B. Milner, Psychological defects produced by temporal lobe excision Res, Publ. Assoc. Res. Nerv. Ment. Dis, vol.36, pp.244-257, 1958.

R. Petersen, Memory and MRI-based hippocampal volumes in aging and AD Neurology, pp.581-587, 2000.
DOI : 10.1212/wnl.54.3.581

F. Cendes, MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy, Neurology, vol.43, issue.4, pp.719-725, 1993.
DOI : 10.1212/WNL.43.4.719

L. Altshuler, Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity Arch, Gen. Psychiatry, vol.55, issue.7, p.663, 1998.

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/978-3-642-70644-8_2

M. Chupin, Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI, Hippocampus, vol.54, issue.6, pp.579-587, 2009.
DOI : 10.1212/WNL.54.9.1760

. Van-leemput, Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI Hippocampus, pp.549-557, 2009.

J. Iglesias, A computational atlas of the hippocampal formation using ex vivo , ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI, NeuroImage, vol.115, issue.15, pp.117-137, 2015.
DOI : 10.1016/j.neuroimage.2015.04.042

M. Chakravarty, Performing label-fusion-based segmentation using multiple automatically generated templates, Human Brain Mapping, vol.44, issue.Part 1, pp.2635-2654, 2013.
DOI : 10.1016/j.neuroimage.2008.08.042

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896505/pdf

P. Yushkevich, Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment, Human Brain Mapping, vol.299, issue.Suppl 1, pp.258-287, 2015.
DOI : 10.1126/science.1077775

. Serag, SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests, Frontiers in Neuroinformatics, vol.18, issue.2, 2017.
DOI : 10.1016/j.media.2014.06.010

URL : http://journal.frontiersin.org/article/10.3389/fninf.2017.00002/pdf

J. Manjón, HIST: HyperIntensity Segmentation Tool. PatchMI workshop

R. E. Schapire, The strength of weak learnability, Machine Learning, p.197227, 1990.

J. V. Manjón, Adaptive non-local means denoising of MR images with spatially varying noise levels, Journal of Magnetic Resonance Imaging, vol.17, issue.1, pp.192-203, 2010.
DOI : 10.1109/42.712135

N. J. Tustison, N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855/pdf

B. Avants, Advanced normalization tools (ANTS), Insight Journal, 2009.

L. G. Nyúl and J. K. Udupa, On standardizing the MR image intensity scale, Magnetic Resonance in Medicine, vol.7, issue.6, pp.1072-81, 1999.
DOI : 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M

P. Coupé, Collaborative patch-based super-resolution for diffusion-weighted images, NeuroImage, vol.83, pp.245-261, 2013.
DOI : 10.1016/j.neuroimage.2013.06.030

B. Caldairou, B. C. Bernhardt, J. Kulaga-yoskovitz, H. Kim, N. Bernasconi et al., A Surface Patch-Based Segmentation Method for Hippocampal Subfields, Part II, pp.379-387, 2016.
DOI : 10.1093/brain/awg034

J. Romero, P. Coupe, and J. Manjón, High Resolution Hippocampus Subfield Segmentation Using Multispectral Multiatlas Patch-Based Label Fusion. International Workshop on Patchbased Techniques in Medical Imaging, pp.117-124, 2016.
DOI : 10.1007/978-3-319-47118-1_15

URL : https://hal.archives-ouvertes.fr/hal-01398769