J. Dieudonné, Foundations of modern analysis, 1960.

C. T. Dodson, G. Galanis, and E. Vassiliou, Geometry in a Fréchet Context: A Projective Limit Approach london, Math. Soc. Lect . Note Series, vol.428, 2016.
DOI : 10.1017/CBO9781316556092

H. Glöckner, Implicit functions from topological vector spaces to Banach spaces, Israel Journal of Mathematics, vol.237, issue.1, pp.205-252, 2006.
DOI : 10.1007/978-3-0348-8227-9_6

R. S. Hamilton, The inverse function theorem of Nash and Moser, Bulletin of the American Mathematical Society, vol.7, issue.1, pp.65-222, 1984.
DOI : 10.1090/S0273-0979-1982-15004-2

H. Hogbe-nlend, Théorie des bornologies et applications Lect, Notes in Math, vol.273, 1971.
DOI : 10.1007/bfb0069416

S. G. Krantz and H. Parks, The Implicit Function Theorem, 2002.
DOI : 10.1007/978-1-4612-0059-8

A. Kriegl and P. W. Michor, The convenient setting for global analysis Math. surveys and monographs 53, 2000.
DOI : 10.1090/surv/053

J. Magnot, AMBROSE???SINGER THEOREM ON DIFFEOLOGICAL BUNDLES AND COMPLETE INTEGRABILITY OF THE KP EQUATION, International Journal of Geometric Methods in Modern Physics, vol.158, issue.09, p.31, 2013.
DOI : 10.1007/978-1-4612-1104-4_13

J. Magnot, Cauchy diffeology, numerical methods and implicit function theorem arXiv, pp.1607-02636

J. Magnot and J. Watts, The diffeology of Milnor's classifying space Top, Appl, vol.232, pp.189-213, 2017.

H. Omori, Infinite dimensional Lie groups AMS translations of mathematical monographs, p.158, 1997.

J. Penot, Sur le théorème de Frobenius Bull LAREMA, Université dAngers, 2 Bd Lavoisier , 49045 Angers cedex 1, France and Lycée Jeanne d'Arc, 40 avenue de Grande Bretagne, 63000 Clermont-Ferrand, pp.47-80, 1970.