Pedestrian attribute recognition with part-based CNN and combined feature representations

Abstract : In video surveillance, pedestrian attributes such as gender, clothing or hair types are useful cues to identify people. The main challenge in pedestrian attribute recognition is the large variation of visual appearance and location of attributes due to different poses and camera views. In this paper, we propose a neural network combining high-level learnt Convolutional Neural Network (CNN) features and low-level handcrafted features to address the problem of highly varying viewpoints. We first extract low-level robust Local Maximal Occurrence (LOMO) features and learn a body part-specific CNN to model attribute patterns related to different body parts. For small datasets which have few data, we propose a new learning strategy, where the CNN is pre-trained in a triplet structure on a person re-identification task and then fine-tuned on attribute recognition. Finally, we fuse the two feature representations to recognise pedestrian attributes. Our approach achieves state-of-the-art results on three public pedestrian attribute datasets.
Type de document :
Communication dans un congrès
VISAPP2018, Jan 2018, Funchal, Portugal
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger
Contributeur : Yiqiang Chen <>
Soumis le : jeudi 21 juin 2018 - 11:55:46
Dernière modification le : samedi 9 février 2019 - 01:26:18
Document(s) archivé(s) le : mardi 25 septembre 2018 - 00:14:40


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01625470, version 1


Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Pedestrian attribute recognition with part-based CNN and combined feature representations. VISAPP2018, Jan 2018, Funchal, Portugal. 〈hal-01625470〉



Consultations de la notice


Téléchargements de fichiers