Poster summarizing "The abc conjecture and some of its consequences"
Razvan Barbulescu, Michel Waldschmidt

To cite this version:
Razvan Barbulescu, Michel Waldschmidt. Poster summarizing "The abc conjecture and some of its consequences". 6th World Conference on 21st Century Mathematics 2015, Oct 2017, Lahore, India. hal-01626155v3

HAL Id: hal-01626155
https://hal.archives-ouvertes.fr/hal-01626155v3
Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The \(abc \) conjecture and some of its consequences

Remarks

- For \(a, b, c > 0 \), natural numbers, if \(a + b = c \) then the conjecture states that \(\text{rad}(abc) \leq c - 1 \), where \(\text{rad}(n) \) denotes the product of the distinct prime factors of \(n \).

- Over the years, there have been several failed attempts to prove this conjecture.

- The authors have considered the cases where \(a \) or \(b \) are 0, which reduces the problem to a lower-dimensional space.

Best unconditional result

- Stewart and Yu (1994) showed that \(\text{rad}(abc) > c^{0.37} \) for all sufficiently large \(c \) if \(\text{rad}(abc) \leq c - 1 \) for a certain proportion of \(a, b, c \).

- This result is based on the inequality \(\text{rad}(abc) > c^{0.37} \) for a certain proportion of \(a, b, c \).

Pillai's conjecture (1948)

- Let \(\text{rad}(x) \) be the product of the distinct prime factors of \(x \).

- Then, for any \(x, y, p, q \) such that \(x, y, p, q \) are sufficiently large, \(\text{rad}(x) \neq \text{rad}(y) \) unless \(x = y \).

The case \(a = 1 \)

- In this special case, various cases were considered:
 - The Lang-Vojta conjecture (1978)
 - The abc conjecture implies Lang-Vojta and therefore Pillai's conjecture (1971)

The abc conjecture implies that \(\text{rad}(abc) > c^{0.37} \) for a certain proportion of \(a, b, c \).

- The Format-Wiles theorem states that if \(a + b = c \), then the number of solutions to this equation is finite.

The abc conjecture implies asymptotic Form-Wiles

- The abc conjecture implies asymptotic Form-Wiles.

Waring's theorem (1919)

- Let \(a, b, c \) be positive integers such that \(a + b = c \) and \(a, b, c \) are the smallest positive integers satisfying this equation.

The abc conjecture implies asymptotic Waring's

- The abc conjecture implies asymptotic Waring's.

The Erdős-Woods conjecture (1981)

- Let \(n \) be a number, and let \(f(n) \) be the number of distinct prime factors of \(n \).

The abc conjecture implies Erdős-Woods

- The abc conjecture implies Erdős-Woods.

The abc conjecture implies Langley

- The abc conjecture implies Langley.

Dirichlet's approximation theorem (1830)

- For any \(\epsilon > 0 \), there exists a number \(x \) such that \(\left| x - \frac{a}{b} \right| < \frac{\epsilon}{b^2} \) for some integers \(a, b \).

The abc conjecture implies Dirichlet's

- The abc conjecture implies Dirichlet's.

The abc conjecture implies the Thue-Siegel-Roth theorem (1909, 1925, 1955)

- The abc conjecture implies the Thue-Siegel-Roth theorem.

The abc conjecture implies Siegel's theorem (1983)

- The abc conjecture implies Siegel's theorem.

The abc conjecture implies Sierpinski-Walfisz (1990)

- The abc conjecture implies Sierpinski-Walfisz.

The abc conjecture implies the abc theorem (1994)

- The abc conjecture implies the abc theorem.

A conjecture on \(\tau \) (2003)

- For any \(\epsilon > 0 \), there exists a number \(x \) such that \(\left| x - \frac{a}{b} \right| < \frac{\epsilon}{b^2} \) for some integers \(a, b \).

The abc conjecture implies the abc theorem

- The abc conjecture implies the abc theorem.

Linnik's theorem (1997)

- For any \(\epsilon > 0 \), there exists a number \(x \) such that \(\left| x - \frac{a}{b} \right| < \frac{\epsilon}{b^2} \) for some integers \(a, b \).

The abc conjecture implies Linnik's theorem

- The abc conjecture implies Linnik's theorem.

Effective bound assuming abc (2015)

- For any \(\epsilon > 0 \), there exists a number \(x \) such that \(\left| x - \frac{a}{b} \right| < \frac{\epsilon}{b^2} \) for some integers \(a, b \).

The abc conjecture implies the abc theorem

- The abc conjecture implies the abc theorem.

Heuristic:

- Baker's effective bound is independent of the abc conjecture.

Roth's theorem (1955)

- For any \(\epsilon > 0 \), there exists a number \(x \) such that \(\left| x - \frac{a}{b} \right| < \frac{\epsilon}{b^2} \) for some integers \(a, b \).

The abc conjecture implies Roth's theorem

- The abc conjecture implies Roth's theorem.

The ABC conjecture for polynomials

- For any \(\epsilon > 0 \), there exists a number \(x \) such that \(\left| x - \frac{a}{b} \right| < \frac{\epsilon}{b^2} \) for some integers \(a, b \).

The abc conjecture implies the abc theorem

- The abc conjecture implies the abc theorem.

In the quest for examples

- For any \(\epsilon > 0 \), there exists a number \(x \) such that \(\left| x - \frac{a}{b} \right| < \frac{\epsilon}{b^2} \) for some integers \(a, b \).

The abc conjecture implies the abc theorem

- The abc conjecture implies the abc theorem.

References

Authors