Triplet CNN and pedestrian attribute recognition for improved person re-identification

Abstract : In this paper, we propose a pedestrian attribute recognition approach and a CNN-based person re-identification framework enhanced by pedestrian attributes. The knowledge of person attributes can help video surveillance tasks like person re-identification as well as person search, semantic video indexing and retrieval to overcome viewpoint changes with their robustness to the inherent visual appearance variations. Compared to previous approaches, our attribute recognition method using Local Maximal Occurrence (LOMO) features and a Multi-Label Multi-Layer Perceptron (MLMLP) classifier proves to be more robust to different view points and is computationally more efficient. The experiments on three public benchmarks show that the proposed method improves the state-of-the art on attribute recognition. Furthermore, we integrate our attribute recognition algorithm into a triplet CNN similarity learning framework for person re-identification fusing both learned CNN features and attributes. This fusion leads to an overall improvement, and we achieve state-of-the-art results on person re-identification.
Type de document :
Communication dans un congrès
14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2017), Aug 2017, Lecce, Italy. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017, 〈10.1109/AVSS.2017.8078542〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01625479
Contributeur : Yiqiang Chen <>
Soumis le : mardi 7 novembre 2017 - 10:30:48
Dernière modification le : mardi 10 juillet 2018 - 17:02:03
Document(s) archivé(s) le : jeudi 8 février 2018 - 12:12:06

Fichier

avss2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Triplet CNN and pedestrian attribute recognition for improved person re-identification. 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2017), Aug 2017, Lecce, Italy. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017, 〈10.1109/AVSS.2017.8078542〉. 〈hal-01625479〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

414