Spin-torque Effects in Thermally Assisted Magnetization Reversal: Kramers' Escape Rate Theory Approach - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

Spin-torque Effects in Thermally Assisted Magnetization Reversal: Kramers' Escape Rate Theory Approach

Résumé

Thermal fluctuations of nanomagnets driven by spin-polarized currents are treated via the Landau-Lifshitz-Gilbert equation generalized to include both the random thermal noise field and the Slonczewski spin-transfer torque (STT) term. The reversal time of the magnetization in such a nanomagnet are evaluated for wide ranges of damping by using the method of Coffey et al. [Phys. Rev. E 63, 021102 (2001)]. Their method generalizes the Mel'nikov-Meshkov approach [J. Chem. Phys. 85, 1018 (1986)] for bridging the very low damping (VLD) and intermediate damping (ID) Kramers escape rates for mechanical Brownian particles (the Kramers turnover problem) to the analogous magnetic turnover problem.
Fichier non déposé

Dates et versions

hal-01624663 , version 1 (26-10-2017)

Licence

Paternité

Identifiants

  • HAL Id : hal-01624663 , version 1

Citer

Yuri Kalmykov, Declan Byrne, William Coffey, William Dowling, Sergey Titov, et al.. Spin-torque Effects in Thermally Assisted Magnetization Reversal: Kramers' Escape Rate Theory Approach. Annual German Physical Society Spring Meeting: Magnetism Division, Mar 2017, Berlin, Germany. ⟨hal-01624663⟩
261 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More