G. Gary, . Wells, L. Rodrigo, M. Glen, and S. Khellil, A sublimation heat engine, Nature communications, vol.6, 2015.

K. L. Scrivener, A. K. Crumbie, and L. Peter, The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Science, vol.12, issue.4, pp.411-421, 2004.
DOI : 10.1023/B:INTS.0000042339.92990.4c

M. Morsli, A. Mokaddem, B. Doumi, L. Temimi, A. Boutaous et al., PREDICTION, BY A GENETIC ALGORITHM, OF THE EFFECT OF HEAT STRESS ON THE TRANSVERSE DAMAGE OF FIBER-MATRIX INTERFACE OF HYBRID COMPOSITE MATERIAL (GLASS-CARBON/ EPOXY), Composites: Mechanics, Computations, Applications: An International Journal, vol.7, issue.1, pp.31-43, 2016.
DOI : 10.1615/CompMechComputApplIntJ.v7.i1.30

Z. Yuwadee, S. Vanchai, W. Ampol, and C. Prinya, Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate, Construction and Building Materials, vol.111, pp.15-21, 2016.

T. Zvonimir, H. François, and R. Stéphane, Mechanics-Aided Digital Image Correlation, Journal of Strain Analysis for Engineering Design, vol.48, pp.330-343, 2013.

D. Watstein, Effect of straining rate on the compressive strength and elastic properties of concrete, ACI Journal Proceedings, pp.729-744, 1953.

A. Brara and J. Klepaczko, Experimental characterization of concrete in dynamic tension, Mechanics of Materials, vol.38, issue.3, pp.253-267, 2006.
DOI : 10.1016/j.mechmat.2005.06.004

C. Gianluca, Strain-rate effects on concrete behavior, International Journal of Impact Engineering, vol.38, issue.4, pp.162-170, 2011.

G. Gérard and P. Bailly, Behaviour of quasi-brittle material at high strain rate. experiment and modelling, European Journal of Mechanics -A/Solids, vol.17, issue.3, pp.403-420, 1998.

Q. Chuan and Z. Chuhan, Numerical study of dynamic behavior of concrete by meso-scale particle element modeling, International Journal of Impact Engineering, vol.38, issue.12, pp.1011-1021, 2011.

S. Leonardo, C. Antonio, and J. Molinari, Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading, Cement and Concrete Research, vol.41, issue.11, pp.1130-1142, 2011.

B. Natalija, O. Jo?ko, S. Akanshu, ?. Bari¸sbari¸s, and . Irhan, Dynamic fracture of notched plain concrete beams : 3d finite element study, International Journal of Impact Engineering, vol.77, pp.176-188, 2015.

L. Freund, Crack propagation in an elastic solid subjected to general loading???I. Constant rate of extension, Journal of the Mechanics and Physics of Solids, vol.20, issue.3, pp.129-140, 1972.
DOI : 10.1016/0022-5096(72)90006-3

M. Curbach and J. Eibl, Crack velocity in concrete, Engineering Fracture Mechanics, vol.35, issue.1-3, pp.321-326, 1990.
DOI : 10.1016/0013-7944(90)90210-8

P. Rossi and F. Toutlemonde, Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms, Materials and Structures, vol.44, issue.161, pp.116-118, 1996.
DOI : 10.1680/macr.1992.44.161.271

H. François, D. Christophe, F. Pascal, and X. Brajer, On the probabilistic?deterministic transition involved in a fragmentation process of brittle materials, Advanced Computational Models and Techniques in Dynamics, pp.1241-1253, 2003.

R. Pierre, Strain rate effects in concrete structures : the lcpc experience, Materials and structures, vol.30, issue.1, pp.54-62, 1997.

M. D. Kotsovos, Effect of testing techniques on the post-ultimate behaviour of concrete in compression, Matériaux et Construction, pp.3-12, 1983.
DOI : 10.1680/macr.1965.17.53.177

G. Fabrice, Prévision de la rupture des ouvrages en béton sollicités en dynamique rapide, 1999.

O. Le and . Vu, Etude et modélisation du comportement du béton sous sollicitations de grande amplitude, 1998.

G. Fabrice, S. Léonardo, and J. Molinari, Numerical determination of the tensile response and the dissipated fracture energy of concrete : role of the mesostructure and influence of the loading rate, International Journal for Numerical and Analytical Methods in Geomechanics, vol.37, issue.18, pp.3112-3130, 2013.

R. Pierre, G. Jan, . Van-mier, T. François, L. Fabrice et al., Effect of loading rate on the strength of concrete subjected to uniaxial tension, Materials and structures, vol.27, issue.5, pp.260-264, 1994.

X. Zhou and H. Hao, Mesoscale modelling of concrete tensile failure mechanism at high strain rates, Computers & Structures, vol.86, issue.21-22, pp.2013-2026, 2008.
DOI : 10.1016/j.compstruc.2008.04.013

X. Zhang, G. Ruiz, R. Yu, and M. Tarifa, Fracture behaviour of high-strength concrete at a wide range of loading rates, International Journal of Impact Engineering, vol.36, issue.10-11, pp.1204-1209, 2009.
DOI : 10.1016/j.ijimpeng.2009.04.007

URL : https://hal.archives-ouvertes.fr/hal-00608806

P. Forquin and B. Erzar, Dynamic fragmentation process in concrete under impact and spalling tests, International Journal of Fracture, vol.37, issue.9, pp.193-215, 2010.
DOI : 10.1007/978-94-011-9055-8

R. Pedersen, A. Simone, and L. Sluys, Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete, Cement and Concrete Research, vol.50, pp.74-87, 2013.
DOI : 10.1016/j.cemconres.2013.03.021

A. V. Nguyen, Historical Note on the Stefan???Reynolds Equations, Journal of Colloid and Interface Science, vol.231, issue.1, p.195, 2000.
DOI : 10.1006/jcis.2000.7066

P. Rossi, A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates, Materials and Structures, vol.27, issue.3, pp.422-424, 1991.
DOI : 10.1007/BF02472015

L. Bouthaina, Caractérisation du transport diffusif dans les matériaux cimentaires : influence de la microstructure dans les mortiers, 2013.

J. Sercombe, F. Ulm, and H. Mang, Consistent return mapping algorithm for chemoplastic constitutive laws with internal couplings, International Journal for Numerical Methods in Engineering, vol.2, issue.1-3, pp.1-375, 2000.
DOI : 10.1002/(SICI)1097-0207(20000110/30)47:1/3<75::AID-NME762>3.0.CO;2-Y

H. W. Reinhardt, R. Pierre, and J. G. Van-mier, Joint investigation of concrete at high rates of loading, Materials and Structures, vol.11, issue.109, pp.213-216, 1990.
DOI : 10.1007/BF02473020

T. François, R. Pierre, C. Boulay, G. Christian, and D. Guedon, Dynamic behaviour of concrete : tests of slabs with a shock tube, Materials and Structures, vol.28, issue.5, pp.293-298, 1995.

B. Erzar and P. Forquin, Analysis and modelling of the cohesion strength of concrete at high strain-rates, International Journal of Solids and Structures, vol.51, issue.14, pp.2559-2574, 2014.
DOI : 10.1016/j.ijsolstr.2014.01.023

E. Cadoni, K. Labibes, C. Albertini, M. Berra, and M. Giangrasso, Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels, Materials and Structures, vol.43, issue.154, pp.21-26, 2001.
DOI : 10.1680/macr.1991.43.154.53

Z. Dan and L. Qingbin, An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity, Engineering fracture mechanics, vol.71, issue.16, pp.2319-2327, 2004.

O. Jo?ko, B. Josipa, and S. Emiliano, Dynamic fracture of concrete compact tension specimen : Experimental and numerical study, International Journal of Solids and Structures, vol.50, issue.25, pp.4270-4278, 2013.

H. François, B. Amine, and R. Stéphane, Damage measurements via dic, International Journal of Fracture, vol.191, issue.1, pp.77-105, 2015.