M. V. Belthur, J. D. Conway, G. Jindal, A. Ranade, and J. E. Herzenberg, Bone Graft Harvest Using a New Intramedullary System, Clinical Orthopaedics and Related Research, vol.3, issue.Suppl 1, pp.466-2973, 2008.
DOI : 10.3758/BF03193146

D. H. Kim, R. Rhim, L. Li, J. Martha, B. H. Swaim et al., Prospective study of iliac crest bone graft harvest site pain and morbidity, The Spine Journal, vol.9, issue.11, pp.886-892, 2009.
DOI : 10.1016/j.spinee.2009.05.006

T. Schouman, M. Schmitt, C. Adam, G. Dubois, and P. Rouch, Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep, Journal of the Mechanical Behavior of Biomedical Materials, vol.59, pp.59-484, 2016.
DOI : 10.1016/j.jmbbm.2016.02.036

K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, vol.27, issue.18, pp.3413-3431, 2006.
DOI : 10.1016/j.biomaterials.2006.01.039

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Bone substitutes: An update, Injury, vol.36, issue.3, pp.20-27, 2005.
DOI : 10.1016/j.injury.2005.07.029

T. Matsuno, K. Omata, Y. Hashimoto, Y. Tabata, and T. Satoh, Alveolar bone tissue engineering using composite scaffolds for drug delivery, Japanese Dental Science Review, vol.46, issue.2, pp.46-188, 2010.
DOI : 10.1016/j.jdsr.2009.12.001

D. Eichert, C. Drouet, H. Sfihi, C. Rey, and C. Combes, Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization, Biomaterials Research Advances, pp.93-143, 2007.

C. Rey, C. Combes, C. Drouet, S. Cazalbou, D. Grossin et al., Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials, Progress in Crystal Growth and Characterization of Materials, vol.60, issue.3-4, pp.60-63, 2014.
DOI : 10.1016/j.pcrysgrow.2014.09.005

URL : https://hal.archives-ouvertes.fr/hal-01195704

D. Tadic, F. Beckmann, K. Schwarz, and M. Epple, A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering, Biomaterials, vol.25, issue.16, pp.3335-3340, 2004.
DOI : 10.1016/j.biomaterials.2003.10.007

E. Meurice, F. Bouchart, J. C. Hornez, A. Leriche, D. Hautcoeur et al., Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by icetemplating, J. Eur. Ceram. Soc, pp.36-2895, 2016.

W. J. Habraken, J. G. Wolke, and J. A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Advanced Drug Delivery Reviews, vol.59, issue.4-5, pp.59-234, 2007.
DOI : 10.1016/j.addr.2007.03.011

C. C. Zhou, X. J. Ye, Y. J. Fan, F. Z. Qing, H. J. Chen et al., Synthesis and characterization of CaP/Col composite scaffolds for load-bearing bone tissue engineering, Composites Part B: Engineering, vol.62, pp.242-248, 2014.
DOI : 10.1016/j.compositesb.2014.03.008

X. Chen, Y. Liu, J. Yang, W. Wu, L. Miao et al., The synthesis of hydroxyapatite with different crystallinities by controlling the concentration of recombinant CEMP1 for biological application, Materials Science and Engineering: C, vol.59, pp.384-389, 2016.
DOI : 10.1016/j.msec.2015.10.029

A. R. Boccaccini and V. Maquet, Bioresorbable and bioactive polymer/Bioglass?? composites with tailored pore structure for tissue engineering applications, Composites Science and Technology, vol.63, issue.16, pp.2417-2429, 2003.
DOI : 10.1016/S0266-3538(03)00275-6

D. Velasco, L. Benito, M. Fernández-gutiérrez, J. San-román, and C. Elvira, Preparation in supercritical CO2 of porous poly(methyl methacrylate)???poly(l-lactic acid) (PMMA???PLA) scaffolds incorporating ibuprofen, The Journal of Supercritical Fluids, vol.54, issue.3, pp.335-341, 2010.
DOI : 10.1016/j.supflu.2010.05.012

W. Zhao, J. Li, K. Jin, W. Liu, X. Qiu et al., Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering, Materials Science and Engineering: C, vol.59, pp.1181-1194, 2016.
DOI : 10.1016/j.msec.2015.11.026

A. R. Boccaccini, J. J. Blaker, V. Maquet, R. M. Day, and R. Jérôme, Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass?? composite tubular foam scaffolds for tissue engineering applications, Materials Science and Engineering: C, vol.25, issue.1, pp.23-31, 2005.
DOI : 10.1016/j.msec.2004.03.002

Z. Fereshteh, P. Nooeaid, M. Fathi, A. Bagri, and A. R. Boccaccini, The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering, Materials Science and Engineering: C, vol.54, pp.50-60, 2015.
DOI : 10.1016/j.msec.2015.05.011

J. Ziegler, U. Mayr-wohlfart, S. Kessler, D. Breitig, and K. P. Günther, Adsorption and release properties of growth factors from biodegradable implants, Journal of Biomedical Materials Research, vol.50, issue.Suppl 2, pp.59-422, 2002.
DOI : 10.1002/(SICI)1097-4636(200004)50:1<67::AID-JBM10>3.0.CO;2-E

C. Liu, Z. Xia, and J. T. Czernuszka, Design and Development of Three-Dimensional Scaffolds for Tissue Engineering, Chemical Engineering Research and Design, vol.85, issue.7, pp.1051-1064, 2007.
DOI : 10.1205/cherd06196

Q. Tan, S. Li, J. Ren, and C. Chen, Fabrication of Porous Scaffolds with a Controllable Microstructure and Mechanical Properties by Porogen Fusion??Technique, International Journal of Molecular Sciences, vol.30, issue.12, pp.890-904, 2011.
DOI : 10.1016/S0142-9612(01)00283-6

H. Zhang and A. I. Cooper, Synthesis and applications of emulsion-templated porous materials, Soft Matter, vol.35, issue.2, pp.107-113, 2005.
DOI : 10.2109/jcersj.108.1257_487

Y. F. Chou, J. C. Dunn, and B. M. Wu, In vitro response of MC3T3-E1 preosteoblasts within three-dimensional apatite-coated PLGA scaffolds, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.27, issue.1, pp.75-81, 2005.
DOI : 10.1002/jbm.b.30261

J. Guo, Z. Xu, Y. Liu, X. Wang, and Y. Zhao, Synthesis of novel 25-hydroxyprotopanaxadiol derivatives by methylation and methoxycarbonylation using dimethyl carbonate as a environment-friendly reagent and their anti-tumor evaluation, Bioorganic & Medicinal Chemistry Letters, vol.26, issue.19, pp.26-4763, 2016.
DOI : 10.1016/j.bmcl.2016.08.033

Y. Cao, T. I. Croll, A. J. Oconnor, G. W. Stevens, and J. J. Cooper-white, Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering, Journal of Biomaterials Science, Polymer Edition, vol.54, issue.4, pp.17-369, 2006.
DOI : 10.1002/1097-4636(200102)54:2<149::AID-JBM1>3.0.CO;2-O

M. Navarro, M. P. Ginebra, J. A. Planell, C. C. Barrias, and M. A. Barbosa, In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass, Acta Biomaterialia, vol.1, issue.4, pp.411-419, 2005.
DOI : 10.1016/j.actbio.2005.03.004

H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, Ab initio calculations on small molecule analogues of polycarbonates, J. Phys. Chem, pp.99-5873, 1995.

K. M. Pawelec, A. Husmann, S. M. Best, and R. E. Cameron, Ice-templated structures for biomedical tissue repair: From physics to final scaffolds, Applied Physics Reviews, vol.8, issue.156, 2014.
DOI : 10.1039/b710082e

Y. S. Pek, S. Gao, M. S. Arshad, K. J. Leck, and J. Y. Ying, Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds, Biomaterials, vol.29, issue.32, pp.4300-4305, 2008.
DOI : 10.1016/j.biomaterials.2008.07.030

M. ?upová, Problem of hydroxyapatite dispersion in polymer matrices: a review, Journal of Materials Science: Materials in Medicine, vol.17, issue.124, pp.1201-1213, 2009.
DOI : 10.1016/j.msec.2006.05.010

L. Pang, Y. Hu, Y. Yan, L. Liu, Z. Xiong et al., Surface modification of PLGA/??-TCP scaffold for bone tissue engineering: Hybridization with collagen and apatite, Surface and Coatings Technology, vol.201, issue.24, pp.9549-9557, 2007.
DOI : 10.1016/j.surfcoat.2007.04.035

L. J. Gibson, Biomechanics of cellular solids, Journal of Biomechanics, vol.38, issue.3, pp.377-399, 2005.
DOI : 10.1016/j.jbiomech.2004.09.027

V. Maquet, A. R. Boccaccini, L. Pravata, I. Notingher, and R. Jérôme, Porous poly(??-hydroxyacid)/Bioglass?? composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation, Biomaterials, vol.25, issue.18, pp.4185-4194, 2004.
DOI : 10.1016/j.biomaterials.2003.10.082

T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics, Journal of Biomedical Materials Research, vol.108, issue.3, pp.51-475, 2000.
DOI : 10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9

J. Idaszek, E. Kije?ska, M. ?ojkowski, and W. Swieszkowski, How important are scaffolds and their surface properties in regenerative medicine, Applied Surface Science, vol.388, pp.762-774, 2016.
DOI : 10.1016/j.apsusc.2016.03.038

R. Tang, Z. J. Henneman, and G. H. Nancollas, Constant composition kinetics study of carbonated apatite dissolution, Journal of Crystal Growth, vol.249, issue.3-4, pp.614-624, 2003.
DOI : 10.1016/S0022-0248(02)02332-1

R. Dorati, C. Colonna, I. Genta, T. Modena, and B. Conti, Effect of porogen on the physicochemical properties and degradation performance of PLGA scaffolds, Polym. Degrad. Stab, pp.95-694, 2010.