−ηs‖∇X(s, ·)‖C2(Ω) ds

6 1 + C

∫ t

0

e−ηs‖∇X(s, ·)‖C2(Ω) ds,

By Gronwall’s inequality

‖∇X(t, ·)‖C2(Ω) 6 exp

(
C

∫ t

0

e−ηs ds

)
6 eC/η for all t ∈ (0,∞).

With the above estimate we obtain

‖∇X(t, ·)− I3‖L∞(0,∞;C2(Ω)) 6 C

∫ ∞
0

e−ηseηs
(
‖ω̃(s)‖R3 + ‖˜̀(s)‖R3

)
ds 6 Cγ. (6.18)

It is also easy to see that

‖Cof∇X‖L∞(0,∞;C2(Ω)) 6 C.
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From Lemma 6.2, we have det∇X(t, y) = 1 for all t > 0 and y ∈ Ω. Thus from the relation

Z = [∇X]−1 =
1

det∇X
Cof∇X,

we obtain

‖Z‖L∞(0,∞;C2(Ω)) 6 C. (6.19)

Using the above estimate and (6.18), we get

‖Z − I3‖L∞(0,∞;C2(Ω)) 6 ‖Z‖L∞(0,∞;C2(Ω))‖∇X − I3‖L∞(0,∞;C2(Ω)) 6 Cγ. (6.20)

In a similar manner we can obtain the following estimates

‖∂tX‖L∞((0,∞)×ΩF (0)) 6 Cγ, ‖∂tZ‖L∞((0,∞)×ΩF (0)) 6 Cγ,

‖ZQ− I3‖L∞(0,∞;C2(Ω)) 6 Cγ. (6.21)

We are now in a position to estimate the nonlinear terms.
Estimate of F .

‖eη(·)F‖Lp(0,∞;Lq(ΩF (0))) 6 Cγ2. (6.22)

•Estimate of first, second and third term of F : Using (6.15), (6.19) and (6.21) we have∥∥∥eη(·)
(
− [(Q− I3)∂tũ]i − (ω ×Qũ)i + ∂tX · ZT∇(Qũ)i

)∥∥∥
Lp(0,∞;Lq(ΩF (0)))

6 C
(
‖Q− I3‖L∞(0,∞;R3×3) + ‖ω̃‖L∞(0,∞;R3) + ‖∂tX‖L∞((0,∞)×ΩF (0))

)
‖eη(·)ũ‖W 2,1

q,p (Q∞F )

6 Cγ2.

•Estimate of fourth term of F : By Hölder’s inequality and using (6.19), we obtain

‖eη(·)ũ · ZT∇(Qũ)i‖Lp(0,∞;Lq(ΩF (0)))

6 C‖eη(·)ũ · ∇ũi‖Lp(0,∞;Lq(ΩF (0)))

6 C‖eη(·)ũ‖L3p(0,∞;L3q(ΩF (0)))‖∇ũi‖L3p/2(0,∞;L3q/2(ΩF (0))).

Since
1

p
+

3

2q
6

3

2
, one has the following embeddings (see for example [11, Proposition 4.3] )

W 2,1
q,p (Q∞F ) ↪→ L3p(0,∞;L3q(ΩF (0))) and W 2,1

q,p (Q∞F ) ↪→ L3p/2(0,∞;W 1+3q/2(ΩF (0))).

Therefore, using the above embeddings we obtain

‖eη(·)ũ · ZT∇(Qũ)i‖Lp(0,∞;Lq(ΩF (0))) 6 Cγ2

•Estimate of fifth term of F(estimates of remaining terms of F are similar) : Using (6.19) and
(6.20) we have ∥∥∥∥∥νeη(·)

∑
l,j,k

∂2(Qũ)i
∂yl∂yk

(Zk,j − δk,j)Zl,j

∥∥∥∥∥
Lp(0,∞;Lq(ΩF (0)))

6 C‖Z − I3‖L∞(0,∞;C2(Ω))‖eη(·)ũ‖W 2,1
q,p (Q∞F ) 6 Cγ2.
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Estimate of H.

‖eη(·)H‖W 2,1
q,p (Q∞F ) 6 Cγ2. (6.23)

Using (6.20) and (6.21), we obtain

‖eη(·)(I3 − [ZQ]T )ũ‖W 2,1
q,p (Q∞F )

6 C
(
‖ZQ− I3‖L∞(0,∞;C2(Ω)) + ‖∂tZ‖L∞((0,∞)×ΩF (0))

+ ‖∂tQ‖L∞(0,∞;R3×R3)

)
‖eη(·)ũ‖W 2,1

q,p (Q∞F )

6 Cγ2.

Estimate of G1 and G2 : From the expressions of G1 and G2 it is easy to see that

‖eη(·)G1‖Lp(0,∞;R3) + ‖eη(·)G2‖Lp(0,∞;R3) 6 Cγ2. (6.24)

Combining (6.22) - (6.24), we obtain (6.14). �

Proposition 6.4. Let us assume 1 < p, q < ∞ satisfying the condition
1

p
+

3

2q
6

3

2
. Let γ0

is defined as in (6.17). There exist constant Clip > 0 depending only on p, q, η and ΩF (0) such

that for every γ ∈ (0, γ0) and for every (ũj, π̃j, ˜̀j, ω̃j) ∈ Sγ, j = 1, 2 we have

‖eη(·)F(ũ1, π̃1, ˜̀1, ω̃1)− eη(·)F(ũ2, π̃2, ˜̀2, ω̃2)‖Lp(0,∞;Lq(ΩF (0)))

+ ‖eη(·)H(ũ1, π̃1, ˜̀1, ω̃1)− eη(·)H(ũ2, π̃2, ˜̀2, ω̃2)‖W 2,1
q,p (Q∞F )

+ ‖eη(·)G1(˜̀1, ω̃1)− eη(·)G1(˜̀2, ω̃2)‖Lp(0,∞;R3) + ‖eη(·)G2(˜̀1, ω̃1)− eη(·)G2(˜̀2, ω̃2)‖Lp(0,∞;R3)

6 Clipγ
∥∥∥(ũ1, π̃1, ˜̀1, ω̃1)− (ũ2, π̃2, ˜̀2, ω̃2)

∥∥∥
S

(6.25)

Proof. The proof is similar to the proof of Proposition 6.3. �

6.3. Proof of Theorem 1.4. At first we prove global existence and uniqueness theorem for
the transformed system (6.6) -(6.12) under the smallness assumption on the initial data. More
precisely we prove the following theorem

Theorem 6.5. Let 1 < p, q < ∞ satisfying the conditions
1

p
+

1

2q
6= 1 and

1

p
+

3

2q
6

3

2
.

Let η ∈ (0, η0), where η0 is the constant introduced in Theorem 4.1. There exist a constant
γ̃ > 0 depending only on p, q, η and ΩF (0) such that, for all γ ∈ (0, γ̃) and for all (u0, `0, ω0) ∈
B

2(1−1/p)
q,p (ΩF (0))× R3 × R3 satisfying the compatibility conditions

div u0 = 0 in ΩF (0),

u0 = `0 + ω0 × y on ∂ΩS(0), u0 = 0 on ∂Ω if
1

p
+

1

2q
< 1

and u0 · n = (`0 + ω0 × y) · n on ∂ΩS(0), u0 · n = 0 on ∂Ω if
1

p
+

1

2q
> 1,
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and

‖u0‖B2(1−1/p)
q,p (ΩF (0))

+ ‖`0‖R3 + ‖ω0‖R3 6
γ

2CL
, (6.26)

where CL is the continuity constant appear in (5.3), the system (6.6) -(6.12) admits a unique

strong solution (ũ, π̃, ˜̀, ω̃) such that ∥∥∥(ũ, π̃, ˜̀, ω̃)
∥∥∥
S
6 γ. (6.27)

Proof. Let us set

γ̃ = min

{
γ0,

1

2CLCN
,

1

2CLClip

}
(6.28)

where γ0 is defined as in (6.17) and CL, CN and Clip are the constants appearing Theorem 5.1,
Proposition 6.3 and Proposition 6.4 respectively. Let us choose γ ∈ (0, γ̃) and (v, ϕ, κ, τ) ∈ Sγ.
We consider the following problem

∂tũ− ν∆ũ+∇π̃ = F(v, ϕ, κ, τ), div u = div H(v, ϕ, κ, τ), t ∈ (0,∞), y ∈ ΩF (0),

ũ = 0, t ∈ (0,∞), y ∈ ∂Ω,

ũ = ˜̀+ ω̃ × y, t ∈ (0,∞), y ∈ ∂ΩS(0),

m˜̀′ = −∫
∂ΩS(0)

σ(ũ, π̃)n dγ + G1(κ, τ), t ∈ (0,∞), (6.29)

J(0)ω̃′ = −
∫
∂ΩS(0)

y × σ(ũ, π̃)n dγ + G2(κ, τ), t ∈ (0,∞),

u(0, y) = u0(y), y ∈ ΩF (0),

`(0) = `0, ω(0) = ω0.

We are going to show the mapping

N : (v, ϕ, κ, τ) 7→ (ũ, π̃, ˜̀, ω̃)

where (ũ, π̃, ˜̀, ω̃) is the solution to the system (6.29), is a contraction in Sγ. As (v, ϕ, κ, τ) ∈ Sγ,
we can apply Theorem 5.1 and Proposition 6.3 to the system (6.29) and using (6.26) and
definition of γ̃ we obtain

‖N (v, ϕ, κ, τ)‖S
6 CL

(
‖u0‖B2(1−1/p)

q,p (ΩF (0))
+ ‖`0‖R3 + ‖ω0‖R3

)
+ CLCNγ

2

6 γ.

Thus N is a mapping from Sγ to itself for all γ ∈ (0, γ̃). Next, using Theorem 5.1 and Propo-
sition 6.4, we obtain ∥∥N (v1, ϕ1, κ1, τ 1)−N (v2, ϕ2, κ2, τ 2)

∥∥
S

6 CLCNγ
∥∥(v1, ϕ1, κ1, τ 1)− (v2, ϕ2, κ2, τ 2)

∥∥
S ,
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for all (vj, ϕj, κj, τ j), j = 1, 2. Again using the definition of γ̃ one can easily verify that N
is a strict contraction of Sγ for any γ ∈ (0, γ̃), which implies our existence and uniqueness
result. �

Proof of Theorem 1.4: Let (ũ, π̃, ˜̀, ω̃) be the solution of the system (6.6) -(6.12), constructed
in Theorem 6.5. Since γ < γ̃, (6.1) is verified and X(t, ·) is a well defined mapping and it is a
C1-diffeomorphism from ΩF (0) into ΩF (t). Therefore, there is a unique Y (t, ·) from ΩF (t) into
ΩF (0) such that Y (t, ·) = X(t, ·)−1. We set, for all t > 0 and x ∈ ΩF (t)

u(t, x) = ũ(t, Y (t, x)), π(t, x) = π̃(t, Y (t, x)),

a′(t) = Q(t)˜̀(t) and ω(t) = Q(t)ω̃(t).

We can easily check that (u, π, a, ω) satisfies the original system (1.2) satisfying (1.13).
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