R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in: Handbook of numerical analysis, VII, Handb. Numer. Anal., VII, pp.713-1020, 2000.

A. Ern and J. Guermond, Theory and Pratice of Finite Elements, Applied Mathematical Sciences, vol.159, 2004.

R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn et al., 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids, pp.95-130, 2011.
DOI : 10.1007/978-3-642-20671-9_89

URL : https://hal.archives-ouvertes.fr/hal-00580549

Y. Fournier, J. Bonelle, P. Vezolle, C. Moulinec, and A. Sunderland, an automatic joining mesh approach for computational fluid dynamics to reach a billion cell simulations, Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2011.

F. Archambeau, N. Mechitoua, and M. Sakiz, Code saturne: A Finite Volume code for the computation of turbulent incompressible flows -industrial applications, International Journal on Finite Volumes, vol.1, issue.1
URL : https://hal.archives-ouvertes.fr/hal-01115371

C. Moulinec and P. Wesseling, Colocated schemes for the incompressible Navier-Stokes equations on non-smooth grids for two-dimensional problems, International Journal for Numerical Methods in Fluids, vol.149, issue.3, pp.349-364, 2000.
DOI : 10.1007/978-3-642-97651-3

M. C. Melaaen, CALCULATION OF FLUID FLOWS WITH STAGGERED AND NONSTAGGERED CURVILINEAR NONORTHOGONAL GRIDS-THE THEORY, Numerical Heat Transfer, Part B: Fundamentals, vol.21, issue.1, pp.1-1910, 1080.
DOI : 10.1080/01495728508961844

M. C. Melaaen, CALCULATION OF FLUID FLOWS WITH STAGGERED AND NONSTAGGERED CURVILINEAR NONORTHOGONAL GRIDS-A COMPARISON, Numerical Heat Transfer, Part B: Fundamentals, vol.106, issue.1, pp.21-3910, 1080.
DOI : 10.1016/0021-9290(76)90001-4

J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes, IMA Journal of Numerical Analysis, vol.35, issue.4
DOI : 10.1093/imanum/dru051

URL : https://hal.archives-ouvertes.fr/hal-00939164

J. Bonelle and A. Ern, Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.2, pp.553-581, 2014.
DOI : 10.1515/9781400877577

URL : https://hal.archives-ouvertes.fr/hal-00751284

J. Bonelle, Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01116527

P. Cantin, J. Bonelle, E. Burman, and A. Ern, A vertex-based scheme on polyhedral meshes for advection???reaction equations with sub-mesh stabilization, Computers & Mathematics with Applications, vol.72, issue.9, pp.2057-2071, 2016.
DOI : 10.1016/j.camwa.2016.07.038

URL : https://hal.archives-ouvertes.fr/hal-01285957

P. Cantin and A. Ern, Abstract, Computational Methods in Applied Mathematics, vol.16, issue.2
DOI : 10.1515/cmam-2016-0007

F. Brezzi, A. Buffa, and K. Lipnikov, Mimetic finite differences for elliptic problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.187, issue.2, pp.277-295, 2009.
DOI : 10.1016/S0045-7825(00)80001-8

F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.43, issue.5, pp.1872-1896, 2005.
DOI : 10.1137/040613950

L. Codecasa and F. Trevisan, Constitutive equations for discrete electromagnetic problems over polyhedral grids, Journal of Computational Physics, vol.225, issue.2, pp.1894-1918, 2007.
DOI : 10.1016/j.jcp.2007.02.032

R. Eymard, C. Guichard, and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.228, issue.2, pp.265-290, 2012.
DOI : 10.1016/j.jcp.2009.05.002

URL : https://hal.archives-ouvertes.fr/hal-00542667

R. Eymard, T. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, vol.30, issue.4, pp.1009-1043, 2010.
DOI : 10.1093/imanum/drn084

J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, GRADIENT SCHEMES: A GENERIC FRAMEWORK FOR THE DISCRETISATION OF LINEAR, NONLINEAR AND NONLOCAL ELLIPTIC AND PARABOLIC EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.93, issue.13, pp.2395-2432, 2013.
DOI : 10.1023/A:1008009714131

URL : https://hal.archives-ouvertes.fr/hal-00751551

Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. G. Sunderland et al., Optimizing Code Saturne computations on Petascale systems, Computers & Fluids, vol.45, issue.1, 2011.

P. Bochev, J. M. Hyman, P. Arnold, R. Bochev, and R. Lehoucq, Principles of mimetic discretizations of differential operators of The IMA Volumes in mathematics and its applications, Compatible Spatial Discretization, pp.89-120, 2005.

M. Desbrun, E. Kanso, and Y. Tong, Discrete differential forms for computational modeling, in: Oberwolfach Seminars, pp.287-324, 2008.

G. Kron, A Set of Principles to Interconnect the Solutions of Physical Systems, Journal of Applied Physics, vol.19, issue.8, 1953.
DOI : 10.1109/EE.1948.6444220

F. Branin, The Algebraic-Topological Basis for Network Analogies and the Vector Calculus, Symposium on generalized networks, pp.12-14, 1966.

R. Hiptmair, Discrete Hodge-Operators: An Algebraic Perspective, Progress In Electromagnetics Research, vol.32, pp.247-269, 2001.
DOI : 10.2528/PIER00080110

J. Bonelle, D. A. Pietro, and A. Ern, Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes, Computer Aided Geometric Design, vol.35, issue.36, pp.27-41, 2015.
DOI : 10.1016/j.cagd.2015.03.015

URL : https://hal.archives-ouvertes.fr/hal-01097311

L. Codecasa, R. Specogna, and F. Trevisan, A new set of basis functions for the discrete geometric approach, Journal of Computational Physics, vol.229, issue.19
DOI : 10.1016/j.jcp.2010.06.023

D. A. Di-pietro and S. Lemaire, An extension of the Crouzeix???Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Mathematics of Computation, vol.84, issue.291, pp.1-31, 2015.
DOI : 10.1090/S0025-5718-2014-02861-5

URL : https://hal.archives-ouvertes.fr/hal-00753660

F. Tracy, 1-D, 2-D, and 3-D analytical solutions of unsaturated flow in groundwater, Journal of Hydrology, vol.170, issue.1-4, pp.199-214, 1995.
DOI : 10.1016/0022-1694(94)02674-Z

J. Simunek, R. Van-genuchten, and M. Sejna, Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes, Vadose Zone Journal, vol.7, issue.2, pp.587-600, 2008.
DOI : 10.2136/vzj2007.0077

D. A. Di-pietro, A. Ern, and S. Lemaire, Abstract, Computational Methods in Applied Mathematics, vol.14, issue.4, pp.461-472, 2014.
DOI : 10.1515/cmam-2014-0018

URL : https://hal.archives-ouvertes.fr/hal-00318390