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Sensor-based Navigation of Omnidirectional Robots
Dealing with both Collisions and Occlusions in

Unknown Environments
Abdellah Khelloufi, Nouara Achour, Robin Passama, Andrea Cherubini

Abstract—Navigation tasks are often subject to several con-
straints that can be related to the sensors (visibility) or come
from the environment (obstacles). In this paper, we propose a
framework for omnidirectional mobile robots that takes into
account both collision and occlusion risk, during sensor-based
navigation. The task consists in driving the robot towards a
visual target in the presence of static and moving obstacles. The
target is acquired by fixed —limited field of view— on-board
sensors, while the obstacles surrounding the robot are detected
by lidar scanners. To perform the task, the robot has not only
to keep the target in view while avoiding the obstacles, but also
to predict its location in the case of occlusion. The effectiveness
of our approach is validated through several simulated and real
experiments.

Index Terms—Sensor-based navigation, obstacle avoidance,
visibility constraints, occlusions.

I. INTRODUCTION

NAVIGATION strategies generally aim at endowing a
mobile robot with capacities of perception, decision, and

action, that allow it to autonomously navigate in the environ-
ment. These strategies are traditionally divided in two main
classes, depending on whether the problem is solved locally or
globally. The global approach [1], [2], usually consists in mo-
tion planning, hence relies on accurate knowledge of the robot
pose and on a global map of the environment. On the other
hand, local or reactive strategies are based on instantaneous
information acquired by the robot sensors. These strategies
include: potential fields [3], vector field histogram [4], elastic
band [5], dynamic window [6], obstacle-restriction method [7],
and closest gap [8].

One of the advantages of reactive strategies is that they can
be well combined with other sensor-based approaches such as
visual servoing [9], [10]. In visual servoing, the task is defined
in the sensor space, instead of configuration space, and it does
not require neither a global model of the environment nor robot
localization. Works in this area include [11], where image-
based navigation is combined with obstacle avoidance, for a
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161 Rue Ada, 34090 Montpellier, France. (e-mail: lastname@lirmm.fr)

Manuscript received XX; revised xx.

differential-drive robot equipped with a pan actuated camera.
Moving obstacles may be considered in the same approach,
as shown in [12]. Recently, another interesting framework for
visual navigation with obstacle avoidance has been presented
in [13], for a car-like robot equipped with an actuated camera
and a lidar. The framework is based on tentacles [16], [17],
i.e., drivable paths used to predict possible collisions in the
near future. The task realized in [13] consists in following
a visual path represented by key images, without colliding
with the ground obstacles. The authors show that obstacle
avoidance does not affect the visual navigation performance.
Furthermore, the approach presents many advantages over
potential fields, as shown in [14]. The framework was later
improved [15], by using a Kalman filter to deal with obstacles
moving during navigation.

A frequent problem in vision-based task control is the loss
of image features, due to occlusions or to the sensor’s limited
field of view. Various prediction and correction methods have
been proposed to solve this issue [18]–[23]. However, all
these approaches are dedicated to manipulator arms. In the
context of mobile robotics, the problem of keeping visual
target or landmark visibility has been addressed from different
viewpoints. The authors of [24] and [25] study the shortest
paths in terms of distance in the image plane for a differential
drive robot equipped with a limited field of view sensor. The
objective is to obtain the globally optimal paths that allow
the robot to maintain a landmark in sight in the absence
of obstacles. Recently, these works have been extended to
handle environments populated with static obstacles [26]–[28].
However, all the methods proposed in these works are based
on motion planning and require a priori knowledge of the
robot environment. On the other hand, some researchers have
addressed visibility constraints in reactive, purely sensor-based
navigation strategies. For example, in [29], a homography-
based visual servo controller drives a mobile robot to a goal
pose by following some of the optimal paths proposed in [24].
Another solution, proposed in [30], consists in predicting the
location of features, when they are not visible, during visual
navigation in the presence of static obstacles.

Another limitation of the works presented above is that
none addresses control of omnidirectional mobile robots.
These systems, however, are getting increasingly popular in
industrial applications, since they can perform complex three-
dimensional trajectories in the plane, indispensable in limited
footprint environments. It is therefore surprising that no at-
tention has been paid to incorporating collision and occlusion
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constraints in the navigation tasks of such platforms.
In this paper, we address the problem of dealing with

both collisions and occlusions caused by static and moving
obstacles, during visual navigation of an omnidirectional mo-
bile robot equipped with fixed —limited field of view— on-
board sensors. Specifically, the navigation task consists in
safely driving the robot towards a static or moving target,
in an unknown environment. The robot has to avoid the
obstacles and to maintain the target in its field of view, while
simultaneously handling partial or total occlusions.

To solve this problem, we propose a generalization of the
framework designed in [13] for car-like robots, by introducing
omnidirectional tentacles. These tentacles are characterized
not only by curvature, but also by course angle, since the
robot linear velocity is not necessarily aligned with the robot
heading, as in traditional nonholonomic systems. We also
consider the visibility constraints that are induced by the
limitations of the fixed sensors field of view. Furthermore,
if the target is lost or (partially or totally) occluded by an
obstacle, a fast and efficient strategy is designed to estimate
its current pose, by using its previous pose along with the
control inputs.

Let us summarize the constraints that are satisfied by our
approach: 1) the robot safety is ensured, by avoiding collisions
with static and moving obstacles, 2) the target is maintained
as much as possible within the sensors field of view even in
presence of obstacles, 3) the loss or occlusion of the target is
handled by continuous online estimation of its pose.

To our knowledge, this is the first work addressing and val-
idating experimentally safe sensor-based navigation of omni-
directional robots under these three constraints. A very pre-
liminary version of our framework was presented in [31]
without considering target occlusion problem nor real vision
(the target pose was estimated via odometry alone). Our main
contributions with regards to that work are indicated hereby.
• The development of an algorithm for detecting and track-

ing the target pose, using one or two cameras along with
the lidar measures.

• The inclusion of target loss management to deal simulta-
neously with collision and occlusion.

• Analytical proofs of the conditions for controller asymp-
totic stability.

• Independence of the framework from odometry data.
The remainder of the paper is organized as follows. In

Sect. II, the problem and relevant variables are defined.
The omnidirectional generalization of tentacles is presented
in Sect. III, and we detail our controller in Sect. IV. In
Sect. V, we present the strategy for determining the best path
(tentacle) for navigation. Section VI describes the algorithm
used to detect and track the visual target. Simulated and real
experiments are presented in Sect. VII, and we finally conclude
in Sect. VIII.

II. GENERAL DEFINITIONS

A. Robotic platform

We consider an omnidirectional mobile robot, which can
move in any direction on the ground plane. Hence, the control
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Fig. 1. General definitions. The robot frame FR is shown along with the
occupancy grid (yellow), occupied cells (gray), omnidirectional tentacles (red),
and visual sensor center (C) with its field of view (blue).

inputs are:
u = [vX vY ω]> . (1)

These are aligned with the axes of the robot frame
FR (R,XR,YR) (see Fig. 1), with R the robot center of rotation,
XR pointing forward and YR pointing left.

The robot is equipped with a set of forward looking visual
sensors (e.g., one or more cameras) with a combined field of
view β , centered at C. It also has distance sensors for building
a local map (occupancy grid) of the obstacles surrounding
it. The visual sensors are fixed, so the robot heading also
determines its viewing direction.

B. Visual target

The task to be performed by the robot consists in driv-
ing towards a visible target, while avoiding the environment
obstacles. When the environment is safe, the robot should
progress forward, while viewing the target. In case avoidable
obstacles (either static or moving) are present, the robot should
circumnavigate them, while maintaining the target in the field
of view. If the target is lost or occluded by an obstacle, its
current pose must be estimated by using its previous location
along with the current robot control inputs. Finally, if collision
is inevitable or if the target is not visible for a long time, the
robot must stop.

The specifications of the navigation task are:
1) orient the robot so as to point the visual sensors towards

the target,
2) make the robot progress towards the target,
3) avoid collisions with the obstacles, while keeping the

target in sight.
4) estimate the target pose during occlusions, in order to

predict its pose in case of reappearance.
More formally, to fulfill specification 2, the robot should
be controlled so that the visual target T (that can be static
or moving) is displaced in FR , from the current pose
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Fig. 2. Definition of the visual task variables.

RpT =
[

RXT
RYT

RθT
]> to a desired constant pose, Rp∗T =[

RX∗T
RY ∗T

Rθ ∗T
]> (see Fig. 2 for a complete illustration of these

variables).
We define (see Fig. 2):

1) the distance between current and desired target posi-
tions:

ρ
∗ =

√
(RXT −R X∗T )

2 + (RYT −R Y ∗T )
2, (2)

2) the orientation offset between current and desired target
positions, defined only when ρ∗ 6= 0:

α
∗ = atan2

(RYT −R Y ∗T ,
R XT −R X∗T

)
, (3)

3) the distance between robot and target position:

ρT =

√
RXT

2 + RYT
2, (4)

4) the heading to the target:

αT =

{
atan2

(
RYT ,

R XT
)

if
(

RXT ,
R YT

)
6= (0,0) ,

0 otherwise.
(5)

In our work, we also consider the following hypothesis,
which will be used in the stability proofs of Sect. IV-E.

Hypothesis 1. The velocity of the target is negligible with
respect to that of the robot.

Under hypothesis 1:
RẊT =−vX + ω RYT
RẎT =−vY − ω RXT
Rθ̇T =−ω

. (6)

Although this hypothesis is needed for the stability proof, in
the experiments we have also validated our framework in cases
where the target velocity is close to the robot one.

C. Obstacle occupation times

For obstacle modeling, we use the occupancy grid shown
in Fig. 1: it is linked to FR , with cell sides parallel to XR and
YR. Its longitudinal and lateral extensions are limited (Xm ≤
XR ≤ XM and Ym ≤ YR ≤ YM), to ignore obstacles that are too
far to jeopardize the robot. Any grid cell c centered at (X ,Y )
is considered occupied if an obstacle has been sensed in c.

The set of occupied cells with their estimated velocities, is
denoted by state vector O:

O = {c1, . . . ,cn, ċ1, . . . , ċn} . (7)

This is used, along with the robot geometric and kinematic
characteristics, to derive possible future collisions. Indeed,
the estimations of the obstacles positions and velocities are
updated at every iteration, by the Kalman observer designed
in [15]. Then, for each ci that may be occupied by an obstacle
within time horizon Th, we can predict initial ti0 (O) ∈ [0,Th]
and final ti f (O) ∈ [ti0,Th] obstacle occupation times, in func-
tion of the set of occupied cell states O .

III. OMNIDIRECTIONAL TENTACLES

We hereby present a generalization of the tentacles-based
approach proposed in [13], to omnidirectional robots.

A. Definitions

We use a set of drivable paths (tentacles) both for perception
and motion execution. Each tentacle j is a semicircle that starts
in R and is tangent to the robot linear velocity. The norm of
this velocity is: ‖v‖=

√
v2

X + v2
Y .

In contrast with the tentacles originally proposed in [15],
our omnidirectional tentacles are characterized not only by
their curvature (i.e., inverse radius)

κ j =

{
ω/‖v‖ if ‖v‖ 6= 0,
0 otherwise, (8)

but also by their course angle

α j =

{
atan2(vY ,vX ) if ‖v‖ 6= 0,
0 otherwise. (9)

In fact, note that on traditional nonholonomic systems, since
the robot linear velocity is aligned with the robot heading
vY = 0, thus α j = 0 for all control inputs (i.e., all tentacles are
tangent to the robot heading).

Curvature κ j belongs to K , a uniformly sampled set1:

κ j ∈K = {−κM, . . . ,0, . . . ,κM} (10)

and α j belongs to A , another uniformly sampled set:

α j ∈A = {αMin, . . . ,0, . . . ,αMax} ⊆ [−π,π[ . (11)

The set of tentacles is T = K ×A . The total number of
tentacles in T is the product of the number of candidate
curvatures by the number of candidate course angles. An
example with 36 tentacles (3 curvatures × 12 course angles)

1For algorithmic reasons, we bound the tentacle curvature to an arbitrarily
large value κM , although omnidirectional robots can follow tentacles of infinite
curvature (i.e., pivot in place) whenever ‖v‖= 0.
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is shown in Fig. 1. Since tentacles are used both for perception
and motion execution, a compromise between computational
cost and control accuracy must be reached to set the sizes of
K and A .

Each tentacle j is characterized by two classification areas
(collision and dangerous), which are obtained by rigidly
displacing, along the tentacle, two rectangular boxes, with
increasing size. The boxes are overestimated with respect to
the real robot dimensions. For each tentacle j, the sets of cells
belonging to the two classification areas are noted C j and D j

2.
The sets O , C j and D j are used to calculate the variables
required in our control law, as will be explained just below. In
particular, the largest classification area D j is used to select
the safest tentacle and to assess its danger, while the thinnest
one C j determines the - eventually needed - deceleration.

B. Robot occupation times

For each dangerous collision cell in tentacle j (i.e., for each
cell ci ∈D j), we compute the robot occupation time ti j. This
is an estimate of the time at which the box will enter the cell,
assuming the robot follows the tentacle at the current velocity.
To calculate ti j (ci,v,α j,κ j), we assume that the robot motion
is uniform, and displace the box at the current robot velocities: vX = ‖v‖ cosα j

vY = ‖v‖ sinα j
ω j = κ j ‖v‖,

(12)

until the instant ti j at which the box intersects cell ci.

C. Dangerous instants and collision instants

Once the obstacle and robot occupation times have been
calculated for each cell, we can derive the earliest time instant
at which a collision between obstacle and robot may occur on
each tentacle j. By either checking all cells in D j, or focusing
just on C j ⊂ D j, and using variables ti0 and ti f introduced
in Sect. II-C, we discern between dangerous instants and
collision instants. These are defined respectively as:

t j = inf
ci∈D j

{
ti j : ti0 ≤ ti j ≤ ti f

}
, (13)

and

tc
j = inf

ci∈C j

{
ti j : ti0 ≤ ti j ≤ ti f

}
. (14)

In both cases, we seek the earliest time at which a cell is
simultaneously occupied by the obstacle and by the robot box.
Assuming constant robot and obstacle velocities, these metrics
give a good approximation of the time that the robot can travel
along the tentacle without colliding. Further details are given
in [13].

2For further details on the derivation of C j and D j , refer to [13].

IV. CONTROL SCHEME
A. Tentacle risk function

To assess the danger of each tentacle j, we design a tentacle
risk function, by using t j and tuned thresholds td > 0 and
ts > td (d stands for dangerous, and s for safe):

H j =


0 if t j ≥ ts
1
2

[
1+ tanh

(
1

t j−td
+ 1

t j−ts

)]
if td < t j < ts

1 if t j ≤ td .
(15)

Note that H j smoothly varies from 0, when possible collisions
are in the far future, to 1, when they are forthcoming. If H j = 0,
the tentacle is tagged as clear.

To determine the best behaviour (among visual target track-
ing and obstacle avoidance) to adopt, we assess the danger of
the environment via the risk function H =Hv of the visual task
tentacle, (κv,αv). This is the tentacle that best approximates
the visual path that the robot would follow to reach the target
in absence of obstacles. Depending on the value of H (noted
situation risk function), we distinguish the contexts (safe or
unsafe) explained below. The derivation of the visual task
tentacle is also explained hereby.

B. Safe context
In the safe context (H = 0), no dangerous obstacle is

detected on the robot path. In this case, it is desirable that the
robot realizes the task of driving RpT to Rp∗T , while keeping
as much as possible T within its field of view.

Since the angular velocity ω determines both the conver-
gence of RθT to Rθ ∗T (for pose regulation) and that of αT to
0 (for target visibility), a compromise must be reached. We
weigh the two objectives respectively with a gain λω ∈ [0,1]
and with its complementary 1−λω . Priority is given to target
visibility when the desired position is farther than ρα , and to
pose regulation when it is nearer than ρθ

3. In between, we use
a smoothing function, as in (15):

λω (ρ∗)=


1 if ρ∗ ≥ ρα

1
2

[
1+ tanh

(
1

ρθ−ρ∗ +
1

ρα−ρ∗

)]
if ρθ < ρ∗ < ρα

0 if ρ∗ ≤ ρθ .
(16)

The norm of the translation velocity v must be reduced, as the
target is approached. We specify this through variable:

vs (ρ
∗) =

{
V if ρ∗ > ρv,
ρ∗

ρv
V otherwise,

(17)

with V > 0 the maximum desired value for vs and ρv > 0 the
distance at which the robot should slow down. Both V and ρv
are easily tunable variables.

Finally, the translation velocity must be aligned with the
heading towards the desired position α∗, when the target is far
(λω = 1). As the target gets near (λω < 1), we also compensate
the effects of the angular velocity ω in (6). In summary, the
robot control inputs in the safe context are: vX = vs cosα∗ + (1−λω) ω RYT

vY = vs sinα∗ − (1−λω) ω RXT
ω = λω αT + (1−λω)

(
RθT − Rθ ∗T

)
.

(18)

3Both ρα and ρθ are pre-tuned, and 0 < ρθ < ρα .
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The above safe context control law (18) is also used to define
the visual path curvature κs and course angle αs:{

κs =
[
λω αT + (1−λω)

(
RθT − Rθ ∗T

)]
/‖v‖

αs = atan2(vY ,vX ) .
(19)

Note that in general κs and αs will not correspond to a
tentacle belonging to set T , but they will be used to find the
nearest tentacle in T , i.e., the visual task tentacle (κv,αv) that
characterizes the situation risk function H = Hv, as explained
in Sect. V-C.

C. Unsafe context

In the unsafe context (H = 1), dangerous obstacles are
detected. The robot should circumnavigate them by following
the best tentacle. The norm of the translation velocity must
be reduced for safety reasons (i.e., to avoid collisions). We
specify this by using a function vu ∈ [0,vs]:

‖v‖= vu =


vs if tc

b ≥ tc
s

vs
√

tc
b− tc

d/tc
s − tc

d if tc
d < tc

b < tc
s

0 if tc
b ≤ tc

d

(20)

(with tc
d > 0 and tc

s > tc
d two thresholds corresponding to

dangerous and safe collision times) to guarantee that the
vehicle decelerates (and eventually stops) as the collision
instant on the best tentacle tc

b decreases. Then, the robot control
inputs in the unsafe context are: vX = vu cosαb

vY = vu sinαb
ω = κb vu.

(21)

D. General control law

In intermediate contexts (0 < H < 1), the robot should
navigate between the visual path, and the best tentacle. The
transition between these two extremes will be driven by H.
Using all the variables defined above, we can write our
controller for visual navigation with obstacle avoidance: vX = (1−H)

(
vs cosα∗+(1−λω)ω RYT

)
+H vu cosαb

vY = (1−H)
(
vs sinα∗− (1−λω)ω RXT

)
+H vu sinαb

ω = (1−H)
(
λω αT +(1−λω)

(
RθT −R θ ∗T

))
+H vu κb.

(22)
Note that for H = 0 this coincides with (18), and for H = 1,
with (21).

E. Stability Analysis

Let us now focus on some interesting stability properties of
control law (22).

Property 1. In the safe context, if ρ∗ ≥ ρα (and therefore
λω = 1) controller (22) guarantees asymptotic convergence of
task vector s = [ρ∗ αT ]

> to s∗ = [ρα 0]>. Therefore, the robot
will orient its heading towards the target while simultaneously
approaching it until ρ∗ = ρα .

Proof. First, let us derive αT with respect to time, using (5)
(for ρT 6= 0), along with (6):

α̇T =
vX

RYT − vY
RXT

ρT 2 − ω. (23)

Injecting the safe context controller (18) in (23) when λω = 1:

α̇T =
vs

ρT 2

(RYT cosα
∗ − RXT sinα

∗) − αT . (24)

Since RYT/ρT = sinαT and RXT/ρT = cosαT :

α̇T =
vs

ρT
sin(αT −α

∗) − αT . (25)

Note that when ρ∗ ≥ ρα , αT ≈ α∗, since the Euclidean
distance between points R and T ∗ becomes neglectable with
respect to ρ∗ (see Fig.2). Hence, (25) becomes:

α̇T =−αT . (26)

Now, let us derive ρ∗ with respect to time, using (4):

ρ̇
∗ =

(
RXT −R X∗T

)R ẊT +
(

RYT −R Y ∗T
)R ẎT

ρ∗
. (27)

From (3) if ρ∗ 6= 0 (as is the case here):{ RXT −R X∗T = ρ∗ cosα∗
RYT −R Y ∗T = ρ∗ sinα∗.

(28)

Injecting this in (27) yields:

ρ̇
∗=−(vX cosα

∗+ vY sinα
∗) + ω ρT sin(αT −α

∗) , (29)

and with the safe context controller (18) since αT ≈ α∗:

ρ̇
∗ =−vS. (30)

Finally, let us consider the Lyapounov function V = e>e/2
where e = s− s∗. Its time derivative is:

V̇ = ė>e = [ρ̇∗ α̇T ]

[
ρ∗−ρα

αT

]
. (31)

Injecting (26) and (30) in (31) yields:

V̇ =−vs (ρ
∗−ρα)−α

2
T , (32)

which is clearly negative definite for e 6= 0 when ρ∗ ≥ ρα .

An alternative control strategy would have consisted in
applying the linear velocity that cancels the effect of ω in (6):{

vX = vs cosα∗+ωRYT
vY = vs sinα∗−ωRXT .

(33)

Although this controller guarantees asymptotic convergence of
both ωRXT and ωRYT to 0, it makes the value of αT constant
throughout navigation. Indeed, plugging (33) in (23) yields:

α̇T =
vs

ρ
sin(αT −α

∗) , (34)

which is neglectable, since αT ≈ α∗. In summary, con-
troller (33) does not give the possibility of centering the target
in the field of view, as one would expect (particularly for far
target).

Property 2. In the safe context, if ρ∗ ≤ ρθ , controller (22)
guarantees asymptotic convergence of task vector s =[
ρ∗ RθT

]> to s∗ =
[
0 Rθ ∗T

]>. Hence, the robot will asymptot-
ically converge to the desired pose with respect to the target.
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Proof. When λω = 0 (since ρ∗ ≤ ρθ ), injecting the safe
context controller (18) in 29 yields:

ρ̇
∗ =−vs, (35)

and from the last equation of (6):

R
θ̇t =

R
θ
∗
T −R

θT . (36)

Consider the same Lyapounov function as above. Since Rp∗T
is constant, the Lyapounov function derivative is:

V̇ = ė>e =
[
ρ̇
∗ R

θ̇T
][ ρ∗

Rθt −R θ ∗T

]
. (37)

If ρ∗ 6= 0, injecting (35) and (36) in (37) yields:

V̇ =−vsρ
∗−
(R

θT −R
θ
∗
T
)2
, (38)

which is clearly negative definite for e 6= 0.
If ρ∗ = 0, RXT =R X∗T and RYT =R Y ∗T . Hence, V̇ =

−
(

RθT −R θ ∗T
)2, which is also negative definite for e 6= 0.

Property 3. In the unsafe context, if moving (‖v‖ 6= 0), the
robot will precisely follow the best tentacle (κb,αb).

Proof. When H = 1, controller (22) becomes (21), and it is
trivial to see, by applying (8) and (9) that whenever ‖v‖ 6= 0,
the curvature and course angle will respectively coincide with
κb and αb.

These three properties outline some nice features of our
framework. For instance, consider the safe context. Property 1
shows that from far, the robot will orient its heading towards
the target (hence maintain it within its field of view), while
approaching it. When the robot is near enough to the target,
Property 2 is triggered. Then, the robot will servo its heading
towards the desired relative orientation, while converging to
the desired position with respect to the target.

It is noteworthy to mention that the properties are valid in
given operating situations (H and λω either null or unitary). It
is very difficult (and out of scope here) to study analytically
the behaviour of the system in the intermediate situations,
i.e., when H and λω are different from 0 or 1. However, the
smooth design of these two functions, as well the extensive
experimental validation of (22) (see Sect. VII) make us very
confident about the global performance of our framework.

In the next section, we explain the strategy that is adopted
to select the best tentacle to be followed in the unsafe context.

V. TENTACLES SELECTION STRATEGY

In this section, we describe our strategy for selecting the best
tentacle (κb,αb), that allows the robot to avoid the obstacles
while simultaneously performing the visual task. To this end,
we must first define a metric for sorting the tentacles. This is
explained in Sect. V-A. The visibility constraints to be satisfied
by the best tentacle are then described in Sect. V-B. These
criteria are finally used to select the best tentacle, as explained
in Sect. V-C.

A. Sorting tentacles

To apply any search algorithm to set T , in order to find
the best tentacle (κb,αb), the set must be somehow sorted. To
this end, we must find a metric characterizing similarity (or
difference) among tentacles. This is a non-trivial task, since
T is defined in a discrete non-Euclidean space:

T = K ×A ⊂ R×SO(2) , (39)

where a distance metric cannot be defined, without weighing
– arbitrarily – the relative importance of a scalar (κ j) with
respect to an angle (α j). To solve this problem, we rely on
the following property.

Property 4. Let an omnidirectional robot be modeled as a
point. Its Cartesian position, after having followed tentacle
(κ j,α j) at velocity ‖v‖ for an iteration ∆t << 1, depends only
on the scalar function: φR = α j + ‖v‖ ∆t

2 κ j.

Proof. Since we model the robot as a point, only changes in
the robot position (not orientation) are considered. We start by
calculating the robot position change after ∆t, in function of
(κ j,α j). To this end, we define a fixed frame FO (O,XO,YO)
that corresponds to the robot frame at the beginning of the
iteration (see Fig. 3). For each tentacle j, we can calculate the
robot position OpR =

[
OXR

OYR
]> in FO after the robot has

followed the tentacle for time ∆t. We can relate the derivative
of the robot pose in FO and the control inputs:

˙OXR = vX cos
(

OθR
)
− vY sin

(
OθR

)
˙OYR = vX sin

(
OθR

)
+ vY cos

(
OθR

)
˙OθR = ω.

(40)

Using (12), we can rewrite (40) in function of the followed
tentacle, i.e., in function of κ j and α j:

˙OXR = ‖v‖ (cosα j cos
(

OθR
)
− sinα j sin

(
OθR

)
)

˙OYR = ‖v‖ (cosα j sin
(

OθR
)
+ sinα j cos

(
OθR

)
)

˙Oθr = ‖v‖ κ j.
(41)

By integrating this expression, we can obtain the robot position
at ∆t. We distinguish two cases according to κ j:
• if κ j = 0 (i.e. the tentacle is a straight line), the robot

position will be:{ OXR = ‖v‖ ∆t cosα j
OYR = ‖v‖ ∆t sinα j;

(42)

• if κ j 6= 0, the robot position will be:{ OXR = 2/κ j sin(κ j ‖v‖ ∆t/2) cos(α j + κ j ‖v‖ ∆t/2)
OYR = 2/κ j sin(κ j ‖v‖ ∆t/2) sin(α j + κ j ‖v‖ ∆t/2).

(43)
Converting the position to polar coordinates (rR,φR), with rR =√

OX2
R +O Y 2

R and φR = atan2(OYR,
O XR) (see Fig. 3) yields

rR (α j,κ j) =

{
‖v‖ ∆t if κ j = 0
2
κ j

sin
(

κ j
2 ‖v‖ ∆t

)
otherwise, (44)

φR (α j,κ j) = α j +
‖v‖ ∆t

2
κ j. (45)
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Fig. 3. Variables needed for tentacle selection.

Since the robot movement is small during an iteration (as
∆t << 1), sin

(
κ j
2 ‖v‖ ∆t

)
≈ κ j

2 ‖v‖ ∆t, and therefore rR will
not vary much from a tentacle to the other (rR ≈ ‖v‖ ∆t).
Hence, the robot position after having followed the tentacle at
velocity ‖v‖ for ∆t will depend only on φR.

As a consequence of Property 4, we have decided to sort the
tentacles according to their values of φR, calculated using (45),
and noted φR, j for each tentacle j.

B. Tentacles guaranteeing visibility

In this section, we introduce the visibility constraints in our
obstacles avoidance strategy. To ensure that the target is not
lost during navigation, the best tentacle should keep the target
in sight. However, this is not possible for all tentacles, since
the robot is constrained to look in its heading direction. Here,
we consider as tentacles that guarantee visibility, those that
will maintain the target in the field of view after an iteration
∆t.

For a given tentacle j, we define (again, refer to Fig. 3):
1)
(

OXT ,
O YT ,

OθT
)
: the target pose (at t = 0) in the initial

robot frame FO (RO,XO,YO)
2)
(

RXT ,
R YT ,

RθT
)
: the target pose (at t = ∆t) in the robot

frame FR (RR,XR,YR).
The relation between these two poses is given by :
RXT
RYT
RθT

1

=


cos(ω∆t) sin(ω∆t) 0 RXO
−sin(ω∆t) cos(ω∆t) 0 RYO

0 0 1 −ω∆t
0 0 0 1




OXT
OYT
OθT

1


(46)

where
(

RXO,
R YO

)
are the coordinates of the origin of FO

in FR . Typically, after ∆t these can be expressed in polar
coordinates as:{ RXO =−rR cos(φR−ω ∆t)

RYO =−rR sin(φR−ω ∆t). (47)

Injecting (47) in (46) and using (45), we derive the target
position

(
RXT ,

R YT
)

in the robot frame after ∆t. We distinguish
two cases:
• when κ j 6= 0:

RXT = cos(κ j ‖v‖ ∆t) OXT + sin(κ j ‖v‖ ∆t) OYT
−2/κ j sin(κ j ‖v‖ ∆t/2) cos(α j−κ j ‖v‖ ∆t/2)
RYT =−sin(κ j ‖v‖ ∆t) OXT + cos(κ j ‖v‖ ∆t) OYT
−2/κ j sin(κ j ‖v‖ ∆t/2) sin(α j−κ j ‖v‖ ∆t/2),

(48)
• if κ j = 0: { RXT = OXT − ‖v‖ ∆t cos(α j)

RYT = OYT − ‖v‖ ∆t sin(α j).
(49)

For the target to be visible, its position in the robot frame
must satisfy the following constraints:

{ RXT > RXC
RYC− (RXT −R XC) tan

(
β

2

)
<R YT <R YC +(RXT −R XC) tan

(
β

2

)
,

(50)
with

(
RXC,

R YC
)

the sensor center coordinates in FR and β its
field of view (see Fig. 1). In summary, to determine whether
tentacle j guarantees target visibility, it is sufficient to inject
its (κ j,α j) into (48) or (49) and then check if the resulting
RXT and RYT verify constraints (50).

C. Selecting the best tentacle

Let us describe the best tentacle selection strategy.
At initialization, all tentacles in set T = K ×A are sorted
according to their φR, j, calculated with (45).
Then, at each iteration ∆t we proceed as follows (see Algo-
rithm 1).

1) The subset of all tentacles that guarantee the visibility
constraints is derived as explained in Sect. V-B. If the
number of tentacles in this subset is sufficient (at least
5 in this work), all other tentacles are removed from T .
Otherwise, the entire set T is kept, to privilege obstacle
avoidance over occlusion avoidance. This choice is mo-
tivated on one hand by obvious safety reasons, and on
the other by the possibility – offered by the method that
will be explained in the next Section – of estimating the
target pose even when it is not visible.

2) For the path that the robot would perform if there were
no obstacles, i.e., if the safe context controller (18) was
applied, we compute: the course angle αs , curvature κs
using (19), and polar angular coordinate φR,s.

3) The tentacle that best approximates the visual path in T
(i.e., the nearest in terms of φR) is computed; we denote
it as the visual task tentacle (κv,αv) and calculate its
situation risk function as Hv using (15). This is also the
value that will be used in control law (22): H = Hv.
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Algorithm 1 Selecting the best tentacle
input: Sorted set of tentacles T , visual path (αs, κs), previ-

ous best tentacle (αp, κp), and target pose OpT .
output: Risk function H and best tentacle (αb, κb) (if H 6= 0).

1: N← FindVisibilityGuaranteeingTentacles(T , OpT );
2: if N > 5 then
3: T ← RemoveOtherTentacles(T );
4: end if
5: φR,s← CalculateSortingAngle(αs, κs);
6: φR,v← FindNearestSortingAngle(T , φR,s);
7: (αv,κv)← CalculateTentacleParameters(φR,v);
8: H← CalculateRiskFunction(αv, κv);
9: (αb,κb)← null;

10: if H 6= 0 then
11: φR,p← CalculateSortingAngle(αp, κp);
12: if φR,v < φR,p then
13:

(
φi, φ f

)
← (φR,v, φR,p);

14: else
15:

(
φi, φ f

)
← (φR,p, φR,v);

16: end if
17: (αb,κb)← FindNearestClearTentacle(T ,

[
φi, φ f

]
);

18: if (αb,κb) = null then
19: (αb,κb)← FindNearestClearTentacle(T ,
20: ]φmin,φi[∪

]
φ f , φmax

[
);

21: end if
22: end if
23: return (H, (αb,κb));

4) If H = 0, the visual task tentacle is clear and the safe
context controller (18) can be applied.

5) Instead, if H 6= 0, we seek a clear tentacle (i.e., one with
H j = 0).

a) First, we search among the tentacles with φR, j
between the one of the visual task tentacle and
that of the best tentacle at the previous iteration.

b) If many clear tentacles are present, the nearest to
the visual task tentacle is chosen.

c) If none of them is clear, we search among the
others (the tentacles that are not between the visual
task and the previous best tentacles). Again, the
best tentacle will be the clear one that is closest to
the visual task tentacle.

VI. TARGET DETECTION AND TRACKING

In this section, we describe our approach for detecting and
tracking over time the target pose (position and orientation) in
the robot frame, RpT . This is done by the robot visual sensor/s
with an image processing algorithm described in Sect. VI-A.
If the target is not visible, because it exits the field of view or
is occluded, an alternative method is applied, as explained in
Sect. VI-B.

A. Vision-based target detection

Our target detection algorithm relies on the following as-
sumptions:

 

    
(a) (b) 

    
(c) (d) 

    
(e) (f) 

Fig. 4. Target detection and tracking in the left and right images.(a-b) Raw
images. (c-d) Blob detection. (e-f) Cart contour extraction.

• the target is characterized by a predominant color,
• the visible part of the target is planar,
• as position of the target (RXT ,

R YT ), we take the Cartesian
coordinates of the visible plane in FR,

• as target orientation RθT , we take the angular offset from
XR to the normal vector entering the visible plane.

The described algorithm has been developed for the sensor
suite available on our self-made robotic platform BAZAR [32].
This is composed of a forward looking fixed pair of 55.8◦ field
of view cameras operating at 30 Hz, and two 270◦ Hokuyo
lidars placed at opposite corners of the base, and operating
at 40 Hz. The algorithm relies on both cameras, and on the
forward looking lidar. The lidar however, is used only when the
target is near, to obtain a precise estimation of RpT . The reason
is that, although lidar measurements are more precise on a
short range, they are biased by inaccuracy and false positives
on the long range. On the other hand, from far, when only
vision is used, orientation RθT cannot be properly estimated.
Note that controller (22) does not require RθT as long as ρ∗ ≥
ρα . Hence, the most intuitive design choice is to start using
the lidar only when ρ∗ < ρα . While ρ∗ ≥ ρα , only the target
position (RXT ,

R XT ) is calculated from vision without using
lidar data. Even if this estimation is imprecise, it will make the
robot approach the target, while orienting its heading towards
it until, for ρ∗ < ρα , the lidar will be activated and RθT will
also be estimated, to drive the robot to the desired pose with
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Fig. 5. Detecting the cart face segment using lidar measurements.

respect to the target.
For image processing, the same steps (developed with

OpenCV4) are applied to the left and right cameras. These
steps are detailed below and illustrated in Fig. 4.

1) The images are binarized with a logic conjunction (and
operator) of predefined ranges in the Hue, Saturation and
Value color space. This way, pixels of a certain color
(blue in Figures 4c and 4d) can be isolated.

2) A dilation and an erosion are applied to the binary image
to form blobs of pixels of the target’s color.

3) The blob with the largest contour is extracted (Figures 4e
and 4f).

4) Using the knowledge of the real target height (in meters)
along with the camera intrinsic and extrinsic parameters,
the position of the front face centroid is projected in FR
to obtain (RXT ,

R YT ).
5) If the blob is detected by both cameras, the average of

the two positions is used.
As the robot approaches the target and ρ∗ < ρα , the front

lidar is also utilized, to improve the position, and add the
orientation estimates. We proceed as follows (see Fig. 5):

1) A high resolution occupancy grid (cell size 3×3 cm) is
built from lidar measurements.

2) The two side borders of the blob are projected in the
grid for both the left (blue cone in Fig. 5) and right
(green) cameras.

3) The Hough transform is applied to detect all line seg-
ments in the two cones.

4) The extreme (nearer and farther) corners among all these
line segments are used to define a region of interest,
where linear regression on the raw lidar data is used to
find the visible target projection (red segment in Fig. 5).

5) From this segment, the target pose RpT is derived.
6) A Kalman Filter (with state vector composed of RpT and

RṗT ) is finally used to ensure continuity and robustness

4 http://opencv.org/

of the target pose estimation.

B. Dealing with total loss of the target

If none of the tentacles that guarantee robot safety can
satisfy the visibility constraints, the target will exit the field
of view and the above approach cannot be applied. The same
applies if obstacles on the robot path provoke a partial or total
target occlusion.

To overcome both problems, we estimate the target pose(
RXT ,

R YT ,
RθT
)

in the robot frame by using its previous pose(
OXT ,

O YT ,
OθT

)
and control inputs (vX , vY , ω). This is done

by integrating the target pose over time interval ∆t, using (46)
and (47):
• if ω 6= 0:

RXT = cos(ω ∆t) OXT + sin(ω ∆t) OYT
−2v/ω sin(ω ∆t/2) cos(α − ω ∆t/2)

RYT =−sin(ω ∆t) OXT + cos(ω ∆t) OYT
−2v/ω sin(ω ∆t/2) sin(α − ω ∆t/2)

RθT = OθT − ω ∆t,

(51)

with α defined as in (9), but in the general case (not just
α ∈A ).

• If ω = 0, the previous expression becomes:
RXT = OXT − vX ∆t
RYT = OYT − vY ∆t
RθT = OθT .

(52)

Injecting these equations in the same Kalman Filter as above
(with state vector composed of RpT and RṗT ), it is possible to
deal with the target total loss, by predicting its location without
affecting the robot behaviour. In practice, we use either (51)
or (52) (depending on ω) in control law (22).

VII. EXPERIMENTAL VALIDATION

Here, we report the simulated and real experiments that we
performed to validate our approach. These are also shown
in the video attached to this paper5. In all tests, we use
the same setup and parameters, the only difference being
the wheeled platform: KUKA youBot in simulations and
Neobotix MPO700 (the base of our BAZAR platform) in
real experiments. The target is a blue wheeled cart, similar
to the one used for kitting in automotive manufacturing by
our partner PSA Peugeot Citroën. It is automatically moved
in simulations, and manually pushed in the real experiments.
For simplicity, we position the target in the robot field of
view at the beginning of each simulation/experiment. A “target
searching” navigation procedure, out of scope here, could be
devised as future work.

Both the simulated KUKA youBot and real Neobotix
MPO700 are equipped with the BAZAR sensor suite described
in Sect. VI-A. In the visibility constraint equation (50), we
use as C the midpoint of the 2 optical centers and as β

(conservatively) the field of view of the cameras (55.8◦).
We set to ∆t = 200 ms the sampling time of our algorithm,
that includes visual processing (Sect. VI), tentacle processing

5Also visible online at https://youtu.be/K9yoNlqkqSI

http://opencv.org/
https://youtu.be/K9yoNlqkqSI
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Fig. 6. V-REP Scenario A: the robot (green box), equipped with two cameras (blue cones) and lidar scanners (red lines) navigates towards a static target
(blue) while avoiding collisions and dealing with occlusions caused by one static and three moving obstacles (all brown).

 

Fig. 7. V-REP Scenario A: robot control inputs (linear velocities vX and vY
in m/s and angular velocity ω in rad/s) during the simulation.

(Sections III and V) and control (Sect. IV) in a unique thread.
This choice of ∆t is motivated by the limitations of the PC
graphics card; in the future, we plan on parallelizing the
computation on multiple threads, to reduce ∆t. The obstacle
detecting occupancy grid (with XM =YM = 3 m, Xm =Ym =−3
m, and cell size 10× 10 cm) is built by projecting the lidar
readings from the two lidars. We use 147 tentacles (7 curva-
tures × 21 course angles), with κM = 0.4 m−1, αMin =−170◦,
and αMax = 170◦ The maximum translational velocity, that
is applied in the safe environment, and far from the target
using (17) is V = 0.4 ms−1. For the situation risk function we
use ts = 3.5 s and td = 3 s, for the unsafe translational velocity
tc
s = 2.25 s and tc

d = 1.5 s, and for the visual task ρα = 3.5 m
ρθ = 1 m and ρv = 2 m.

A. Simulations

Let us recall that the main goal is to perform vision-
based omnidirectional navigation in the presence of static or
moving – and possibly occluding – obstacles. To this end,
preliminary simulations were carried out in V-REP6, with
the KUKA youBot, an omnidirectional mobile robot with 4

6http://www.coppeliarobotics.com

 

Fig. 8. V-REP Scenario A: evolution of position (in meters) and orientation
(in degrees) errors of the target in the robot frame.

Swedish wheels. In V-REP, we have designed three scenarios
A, B, and C shown respectively in Fig. 6, Fig. 9, and Fig. 10,
along with the images acquired by the robot cameras during
the simulations. In these figures, the robot, target and obstacles
are represented respectively by green, blue and brown boxes.
In scenario A, the visual target is static, whereas in scenarios
B and C, it is moving. In all scenarios, the robot is able
to perform the visual task and to reach the desired relative
pose Rp∗T , while avoiding collisions and managing occlusions
provoked by the obstacles. We hereby describe the robot
behaviour for each scenario.

1) Scenario A: The environment is cluttered, with four
obstacles that may partially or totally occlude the target
(see Fig. 6). The closest obstacle is static, while the three
others move. We have plotted, in Fig. 7, the robot control
inputs during this navigation task. The plot shows that after
approximately 2 s, the robot is deviated (vY ) and oriented (ω)
so that the camera is pointing at the target. When the robot is
near the first obstacle (at t ≈ 3 s), it starts avoiding it while
keeping the target in the camera field of view. The target is
partially occluded by another obstacle without affecting the
robot behaviour. Then, the robot progresses toward the desired
pose before avoiding the second obstacle which induces a total

http://www.coppeliarobotics.com
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Fig. 9. V-REP Scenario B: the robot performs lateral avoidance of a moving obstacle while maintaining visibility of a moving target.
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Fig. 10. V-REP Scenario C: the robot follows a moving target in a cluttered corridor with two obstacles (one moving, one static).

occlusion of the target. Nevertheless, the robot performs its
task thanks to the target pose estimation module described in
Sect. VI-B. Afterwards, the robot succeeds in avoiding the last
two obstacles and reaches the target despite the occlusions they
cause (see images 7 and 8 in Fig. 6). Then (at t ≈ 33 s), the
environment is free again, and the visual task can be performed
for the rest of the experiment. At the end, the robot decelerates
and stops when the desired pose relative to the target has been
reached. The target position error

(
RXT − RXT

∗
,R YT − RYT

∗)
and orientation error

(
RθT − RθT

∗) are plotted in Fig. 8. Notice
that the target orientation RθT is not estimated until t ≈ 27 s
since before that, ρ∗ ≥ ρα , as explained in Sect. VI-A. As
we can see in these plots, all the errors converge to zero while
the robot is driving to the target. This result is coherent, as
the visual task consists in moving the target from the initial
to the desired pose in FR.

2) Scenario B: This scenario (shown in Fig. 9) is designed
to test lateral collision avoidance by exploiting the omnidi-
rectional characteristic of the robot. The target is moving in
the lateral direction with regards to the robot (roughly in the
direction parallel to the YR axis) and an obstacle approaches the
robot in the same direction, but opposite verse. After reaching
the desired pose relative to the moving target, the controller
deviates the robot to maintain its relative heading (hence to
guarantee target visibility) while avoiding the moving obstacle.
When the environment is clear again, the robot returns to the
desired relative pose.

3) Scenario C: Here, we consider navigation in a corridor
(light purple in Fig. 10), common in indoor environments. The
target is moving in the corridor, and the robot must follow it,
while avoiding the walls as well as two brown boxes. The
first one moves perpendicularly to the path and induces an
occlusion, while the second one is static and presents a risk of
collision. Despite the limited mobility within this environment,
the robot is capable of dealing with the occlusion and avoiding

both obstacles, while successfully following the target.

B. Real experiments

After the simulations, we have validated our approach
in extensive real experiments, carried out on our Neobotix
MPO700 platform. This is an omnidirectional robot with 4
steerable wheels, hence with a reduced mobility as compared
to the Swedish wheels platform used in V-REP. The MPO700
wheels are driven by a low level controller that runs on the
embedded PC at a rate of 40 Hz. Instead, our controller and
sensor processing algorithms run on an on-board PC that sends
the velocity commands (vX ,vY ,ω) to the MPO700 PC, via
ethernet.
We have also designed three scenarios:

1) Scenario A: The robot navigates towards the – static –
blue cart, with two obstacles (brown panels) present in the
environment. The purpose of the experiment is to validate
our framework when the robot has to handle simultaneously
collisions and occlusions. We show in Fig. 11 the scenario as
well as the images acquired by the robot left camera during
navigation. The control inputs are plotted in Fig. 12. At the
beginning (snapshots 1-3), since there is no risk of collision or
occlusion, the robot is deviated (vY ) and oriented (ω) so that
the cameras points at the blue chariot. The first obstacle is then
circumnavigated without provoking occlusions nor target loss.
After that, we manually move the second obstacle in order
to totally occlude the target (snapshots 4 and 5). As can be
seen, the robot successfully predicts the target location, while
avoiding the obstacle. Finally, when there is no more risk of
collisions or occlusions, the robot converges towards the blue
cart (snapshots 6-10). The evolution of the target position and
orientation errors, during the navigation task, are plotted in
Fig. 13. It can be seen that all three errors converge to zero
as desired. As shown in Fig. 12 (and previously in Fig. 7),
the control inputs generated by our controller are not smooth.
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Fig. 11. Real Scenario A: the MPO700 platform navigates safely towards a static blue chariot. Top: images from the left camera, bottom: the robot (grey)
avoids two obstacles while dealing with total target occlusion.

 

Fig. 12. Real Scenario A: MPO700 Control inputs (linear velocities vX and
vY in m/s and angular velocity ω in rad/s).

This is due to the nature of our approach, that is based on
sampling a set of drivable paths. Since the sample time of our
controller is higher than that of the steering wheels controller,
it could be possible to filter this signal at low level. This will
be done as future work.

2) Scenario B: In the second experiment, the navigation
task consists in exploiting the omnidirectional characteristic of
the robot, to follow and keep in sight a moving target, while
avoiding a lateral moving obstacle (a pedestrian). As shown
in Fig. 14, the robot successfully performs the visual task in
spite of the walking person.

3) Scenario C: A final very challenging experiment was
carried out to assess the robot behaviour in a complex envi-
ronment, including first a corridor and then a cluttered hall (see

 

Fig. 13. Real Scenario A: evolution of position (in meters) and orientation
(in degrees) errors of the target in the robot frame.

Fig. 15). The robot starts by following the blue chariot that
is moving along the corridor (snapshots 1-4). A first moving
obstacle (human) crosses the robot path and occludes the target
without affecting its behaviour (snapshot 5). The robot also
succeeds in avoiding a second obstacle, while following and
keeping the target in its field of view until reaching the hall
(snapshot 6 and 7). Then, the robot is in a difficult situation
where an obstacle crosses its way, while the target has slightly
changed direction (snapshot 8). This leads to a complete loss
of target visibility. Once again, the robot manages to avoid the
obstacle and to recover the chariot, thanks to the target pose
estimation module. Finally, the robot reaches the desired pose
with respect to the target (snapshots 9 and 10), after having
avoided all obstacles while either keeping the target visibility
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Fig. 14. Real Scenario B: lateral obstacle avoidance while maintaining the blue chariot in sight.
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Fig. 15. Real Scenario C: the MPO700 follows a moving target in a cluttered environment, composed first of a corridor and then of a crowded hall.

or predicting its location.

VIII. CONCLUSIONS

We have presented a framework that guarantees obstacle
avoidance during visual navigation of an omnidirectional robot
that has to deal with visibility constraints. Additionally, the
proposed framework can deal with partial and total visual
occlusions provoked by the obstacles. For both perception
and motion execution, we design omnidirectional tentacles
that exploit the kinematics of the platform. Simulated and
real experiments show that the robot is able to perform the
task, with safety and smoothness, in spite of occlusions. Future
work will investigate how to extend the proposed framework
to Multi-Target Tracking (i.e., looking at multiple targets) in
the presence of static and moving obstacles.
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