Early Prediction of Alzheimer's Disease with Non-local Patch-Based Longitudinal Descriptors

Abstract : Alzheimer's disease (AD) is characterized by a progressive decline in the cognitive functions accompanied by an atrophic process which can already be observed in the early stages using magnetic resonance images (MRI). Individualized prediction of future progression to AD, when patients are still in the mild cognitive impairment (MCI) stage, has potential impact for preventive treatment. Atrophy patterns extracted from longitudinal MRI sequences provide valuable information to identify MCI patients at higher risk of developing AD in the future. We present a novel descriptor that uses the similarity between local image patches to encode local displacements due to atrophy between a pair of longitudinal MRI scans. Using a conventional logistic regression classifier, our descriptor achieves 76% accuracy in predicting which MCI patients will progress to AD up to 3 years before conversion.
Type de document :
Communication dans un congrès
International Workshop on Patch-based Techniques in Medical Imaging, Sep 2017, Québec, Canada. International Workshop on Patch-based Techniques in Medical Imaging, 〈10.1007/978-3-319-67434-6_9〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01626255
Contributeur : Pierrick Coupé <>
Soumis le : lundi 30 octobre 2017 - 15:20:33
Dernière modification le : mercredi 1 novembre 2017 - 01:04:01

Fichier

patchlong.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gerard Sanroma, Víctor Andrea, Oualid Benkarim, José Manjón, Pierrick Coupé, et al.. Early Prediction of Alzheimer's Disease with Non-local Patch-Based Longitudinal Descriptors. International Workshop on Patch-based Techniques in Medical Imaging, Sep 2017, Québec, Canada. International Workshop on Patch-based Techniques in Medical Imaging, 〈10.1007/978-3-319-67434-6_9〉. 〈hal-01626255〉

Partager

Métriques

Consultations de
la notice

20

Téléchargements du document

4