Mining exceptional closed patterns in attributed graphs

Anes Bendimerad 1 Marc Plantevit 1 Céline Robardet 1
1 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Geo-located social media provide a large amount of information describing urban areas based on user descriptions and comments. Such data makes possible to identify meaningful city neighborhoods on the basis of the footprints left by a large and diverse population that uses this type of media. In this paper, we present some methods to exhibit the predominant activities and their associated urban areas to automatically describe a whole city. Based on a suitably attributed graph model, our approach identifies neighborhoods with homogeneous and exceptional characteristics. We introduce the novel problem of exceptional subgraph mining in attributed graphs and propose a complete algorithm that takes benefits from closure operators, new upper bounds and pruning properties. We also define an approach to sample the space of closed exceptional subgraphs within a given time-budget. Experiments performed on 10 real datasets are reported and demonstrate the relevancy of both approaches, and also show their limits.
Type de document :
Article dans une revue
Knowledge and Information Systems (KAIS), Springer, 2018, 56 (1), pp.1 - 25. 〈10.1007/s10115-017-1109-2〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger
Contributeur : Anes Bendimerad <>
Soumis le : vendredi 27 octobre 2017 - 09:18:38
Dernière modification le : mercredi 28 novembre 2018 - 21:23:28
Document(s) archivé(s) le : dimanche 28 janvier 2018 - 12:37:39


Mining exceptional closed patt...
Fichiers produits par l'(les) auteur(s)




Anes Bendimerad, Marc Plantevit, Céline Robardet. Mining exceptional closed patterns in attributed graphs. Knowledge and Information Systems (KAIS), Springer, 2018, 56 (1), pp.1 - 25. 〈10.1007/s10115-017-1109-2〉. 〈hal-01625007〉



Consultations de la notice


Téléchargements de fichiers