Tactics to Directly Map CNN graphs on Embedded FPGAs

Abstract : Deep Convolutional Neural Networks (CNNs) are the state-of-the-art in image classification. Since CNN feed forward propagation involves highly regular parallel computation, it benefits from a significant speed-up when running on fine grain parallel programmable logic devices. As a consequence, several studies have proposed FPGA-based accelerators for CNNs. However, because of the large computational power required by CNNs, none of the previous studies has proposed a direct mapping of the CNN onto the physical resources of an FPGA, allocating each processing actor to its own hardware instance. In this paper, we demonstrate the feasibility of the so called direct hardware mapping (DHM) and discuss several tactics we explore to make DHM usable in practice. As a proof of concept, we introduce the HADDOC2 open source tool, that automatically transforms a CNN description into a synthesizable hardware description with platform-independent direct hardware mapping.
Type de document :
Article dans une revue
IEEE Embedded Systems Letters, Institute of Electrical and Electronics Engineers, 2017, 9 (4), pp.113 - 116. 〈10.1109/LES.2017.2743247〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01626462
Contributeur : Francois Berry <>
Soumis le : jeudi 16 novembre 2017 - 12:01:55
Dernière modification le : mercredi 16 mai 2018 - 11:23:51
Document(s) archivé(s) le : samedi 17 février 2018 - 13:24:49

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, Cédric Bourrasset, François Berry. Tactics to Directly Map CNN graphs on Embedded FPGAs. IEEE Embedded Systems Letters, Institute of Electrical and Electronics Engineers, 2017, 9 (4), pp.113 - 116. 〈10.1109/LES.2017.2743247〉. 〈hal-01626462〉

Partager

Métriques

Consultations de la notice

317

Téléchargements de fichiers

304