High-order hybrid discontinuous galerkin methods for diffusion-convection equations with evanescent diffusion
Loïc Dijoux, Vincent Fontaine

To cite this version:
Loïc Dijoux, Vincent Fontaine. High-order hybrid discontinuous galerkin methods for diffusion-convection equations with evanescent diffusion. InterPore, May 2017, Rotterdam, Netherlands. hal-01625960

HAL Id: hal-01625960
https://hal.archives-ouvertes.fr/hal-01625960
Submitted on 30 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
High-order hybrid discontinuous galerkin methods for diffusion-convection equations with evanescent diffusion
Loïc DJOUX, Vincent FONTAINE
University of La Réunion

Physical context
- Diffusion-advection equation
 \[\nabla \cdot (-\sigma \nabla u + \beta u) = f \quad \text{in} \quad \Omega \]
 where \(\sigma \) : the conductivity tensor, \(u \) : the state variable, \(\beta \) : velocity advection field and \(f \) : source term.
- Application field:
 - Ground water flow
 - Heat and Mass transfer,...

A mixed formulation
We introduce an auxiliary variable \(Q_d \):
\[
\nabla \cdot \alpha \nabla u = f, \quad \text{in} \quad \Omega
\]
where \(\alpha = \sigma_d Q_d \) and \(Q_d \) is a field variable. We define two approximate variables \(\alpha u \) and \(Q_d \) of respectively \(u \) and \(Q_d \):
\[
Q_d = \sum_{\Omega_k} \alpha u_k \text{ and } Q_d = \sum_{\Omega_k} \alpha u_k \text{ on } \Omega_k
\]
where \(u_k \) and \(u_k \) are the degrees of freedom of \(Q_d \) and \(Q_d \) respectively, \(w \) and \(v \) are their corresponding interpolations functions.

Approximation spaces
We define finite element spaces:
\[
W_h^e = \{ w \in [L^2(\Omega)]^d : w |_{\Omega_k} \in W^p(\Omega_k), \quad \forall \Omega_k \in \Omega \},
\]
\[
V_h^e = \{ v \in [L^2(\Omega)] : v |_{\Omega_k} \in W^p(\Omega_k), \quad \forall \Omega_k \in \Omega \},
\]
and add a traced finite element space:
\[
M_h^e = \{ \mu \in L^2(\Omega) : \mu |_{\Omega_k} \in M^p(\Omega_k) \}, \quad \forall \Omega_k \in \Omega
\]

Discrete weak formulation
We impose the continuity of \(\alpha Q_d + \beta u \) on each edge \(e \in \partial \Omega_k \) through one more equation and finally write:
\[
\text{Find } (Q_d, u, \lambda) \in W_h^e \times V_h^e \times M_h^e \text{ such that:}
\]
\[
\begin{align*}
(Q_d, w_k)_{\Omega_k} - (u_k \nabla \cdot (\sigma_d w_k))_{\Omega_k} + (\lambda_k \alpha w_k)_{\Omega_k} - (\beta \nabla \cdot u_k) \cdot w_k &= (f, w_k)_{\Omega_k}, \quad \forall w_k \in \Omega
\end{align*}
\]

Numerical results : degenerate case
We propose to study a heterogeneous and anisotropic case with the exact solution defined in \(\Omega = [0,1] \times [0,1] \) as:
\[
\begin{align*}
\alpha(x, y) &= 1 \quad \text{for } Q_1 \in [0,1] \times [0,1] \\
\beta(x, y) &= \alpha^{\gamma} \quad \text{for } Q_2 \in [0,1] \times [0,1]
\end{align*}
\]

For \(Q_1, Q_2 \) we have the conductivity tensor \(\sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) and for \(Q_2 \) we have \(\sigma = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \). The velocity field is defined in \(\Omega \) and we have \(\beta = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \).

Bibliography

Contact
Loïc DJOUX : loic.dijoux2@univ-reunion.fr
Vincent FONTAINE : vincent.fontaine@univ-reunion.fr