X-RAY STRUCTURE OF 1,2-DIBORAZINE-2,6-DICHLORO-4,4-TRI(DIISOPROPYLAMINO) TOLUENE SOLVATE

David Cornu, Bérangère Toury, Sylvain Lecocq, Claude Bavoux, Philippe Miele

To cite this version:

David Cornu, Bérangère Toury, Sylvain Lecocq, Claude Bavoux, Philippe Miele. X-RAY STRUCTURE OF 1,2-DIBORAZINE-2,6-DICHLORO-4,4-TRI(DIISOPROPYLAMINO) TOLUENE SOLVATE. Main Group Metal Chemistry, De Gruyter, 2002, 24 (12), pp.871-872. <10.1515/MGMC.2001.24.12.871>. <hal-01624782>

HAL Id: hal-01624782
https://hal.archives-ouvertes.fr/hal-01624782

Submitted on 26 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
X-RAY STRUCTURE OF 1,2'-DIBORAZINE-2,6-DICHLORO-4,4',6'-TRI(DIISOPROPYLAMINO) TOLUENE SOLVATE

David Cornu, Bérangère Toury, Sylvain Lecocq, Claude Bavoux and Philippe Miele

Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Laboratoire de Cristallographie, UMR CNRS 5078, Université Claude Bernard – Lyon 1, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France <miele@univ-lyon1.fr>

Figure 1. Molecular structure of the diborazine 1,2':[(2,6-Cl4-4-(Pr3-N)B3N2H3)(4,4',6'-Pr3-N-B3N2H3)] 1 in the structure of the title compound. Selected bond distances (Å) and angles (°) for 1: B-Cl 1.782(6), N4-B(2) 1.501(8), N3-B(2) 1.42(1), N3-B(1) 1.45(1), N2-B(1) 1.44(1), N2-B(5) 1.46(1), N5-B(3) 1.388(7), N5-B(4) 1.450(6), N4-B(3) 1.429(6), N10-B(4) 1.42(1), N1-B(1) 1.42(1), N1-C(1) 1.459(9), N1-C(2) 1.49(1), N7-B(5) 1.427(9), N7-C(8) 1.46(1), N7-C(10) 1.46(1), N10-C(12) 1.471(3), B(2)-N(3)-B(1) 123.4(6), B(5)-N(6)-B(2) 123.9(4), B(3)-N(4)-B(2) 122.6(3), B(3a)-N(4)-B(3) 114.7(5), N(3)-B(2)-N(4) 120.9(6), N(6)-B(2)-N(4) 121.4(6), B(3)-N(5)-B(4) 125.4(4), B(1)-N(2)-B(5) 125.0(5), N(1)-B(1)-N(2) 123.4(7), N(2)-B(1)-N(3) 114.2(6), N(2)-B(5)-N(7) 122.6(7), N(1)-B(1)-N(3) 122.3(7), N(3)-B(2)-N(6) 118.6(5), N(6)-B(5)-N(7) 122.5(6), N(2)-B(5)-N(6) 114.9(5), N(10)-B(4)-N(5) 124.7(3), N(4)-B(3)-N(5) 122.1(4), N(5)-B(4)-N(5a) 110.7(6).

Comment
The unit cell contains four molecules of toluene and four molecules of the compound 1. The latter is a diborazine displaying a linked ring structure. The endo-rings B-N distances are between 1.388(7) and 1.46(1) Å falling within the range of the distances found in other borazines [1, 2]. It should be noted that this large range is also observed in the other previously described diborazine 1,2':(B3N2H3)2 [3]. As expected, the exo-rings B-N(ringo) bond lengths [av. 1.42(1) Å] are consistent with a B-N double-bond character [4]. The B – Cl bond lengths [1.782(6) Å] agree within experimental error with the values reported for 2,4,6-trichloroborazine, 1.76(2) Å [2] and for boron trichloride, ~1.73-1.76 Å [4]. The significant feature of this structure is the orthogonal arrangement of the borazine rings planes unlike in the diborazine 1,2':(B3N2H3)2 [3]. In the latter, the two rings are coplanar, as diphenyl in the solid state, and the inter-ring B-N bond is short [1.464(7) Å] mirroring its double-bond character. By contrast, in 1 the relative twist of the B3N planes...
[90.00(1)°] precludes any interaction between the lone pair of the N(4) nitrogen atom and the vacant p-orbital of the B(2) boron atom. Thus, this distance [1.502(8) Å] is longer than in 1,2'-B(N,NH)2 and resembles B-N single-bonds [1.58 Å] rather than B-N double-bond distances [1.41 Å]. This phenomenon is presumably related to the steric bulk of the borazine substituents in ortho and meta positions of both rings which precludes their coplanarity.

Experimental

Preparation

All experiments were performed under atmosphere of pure argon and anhydrous conditions using vacuum line and schlenk techniques with solvents purified by standard techniques. 2,4,6-trichloroborazine [5] and chloro(diisopropylamino)borane [6] were prepared as previously described and purified by vacuum sublimation and distillation, respectively. Triethylamine (17.8 mmol) was added to a solution of 2,4,6-trichloroborazine (5.94 mmol) and chloro(diisopropylamino)borane (17.8 mmol) in toluene (20 mL). The mixture was stirred for 24 h at room temperature and then heated under reflux conditions for 2 h. Under cooling, suitable crystals for X-ray analysis were obtained. 1H NMR (CDCl3): δ 1.12, 1.13 (CH3); 3.05 (NH): 3.32, 3.39 (CH). 13C NMR (CDCl3): 72.0.

Table 1. Crystal data for 1,2'-[(2,6-C12-4-(Pr3N)B3N9H3)-(4',6'-Pr3N)B3N9H3] (C16H21)ClH3

Formula	C25H13B5Cl2N9	Formula weight	617.54
Crystal system	orthorhombic		
Space group	Cmc21		0.30 x 0.22 x 0.15
a, Å	11.871(2)		
b, Å	18.919(4)	c, Å	16.251(3)
g, Å3	3650(1)	Z	4
Diffractometer	Nonius Kappa CCD		
μ(Mo-Kα), cm⁻¹	2.08		0.940-0.970
Dcalcd, g cm⁻³	1.124	F(000)	1328
Density unique	24.7	Reflns meas.	3028
Reflns unique	3028	Reflns with I > 2σ(l)	2119
R(F²), Rw(F²)	0.084, 0.232	ρ, e Å⁻³	0.51 and -0.49

References

Received: July 27, 2001 - Accepted: September 9, 2001 – Accepted in publishable format: November 12, 2001