B. Kasemo, Biological surface science, Surface Science, vol.500, issue.1-3, pp.656-677, 2002.
DOI : 10.1016/S0039-6028(01)01809-X

J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine et al., Cell sheet engineering: Recreating tissues without biodegradable scaffolds, Biomaterials, vol.26, issue.33, pp.6415-6422, 2005.
DOI : 10.1016/j.biomaterials.2005.04.061

URL : https://doi.org/10.1016/j.biomaterials.2005.04.061

M. A. Cooperstein and H. E. Canavan, -isopropyl acrylamide)-coated surfaces, Biointerphases, vol.8, issue.1, pp.1559-4106, 2013.
DOI : 10.1186/1559-4106-8-19

A. Tourrette, N. De-geyter, D. Jocic, R. Morent, M. M. Warmoeskerken et al., Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.352, issue.1-3, pp.126-135, 2009.
DOI : 10.1016/j.colsurfa.2009.10.014

H. Lim, Y. Lee, S. Han, Y. Kim, J. Song et al., Wettability of poly(styrene-co-acrylate) ionomers improved by oxygen-plasma source ion implantation, Journal of Polymer Science Part B: Polymer Physics, vol.25, issue.15, pp.1791-1797, 2003.
DOI : 10.1002/polb.10536

L. Bacakova, E. Filova, M. Parizek, T. Ruml, and V. Svorcik, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnology Advances, vol.29, issue.6, pp.739-767, 2011.
DOI : 10.1016/j.biotechadv.2011.06.004

A. M. Borges, L. O. Benetoli, M. A. Licínio, V. C. Zoldan, M. C. Santos-silva et al., Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion, Materials Science and Engineering: C, vol.33, issue.3, pp.1315-1324, 2013.
DOI : 10.1016/j.msec.2012.12.031

A. Sdrobis¸, G. E. Sdrobis¸sdrobis¸, T. Ioanid, C. Stevanovic, and . Vasile, -isopropylacrylamide) under cold plasma conditions, Polymer International, vol.339, issue.12, pp.1767-1777, 2012.
DOI : 10.1016/j.carres.2004.10.005

Y. M. Lee and J. K. Shim, Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation, Polymer, vol.38, issue.5, pp.1227-1232, 1997.
DOI : 10.1016/S0032-3861(96)00548-4

J. A. Reed, S. A. Love, A. E. Lucero, C. L. Haynes, and H. E. Canavan, Effect of polymer deposition method on thermoresponsive polymer films and resulting cellular behavior, Langmuir, vol.28, pp.2281-2287, 2012.

L. Moroni, M. Klein-gunnewiek, and E. M. Benetti, Polymer brush coatings regulating cell behavior: Passive interfaces turn into active, Acta Biomaterialia, vol.10, issue.6, pp.2367-2378, 2014.
DOI : 10.1016/j.actbio.2014.02.048

A. Olivier, F. Meyer, J. Raquez, P. Damman, and P. Dubois, Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces, Progress in Polymer Science, vol.37, issue.1, pp.157-181, 2012.
DOI : 10.1016/j.progpolymsci.2011.06.002

G. Bao and S. Suresh, Cell and molecular mechanics of biological materials, Nature Materials, vol.2, issue.11, pp.715-725, 2003.
DOI : 10.1038/nmat1001

M. Gao, M. Sotomayor, E. Villa, E. H. Lee, and K. Schulten, Molecular mechanisms of cellular mechanics, Physical Chemistry Chemical Physics, vol.14, issue.22, pp.3692-3706, 2006.
DOI : 10.1042/bj3550869

W. Xu, H. Baribault, and E. D. Adamson, Vinculin knockout results in heart and brain defects during embryonic development, Development, vol.125, pp.327-337, 1998.

K. Anselme, L. Ploux, and A. Ponche, Cell/Material Interfaces, J. Adhes. Sci. Technol, vol.24, pp.831-852, 2010.
DOI : 10.1201/b12179-6

D. G. Castner and B. D. Ratner, Biomedical surface science: Foundations to frontiers, Surface Science, vol.500, issue.1-3, pp.28-60, 2002.
DOI : 10.1016/S0039-6028(01)01587-4

J. H. Lee, J. W. Lee, G. Khang, and H. B. Lee, Interaction of cells on chargeable functional group gradient surfaces, Biomaterials, vol.18, issue.4, pp.351-358, 1997.
DOI : 10.1016/S0142-9612(96)00128-7

A. Tamura, M. Oishi, and Y. Nagasaki, Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: Enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core, Journal of Controlled Release, vol.146, issue.3, pp.378-387, 2010.
DOI : 10.1016/j.jconrel.2010.05.031

A. Tamura, M. Nishi, J. Kobayashi, K. Nagase, H. Yajima et al., Simultaneous Enhancement of Cell Proliferation and Thermally Induced Harvest Efficiency Based on Temperature-Responsive Cationic Copolymer-Grafted Microcarriers, Biomacromolecules, vol.13, issue.6, pp.1765-1773, 2012.
DOI : 10.1021/bm300256e

D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. , In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis, Biomaterials, vol.24, issue.7, pp.1121-1131, 2003.
DOI : 10.1016/S0142-9612(02)00445-3

J. Pei, H. Hall, and N. D. Spencer, The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide, Biomaterials, vol.32, issue.34, pp.8968-8978, 2011.
DOI : 10.1016/j.biomaterials.2011.08.034

J. Andersson, K. N. Ekdahl, J. D. Lambris, and B. Nilsson, Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface, Biomaterials, vol.26, issue.13, pp.1477-1485, 2005.
DOI : 10.1016/j.biomaterials.2004.05.011

K. N. Ekdahl, J. D. Lambris, H. Elwing, D. Ricklin, P. H. Nilsson et al., Innate immunity activation on biomaterial surfaces: A mechanistic model and coping strategies, Advanced Drug Delivery Reviews, vol.63, issue.12, pp.1042-1050, 2011.
DOI : 10.1016/j.addr.2011.06.012

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166435/pdf

E. A. Vogler, Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science, vol.74, issue.1-3, pp.69-117, 1998.
DOI : 10.1016/S0001-8686(97)00040-7

Z. Ma, Z. Mao, and C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids and Surfaces B: Biointerfaces, vol.60, issue.2, pp.137-157, 2007.
DOI : 10.1016/j.colsurfb.2007.06.019

T. Suzuki and Y. Mizushima, Characteristics of silica-chitosan complex membrane and their relationships to the characteristics of growth and adhesiveness of L-929 cells cultured on the biomembrane, Journal of Fermentation and Bioengineering, vol.84, issue.2, pp.128-132, 1997.
DOI : 10.1016/S0922-338X(97)82541-X

C. D. Tidwell, D. G. Castner, S. L. Golledge, B. D. Ratner, K. Meyer et al., Static time-of-flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy characterization of adsorbed albumin and fibronectin films, Surface and Interface Analysis, vol.17, issue.300, pp.724-733, 2001.
DOI : 10.1021/ba-1982-0199.ch017

B. G. Keselowsky, D. M. Collard, and A. J. García, Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion, Journal of Biomedical Materials Research Part A, vol.60, issue.Pt 3, pp.247-259, 2003.
DOI : 10.1002/jbm.10052

M. Cockerill, M. K. Rigozzi, and E. M. Terentjev, Mechanosensitivity of the IInd kind: tGFb mechanism of cell sensing the substrate stiffness, PLoS One, pp.1-11, 2015.

D. E. Discher, P. Janmey, and Y. Wang, Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, vol.310, issue.5751, pp.1139-1143, 2005.
DOI : 10.1126/science.1116995

Q. S. Li, G. Y. Lee, C. N. Ong, and C. T. Lim, AFM indentation study of breast cancer cells, Biochemical and Biophysical Research Communications, vol.374, issue.4, pp.609-613, 2008.
DOI : 10.1016/j.bbrc.2008.07.078

M. S. Yousafzai, F. Ndoye, G. Coceano, J. Niemela, S. Bonin et al., Substrate-dependent cell elasticity measured by optical tweezers indentation, Optics and Lasers in Engineering, vol.76, pp.27-33, 2016.
DOI : 10.1016/j.optlaseng.2015.02.008

M. G. Haugh, C. M. Murphy, R. C. Mckiernan, C. Altenbuchner, and F. J. O-'brien, Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds, Tissue Engineering Part A, vol.17, issue.9-10, pp.1201-1208, 2011.
DOI : 10.1089/ten.tea.2010.0590

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-152, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

S. Kidoaki and T. Matsuda, Microelastic gradient gelatinous gels to induce cellular mechanotaxis, Journal of Biotechnology, vol.133, issue.2, pp.225-230, 2008.
DOI : 10.1016/j.jbiotec.2007.08.015

H. Liu, C. Lin, Y. Liou, K. Hsu, J. Yang et al., NBT-II cell locomotion is modulated by restricting the size of focal contacts and is improved through EGF and ROCK signaling, The International Journal of Biochemistry & Cell Biology, vol.51, pp.131-141, 2014.
DOI : 10.1016/j.biocel.2014.04.009

F. G. Russel, J. M. Bindels, and C. H. Van, Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.13661-13665, 1997.

L. Bacakova, E. Filova, D. Kubies, L. Machova, V. Proks et al., Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides, Journal of Materials Science: Materials in Medicine, vol.26, issue.1, pp.1317-1323, 2007.
DOI : 10.1007/978-1-4615-0063-6_15

Y. Zhu, C. Gao, X. Liu, T. He, and J. Shen, Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration, Tissue Engineering, vol.10, issue.1-2, pp.53-61, 2004.
DOI : 10.1089/107632704322791691

R. D. Abbott and D. L. Kaplan, Strategies for improving the physiological relevance of human engineered tissues, Trends in Biotechnology, vol.33, issue.7, pp.401-407, 2015.
DOI : 10.1016/j.tibtech.2015.04.003

C. Xue, B. Choi, S. Choi, P. V. Braun, and D. E. Leckband, Protein Adsorption Modes Determine Reversible Cell Attachment on Poly(N-isopropyl acrylamide) Brushes, Advanced Functional Materials, vol.111, issue.11, pp.2394-2401, 2012.
DOI : 10.1021/jp0690603

M. A. Stuart, W. T. Huck, J. Genzer, M. Müller, C. Ober et al., Emerging applications of stimuli-responsive polymer materials, Nature Materials, vol.323, issue.2, pp.101-113, 2010.
DOI : 10.1007/978-3-642-10479-4_27

J. Ran, L. Wu, Z. Zhang, and T. Xu, Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes, Progress in Polymer Science, vol.39, issue.1, pp.124-144, 2014.
DOI : 10.1016/j.progpolymsci.2013.09.001

S. Edmondson, V. L. Osborne, and W. T. Huck, Polymer brushes via surface-initiated polymerizations, Chemical Society Reviews, vol.33, issue.1, pp.14-22, 2004.
DOI : 10.1039/b210143m

J. Draper, I. Luzinov, S. Minko, I. Tokarev, and M. Stamm, Mixed Polymer Brushes by Sequential Polymer Addition:?? Anchoring Layer Effect, Langmuir, vol.20, issue.10, pp.4064-4075, 2004.
DOI : 10.1021/la0361316

B. Zdyrko and I. Luzinov, Polymer Brushes by the ???Grafting to??? Method, Macromolecular Rapid Communications, vol.22, issue.1, pp.859-869, 2011.
DOI : 10.1021/la051641g

K. S. Iyer, B. Zdyrko, H. Malz, J. Pionteck, and I. Luzinov, Polystyrene Layers Grafted to Macromolecular Anchoring Layer, Macromolecules, vol.36, issue.17, pp.6519-6526, 2003.
DOI : 10.1021/ma034460z

M. Husseman, E. E. Malmström, M. Mcnamara, M. Mate, D. Mecerreyes et al., Controlled Synthesis of Polymer Brushes by ???Living??? Free Radical Polymerization Techniques, Macromolecules, vol.32, issue.5, pp.1424-1431, 1999.
DOI : 10.1021/ma981290v

N. Ayres, C. D. Cyrus, and W. J. Brittain, Stimuli-Responsive Surfaces Using Polyampholyte Polymer Brushes Prepared via Atom Transfer Radical Polymerization, Langmuir, vol.23, issue.7, pp.3744-3749, 2007.
DOI : 10.1021/la062417+

U. Mansfeld, C. Pietsch, R. Hoogenboom, C. R. Becer, and U. S. Schubert, Clickable initiators, monomers and polymers in controlled radical polymerizations ??? a prospective combination in polymer science, Polymer Chemistry, vol.43, issue.276, 2010.
DOI : 10.1002/anie.200805993

P. Liu, Abstract, e-Polymers, vol.7, issue.1, pp.1-3, 2007.
DOI : 10.1515/epoly.2007.7.1.725

URL : https://hal.archives-ouvertes.fr/hal-00129638

P. Król and P. Chmielarz, Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials, Progress in Organic Coatings, vol.77, issue.5, pp.913-948, 2014.
DOI : 10.1016/j.porgcoat.2014.01.027

C. Hsiao, H. Han, G. Lee, and C. Peng, AGET and SARA ATRP of styrene and methyl methacrylate mediated by pyridyl-imine based copper complexes, European Polymer Journal, vol.51, pp.12-20, 2014.
DOI : 10.1016/j.eurpolymj.2013.11.013

N. Singh, X. Cui, T. Boland, and S. M. Husson, The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion, Biomaterials, vol.28, issue.5, pp.763-771, 2007.
DOI : 10.1016/j.biomaterials.2006.09.036

W. Feng, J. Brash, and S. Zhu, Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion, Biomaterials, vol.27, issue.6, pp.847-855, 2006.
DOI : 10.1016/j.biomaterials.2005.07.006

J. Pyun, T. Kowalewski, and K. Matyjaszewski, Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization, Macromolecular Rapid Communications, vol.24, issue.18, pp.1043-1059, 2003.
DOI : 10.1002/marc.200300078

J. Qin, Z. Cheng, L. Zhang, Z. Zhang, J. Zhu et al., A Highly Efficient Iron-Mediated AGET ATRP of Methyl Methacrylate Using Fe(0) Powder as the Reducing Agent, Macromolecular Chemistry and Physics, vol.40, issue.10, pp.999-1006, 2011.
DOI : 10.1002/pola.10479

R. Gong, S. Maclaughlin, and S. Zhu, Surface modification of active metals through atom transfer radical polymerization grafting of acrylics, Appl

C. Hou, R. Qu, C. Sun, C. Ji, C. Wang et al., Novel ionic liquids as reaction medium for ATRP of acrylonitrile in the absence of any ligand, Polymer, vol.49, issue.16, pp.3424-3427, 2008.
DOI : 10.1016/j.polymer.2008.06.013

Y. Wang, Y. Zhang, B. Parker, and K. Matyjaszewski, ATRP of MMA with ppm Levels of Iron Catalyst, Macromolecules, vol.44, issue.11, pp.4022-4025, 2011.
DOI : 10.1021/ma200771r

J. Cao, L. Zhang, X. Jiang, C. Tian, X. Zhao et al., Facile Iron-Mediated Dispersant-Free Suspension Polymerization of Methyl Methacrylate via Reverse ATRP in Water, Macromolecular Rapid Communications, vol.220, issue.22, pp.1747-1754, 2013.
DOI : 10.1007/BF00776142

L. Zhang, Z. Cheng, Z. Zhang, D. Xu, and X. Zhu, Fe(III)-catalyzed AGET ATRP of styrene using triphenyl phosphine as ligand, Polymer Bulletin, vol.72, issue.3, pp.233-244, 2009.
DOI : 10.1016/j.eurpolymj.2008.07.052

C. Bolm, J. Legros, J. Le-paih, and L. Zani, Iron-Catalyzed Reactions in Organic Synthesis, Chemical Reviews, vol.104, issue.12, pp.6217-6254, 2004.
DOI : 10.1021/cr040664h

R. Poli, L. E. Allan, and M. P. Shaver, Iron-mediated reversible deactivation controlled radical polymerization, Progress in Polymer Science, vol.39, issue.10, pp.1827-1845, 2014.
DOI : 10.1016/j.progpolymsci.2014.06.003

S. Nakanishi, M. Kawamura, H. Kai, R. Jin, Y. Sunada et al., Well-Defined Iron Complexes as Efficient Catalysts for ???Green??? Atom-Transfer Radical Polymerization of Styrene, Methyl Methacrylate, and Butyl Acrylate with Low Catalyst Loadings and Catalyst Recycling, Chemistry - A European Journal, vol.216, issue.19, pp.5802-5814, 2014.
DOI : 10.1016/0020-1693(93)03718-P

M. K. Gunnewiek, A. Di-luca, X. Sui, C. A. Van-blitterswijk, L. Moroni et al., Controlled Surface Initiated Polymerization of N-Isopropylacrylamide from Polycaprolactone Substrates for Regulating Cell Attachment and Detachment, Israel Journal of Chemistry, vol.50, issue.3-4, pp.339-346, 2012.
DOI : 10.1002/anie.201008252

J. Liu, W. He, L. Zhang, Z. Zhang, J. Zhu et al., Bifunctional Nanoparticles with Fluorescence and Magnetism via Surface-Initiated AGET ATRP Mediated by an Iron Catalyst, Langmuir, vol.27, issue.20, pp.12684-12692, 2011.
DOI : 10.1021/la202749v

K. Matyjaszewski, W. Jakubowski, K. Min, W. Tang, J. Huang et al., Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proceedings of the National Academy of Sciences, vol.5, issue.15, pp.15309-15314, 2006.
DOI : 10.1002/mats.1996.040050303

URL : http://www.pnas.org/content/103/42/15309.full.pdf

W. Jakubowski and K. Matyjaszewski, Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization, Macromolecules, vol.38, issue.10, pp.4139-4146, 2005.
DOI : 10.1021/ma047389l

K. Min, H. Gao, and K. Matyjaszewski, Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP, Macromolecules, vol.40, issue.6, pp.1789-1791, 2007.
DOI : 10.1021/ma0702041

B. V. Bhut, K. Conrad, and S. M. Husson, Preparation of high-performance membrane adsorbers by surface-initiated AGET ATRP in the presence of dissolved oxygen and low catalyst concentration, Journal of Membrane Science, vol.390, issue.391, pp.390-391
DOI : 10.1016/j.memsci.2011.10.057

P. Shivapooja, L. K. Ista, H. E. Canavan, and G. P. Lopez, ARGET???ATRP Synthesis and Characterization of PNIPAAm Brushes for Quantitative Cell Detachment Studies, Biointerphases, vol.7, issue.1, pp.1-9, 2012.
DOI : 10.1007/s13758-012-0032-z

Y. Zhang, Y. Wang, C. Peng, M. Zhong, W. Zhu et al., Copper-Mediated CRP of Methyl Acrylate in the Presence of Metallic Copper: Effect of Ligand Structure on Reaction Kinetics, Macromolecules, vol.45, issue.1, pp.78-86, 2012.
DOI : 10.1021/ma201963c

C. H. Worthley, K. T. Constantopoulos, M. Ginic-markovic, R. J. Pillar, J. G. Matisons et al., Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance, Journal of Membrane Science, vol.385, issue.386
DOI : 10.1016/j.memsci.2011.09.017

X. Qiu, X. Ren, and S. Hu, Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP, Carbohydrate Polymers, vol.92, issue.2, pp.1887-1895, 2013.
DOI : 10.1016/j.carbpol.2012.11.080

K. Pan, X. Zhang, R. Ren, and B. Cao, Double stimuli-responsive membranes grafted with block copolymer by ATRP method, Journal of Membrane Science, vol.356, issue.1-2, pp.133-137, 2010.
DOI : 10.1016/j.memsci.2010.03.044

C. Zhang, P. T. Vernier, Y. H. Wu, and W. Yang, Surface chemical immobilization of parylene C with thermosensitive block copolymer brushes based on N-isopropylacrylamide and N-tert-butylacrylamide: synthesis, characterization, and cell adhesion/detachment Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment, J. Biomed. Mater. Res.?Part B Appl. Biomater. Appl. Surf. Sci, vol.258, pp.100-2012, 2012.

J. Chen, C. Hsieh, C. Huang, and P. Li, Characterization of patterned poly(methyl methacrylate) brushes under various structures upon solvent immersion, Journal of Colloid and Interface Science, vol.338, issue.2, pp.428-434, 2009.
DOI : 10.1016/j.jcis.2009.06.040

Y. Liu, V. Klep, B. Zdyrko, and I. Luzinov, Synthesis of High-Density Grafted Polymer Layers with Thickness and Grafting Density Gradients, Langmuir, vol.21, issue.25, pp.11806-11813, 2005.
DOI : 10.1021/la051695q

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona et al., Review: current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science, vol.22, issue.5, pp.1-33, 2009.
DOI : 10.3139/217.2059

J. Lindqvist and E. Malmström, Surface modification of natural substrates by atom transfer radical polymerization, Journal of Applied Polymer Science, vol.5, issue.19, pp.4155-4162, 2006.
DOI : 10.1002/pol.1981.170190621

C. Kang, R. M. Crockett, and N. D. Spencer, Molecular-Weight Determination of Polymer Brushes Generated by SI-ATRP on Flat Surfaces, Macromolecules, vol.47, issue.1, pp.269-275, 2014.
DOI : 10.1021/ma401951w

M. Barsbay and O. Güven, A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner, Radiation Physics and Chemistry, vol.78, issue.12, pp.1054-1059, 2009.
DOI : 10.1016/j.radphyschem.2009.06.022

C. Barner-kowollik, T. P. Davis, J. P. Heuts, M. H. Stenzel, P. Vana et al., RAFTing down under: Tales of missing radicals, fancy architectures, and mysterious holes, Journal of Polymer Science Part A: Polymer Chemistry, vol.18, issue.3, pp.365-375, 2003.
DOI : 10.1002/pola.10567

K. Kusolkamabot, P. Sae-ung, N. Niamnont, K. Wongravee, M. Sukwattanasinitt et al., -isopropylacrylamide)-Stabilized Gold Nanoparticles in Combination with Tricationic Branched Phenylene-Ethynylene Fluorophore for Protein Identification, Langmuir, vol.29, issue.39, pp.12317-12327, 2013.
DOI : 10.1021/la402139g

H. Takahashi, M. Nakayama, M. Yamato, and T. Okano, Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell Sheet Harvest, Biomacromolecules, vol.11, issue.8, 1991.
DOI : 10.1021/bm100342e

J. Bigot, D. Fournier, J. Lyskawa, T. Marmin, F. Cazaux et al., Synthesis of thermoresponsive phenyl- and naphthyl-terminated poly(NIPAM) derivatives using RAFT and their complexation with cyclobis(paraquat-p-phenylene) derivatives in water, Polymer Chemistry, vol.43, issue.7, pp.1024-1029, 2010.
DOI : 10.1039/c0py00085j

F. Audouin and A. Heise, Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE, European Polymer Journal, vol.49, issue.5, pp.1073-1079, 2013.
DOI : 10.1016/j.eurpolymj.2013.01.013

H. Alem, A. Duwez, P. Lussis, P. Lipnik, A. M. Jonas et al., Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes, Journal of Membrane Science, vol.308, issue.1-2, pp.75-86, 2008.
DOI : 10.1016/j.memsci.2007.09.036

L. Ren, S. Huang, C. Zhang, R. Wang, W. W. Tjiu et al., Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP ???on water???, Journal of Nanoparticle Research, vol.49, issue.6, 2012.
DOI : 10.1002/pola.24633

P. Zhuang, A. Dirani, K. Glinel, and A. M. Jonas, Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes, Langmuir, vol.32, issue.14, pp.3433-3444, 2016.
DOI : 10.1021/acs.langmuir.6b00448

W. Wu, J. Li, W. Zhu, Y. Jing, and H. Dai, Thermo-responsive cellulose paper via ARGET ATRP, Fibers Polym, pp.495-501, 2016.
DOI : 10.1007/s12221-016-5877-1

L. L. Yang, J. M. Zhang, J. S. He, J. Zhang, and Z. H. Gan, Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers, Chinese Journal of Polymer Science, vol.291, issue.4, pp.1640-1649, 2015.
DOI : 10.1007/s00396-012-2794-8

R. B. Vasani, S. J. Mcinnes, M. A. Cole, A. M. Jani, A. V. Ellis et al., -isopropylacrylamide), Langmuir, vol.27, issue.12, pp.7843-7853, 2011.
DOI : 10.1021/la200551g

P. Chung, R. Kumar, M. Pruski, and V. S. Lin, Temperature Responsive Solution Partition of Organic-Inorganic Hybrid Poly(N-isopropylacrylamide)-Coated Mesoporous Silica Nanospheres, Advanced Functional Materials, vol.7, issue.9, pp.1390-1398, 2008.
DOI : 10.1007/978-3-642-68756-3

A. Hufendiek, V. Trouillet, M. A. Meier, and C. Barner-kowollik, -Copolymers via Cellulose Functionalization in an Ionic Liquid and RAFT Polymerization, Biomacromolecules, vol.15, issue.7, pp.2563-2572, 2014.
DOI : 10.1021/bm500416m

X. Wang, H. Tu, P. V. Braun, and P. W. Bohn, -isopropylacrylamide) Polymer Brushes Prepared by Surface-Initiated Atom Transfer Radical Polymerization Coupled with In-Plane Electrochemical Potential Gradients, Langmuir, vol.22, issue.2, pp.817-823, 2006.
DOI : 10.1021/la052741p

X. Sui, S. Zapotoczny, E. M. Benetti, P. Schön, and G. J. Vancso, Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy, Journal of Materials Chemistry, vol.30, issue.24, 2010.
DOI : 10.1002/adfm.200902114

K. N. Plunkett, X. Zhu, J. S. Moore, and D. E. Leckband, PNIPAM Chain Collapse Depends on the Molecular Weight and Grafting Density, Langmuir, vol.22, issue.9, pp.4259-4266, 2006.
DOI : 10.1021/la0531502

N. Brouette, C. Xue, M. Haertlein, M. Moulin, G. Fragneto et al., Protein adsorption properties of OEG monolayers and dense PNIPAM brushes probed by neutron reflectivity, The European Physical Journal Special Topics, vol.44, issue.1, pp.343-353, 2012.
DOI : 10.1021/ma201006h

R. Iwata, P. Suk-in, V. P. Hoven, A. Takahara, K. Akiyoshi et al., Control of Nanobiointerfaces Generated from Well-Defined Biomimetic Polymer Brushes for Protein and Cell Manipulations, Biomacromolecules, vol.5, issue.6, pp.2308-2314, 2004.
DOI : 10.1021/bm049613k

M. Yasaka, X-ray thin-film measurement techniques, V. X-Ray reflectivity meas, Rigaku J, vol.26, pp.1-9, 2010.

A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, and T. Okano, Preparation of thermoresponsive polymer brush surfaces and their interaction with cells, Biomaterials, vol.29, issue.13, pp.2073-2081, 2008.
DOI : 10.1016/j.biomaterials.2008.01.004

Y. Maeda, T. Nakamura, and I. Ikeda, -isopropylmethacrylamide) during Their Phase Transitions in Water Observed by FTIR Spectroscopy, Macromolecules, vol.34, issue.23, pp.8246-8251, 2001.
DOI : 10.1021/ma010222x

R. Umapathi, P. M. Reddy, A. Kumar, P. Venkatesu, and C. Chang, The biological stimuli for governing the phase transition temperature of the ???smart??? polymer PNIPAM in water, Colloids and Surfaces B: Biointerfaces, vol.135, pp.588-595, 2015.
DOI : 10.1016/j.colsurfb.2015.08.020

T. Qu, A. Wang, J. Yuan, J. Shi, and Q. Gao, Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release, Colloids and Surfaces B: Biointerfaces, vol.72, issue.1, pp.94-100, 2009.
DOI : 10.1016/j.colsurfb.2009.03.020

L. Liu, Y. Shi, C. Liu, T. Wang, G. Liu et al., Insight into the amplification by methylated urea of the anion specificity of macromolecules, Soft Matter, vol.24, issue.16, pp.2856-2862, 2014.
DOI : 10.1021/la7034104

A. C. Kumar, H. B. Bohidar, and A. K. Mishra, The effect of sodium cholate aggregates on thermoreversible gelation of PNIPAM, Colloids and Surfaces B: Biointerfaces, vol.70, issue.1, pp.60-67, 2009.
DOI : 10.1016/j.colsurfb.2008.12.004

D. M. Jones, J. R. Smith, W. T. Huck, and C. Alexander, Variable Adhesion of Micropatterned Thermoresponsive Polymer Brushes: AFM Investigations of Poly(N-isopropylacrylamide) Brushes Prepared by Surface-Initiated Polymerizations, 16<1130::AID-ADMA1130>3.0.CO, pp.1521-40952, 2002.
DOI : 10.1002/1521-4095(20020816)14:16<1130::AID-ADMA1130>3.0.CO;2-7

E. C. Cho, Y. D. Kim, and K. Cho, Thermally responsive poly(N-isopropylacrylamide) monolayer on gold: synthesis, surface characterization, and protein interaction/adsorption studies, Polymer, vol.45, issue.10, pp.3195-3204, 2004.
DOI : 10.1016/j.polymer.2004.02.052

C. Xue, N. Yonet-tanyeri, N. Brouette, M. Sferrazza, P. V. Braun et al., -isopropylacrylamide) Brushes: Dependence on Grafting Density and Chain Collapse, Langmuir, vol.27, issue.14, pp.8810-8818, 2011.
DOI : 10.1021/la2001909

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412611/pdf

A. Halperin and M. Kröger, Theoretical considerations on mechanisms of harvesting cells cultured on thermoresponsive polymer brushes, Biomaterials, vol.33, issue.20, pp.4975-4987, 2012.
DOI : 10.1016/j.biomaterials.2012.03.060

URL : https://hal.archives-ouvertes.fr/hal-00971378

A. Halperin, Polymer Brushes that Resist Adsorption of Model Proteins:?? Design Parameters, Langmuir, vol.15, issue.7, pp.2525-2533, 1999.
DOI : 10.1021/la981356f

X. Cheng, H. E. Canavan, D. J. Graham, D. G. Castner, and B. D. Ratner, -isopropyl acrylamide, Biointerphases, vol.1, issue.1, 2006.
DOI : 10.1116/1.2187980

I. B. Malham, L. Bureau, H. E. Canavan, X. Cheng, D. J. Graham et al., Density Effects on Collapse, Compression, and Adhesion of Thermoresponsive Polymer Brushes, Langmuir, vol.26, issue.7, pp.4762-4768, 2005.
DOI : 10.1021/la9035387

URL : https://hal.archives-ouvertes.fr/hal-01239417

M. A. Cooperstein and H. E. Canavan, -isopropyl acrylamide) and Its Applications, Langmuir, vol.26, issue.11, pp.7695-7707, 2010.
DOI : 10.1021/la902587p

N. Kaneshiro, M. Sato, M. Ishihara, G. Mitani, H. Sakai et al., Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage, Biochemical and Biophysical Research Communications, vol.349, issue.2, pp.723-731, 2006.
DOI : 10.1016/j.bbrc.2006.08.096

T. Ide, K. Nishida, M. Yamato, T. Sumide, M. Utsumi et al., Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes, Biomaterials, vol.27, issue.4, pp.607-614, 2006.
DOI : 10.1016/j.biomaterials.2005.06.005

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru et al., Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces, Circulation Research, vol.90, issue.3, pp.40-48, 2002.
DOI : 10.1161/hh0302.105722

F. J. Xu, S. P. Zhong, L. Y. Yung, E. T. Kang, and K. G. Neoh, Surface-Active and Stimuli-Responsive Polymer???Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion, Biomacromolecules, vol.5, issue.6, pp.2392-2403, 2004.
DOI : 10.1021/bm049675a

Y. Akiyama, A. Kikuchi, M. Yamato, and T. Okano, -isopropylacrylamide) Grafted Layer on Polystyrene Surfaces for Cell Adhesion/Detachment Control, Langmuir, vol.20, issue.13, pp.5506-5511, 2004.
DOI : 10.1021/la036139f

T. Zhao, H. Chen, J. Zheng, Q. Yu, Z. Wu et al., Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: Effect of graft molecular weight, Colloids and Surfaces B: Biointerfaces, vol.85, issue.1, pp.26-31, 2011.
DOI : 10.1016/j.colsurfb.2010.10.047

Q. Yu, Y. Zhang, H. Chen, Z. Wu, H. Huang et al., Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: Effects of grafted layer thickness and protein size, Colloids and Surfaces B: Biointerfaces, vol.76, issue.2, pp.468-474, 2010.
DOI : 10.1016/j.colsurfb.2009.12.006

L. Chen, M. Liu, H. Bai, P. Chen, F. Xia et al., -isopropylacrylamide) Surface with Nanoscale Topography, Journal of the American Chemical Society, vol.131, issue.30, pp.10467-10472, 2009.
DOI : 10.1021/ja9019935

H. Liu, X. Liu, J. Meng, P. Zhang, G. Yang et al., Hydrophobic Interaction-Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces, Advanced Materials, vol.23, issue.6, pp.922-927, 2013.
DOI : 10.1002/adma.201102151

Q. Yu, J. Cho, P. Shivapooja, L. K. Ista, and G. P. López, Nanopatterned Smart Polymer Surfaces for Controlled Attachment, Killing, and Release of Bacteria, ACS Applied Materials & Interfaces, vol.5, issue.19, pp.9295-9304, 2013.
DOI : 10.1021/am4022279

Q. Yu, L. M. Johnson, and G. P. López, Nanopatterned Polymer Brushes for Triggered Detachment of Anchorage-Dependent Cells, Advanced Functional Materials, vol.26, issue.24, pp.3751-3759, 2014.
DOI : 10.1016/j.biomaterials.2004.06.005

J. Chen and T. Cheng, Thermo-Responsive Chitosan-graft-poly(N-isopropylacrylamide) Injectable Hydrogel for Cultivation of Chondrocytes and Meniscus Cells, Macromolecular Bioscience, vol.96, issue.12, pp.1026-1039, 2006.
DOI : 10.1002/mabi.200600142

J. Chen, C. Kuo, and W. Lee, Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics, Applied Surface Science, vol.262, pp.95-101, 2012.
DOI : 10.1016/j.apsusc.2012.02.106

C. Ignacio, L. Barcellos, M. D. Ferreira, S. , L. Moura et al., In vivo tests of a novel wound dressing based on biomaterials with tissue adhesion controlled through external stimuli, Journal of Materials Science: Materials in Medicine, vol.101, issue.1???2, pp.1357-1364, 2011.
DOI : 10.1021/cr000108x

M. Tunc, X. Cheng, B. D. Ratner, E. Meng, and M. Humayun, REVERSIBLE THERMOSENSITIVE GLUE FOR RETINAL IMPLANTS, Retina, vol.27, issue.7, pp.938-942, 2007.
DOI : 10.1097/IAE.0b013e318042ae81