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Walking gait step length asymmetry induced by
handheld device

Mahdi Abid, Valerie Renaudin∗, Yannick Aoustin, Eric Le-Carpentier, and Thomas Robert

Abstract—The modeling and feature extraction of human gait
motion are crucial in biomechanics studies, human localization
and robotics applications. Recent studies in pedestrian navigation
aim at extracting gait features based on the data of low-cost
sensors embedded in handheld devices such as smartphones. The
general assumption in Pedestrian Dead Reckoning (PDR) strategy
for navigation application is that the presence of a device in
hand does not impact the gait symmetry and that all steps are
identical. This hypothesis, which is used to estimate the traveled
distance, is investigated in this paper with an experimental study.
Ten healthy volunteers participated in motion lab tests with a
0.190 kg device in hand. Several walking trials with different
device carrying modes and several gait speeds were performed.
For a fixed walking speed, it is shown that the steps differ in
their duration when holding a mass equivalent to a smartphone
mass, which invalidates classical symmetry hypothesis in PDR
step length modeling. It is also shown that this hypothesis can
lead to a 2.5 to 6.3% error on the PDR estimated traveled distance
for the different walking trials.

Index Terms—Handheld devices, Human walking gait, Pedes-
trian navigation, Step level symmetry.

I. INTRODUCTION

MORE and more connected objects are invented and
commercialized to assist daily life activities. Among

the targeted applications are health monitoring, physical ac-
tivity measuring and navigation aiding. Whereas smartphones,
smartwatches or smart-bands are successfully used to count
the number of steps in daily routine or record race trajectories
using satellites positioning technology, like Global Navigation
Satellites Systems (GNSS), their use for navigation remains
challenging because of the complexity of both the human
movements and the perturbation of radio signals in the tra-
versed surroundings. Globally the development of innovative
positioning and navigation algorithms is driven by the fact
that travelers are more and more connected to the Internet
of Things all along their journey. In this context, it is very
interesting to use consumer wrist sensors to provide guidance
information and traffic data but existing positioning and nav-
igation technologies fail to address this expectation.
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One difficulty is that these objects are attached to the upper
parts of the body whereas the human gait is mainly driven
by the lower parts of the body. The choice of the measuring
point has a strong impact on the performances of the activity
classification process. Globally wrist worn sensors give lower
performances for analyzing human gait than ear, chest or foot
sensors, which correspond to relatively fixed positions during
the displacement [1]. A reason is that wrist sensors are far
away from the legs and they measure many movements that
are not related to the global locomotion. Indeed, upper body
movements can be of very high amplitude and may cover
the motion driven by the legs. To overcome this challenge,
existing personal navigation solutions based on wrist sensors
monitor human motions and model human gait in order to
derive pedestrians’ tracks [2]-[4].

GNSS are the prime technologies for navigation. Trajec-
tories are derived by differentiating GNSS point coordinates
and comparing them with pre-processed itineraries to pro-
vide guidance data. Pedestrians’ positions are computed by
intersecting lines that are derived from times of flight mea-
sured on the signals broadcasted by the GNSS satellites. A
minimum of four satellites must be seen in direct line of
sight to estimate the coordinates [5]. If the satellites signals
are reflected by surrounding obstacles, the distances are over
estimated introducing errors in the location estimate. As a
consequence, the accuracy, the availability and the continuity
of GNSS positioning cannot be guaranteed in indoor spaces
and urban canyons where the signals are strongly attenuated
and affected by multipath. Because humans spend more and
more time indoors [6], alternative solutions are sought.

One solution consists in fusing natural signals such as
accelerations, angular rates or magnetic field sensed by an
inertial and magnetic mobile unit (MIMU) [7] with GNSS
data. One advantage of this approach is that these signals rely
on external forces that are always available in all environments
(indoors, outdoors). MIMUs and GNSS receivers are often
embedded in unobtrusive portable devices, carried in hands
or kept in bags. Two signal processing methods exist for
location estimation: the strap-down mechanization [8] and
the Pedestrian Dead Reckoning technique [9]. Strap down
mechanisation double integrates the accelerations to estimate
the travel distance whereas PDR uses step length models. Both
methods provide good results when the sensors are attached
to some relatively stable parts of human body (e.g. belt or
foot). With foot mounted sensors, zero velocity phases of
the walking gait can be sensed and used to calibrate the
sensor errors that are inherent to their low cost nature [10].
With wrist mounted sensors, these phases do not exist and
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Fig. 1: Different carrying modes of the handheld device

the PDR strategy must be adopted. It consists in estimating
step lengths and walking directions to calculate the current
coordinates based on the previous one. MIMU data are first
filtered to recognize the activity completed by the different
device carrying modes: static, swinging, texting, phoning,
handbag/trouser and irregular motion modes [3] (see Fig. 1).
Phoning and texting modes form one class corresponding
to relatively stable lever arm between the sensor and the
pedestrian center of mass locations. Parametric models based
on the height of human participant and the step frequency,
estimated using the acceleration [11], [12], are used to estimate
the step length [13]. This approach is only partially successful
because it relies on simplifications that are based on empirical
observations from biomechanics. One common assumption
is that the human gait is step symmetric irrespective of the
presence of a mass in hand as it is the case with handheld
sensors [13]-[15]. This hypothesis is investigated in this paper
following an experimental approach.

Because a huge amount of experiments would be necessary
to cover the diversity of human gaits, a simulation tool,
which can be parameterized to test the impact of different
features on the walking gait, is under development. It is the
first outcome of this biped based simulator, optimized at the
stride level, that a possible impact of holding a small mass
in hand on the walking gait symmetry was first observed.
This preliminary human gait modeling over a stride along
with the step length estimated with varying walking speeds are
presented in section II. To further investigate the impact of a
mass in hand, experimental tests were conducted in a motion
laboratory with ten persons walking on a treadmill holding
a 0.190 kg sensor in hand in different carrying modes. They
are presented in section III and analyzed using biomechanics
based statistical approach in section IV. Section V assesses
the error induced by assuming step length symmetric model
in PDR algorithms for navigation applications.

II. HUMAN GAIT MODELING OVER A STRIDE

In the following, the modeling of cyclic walking gait over
a stride based on an enhanced 2D biped model is presented.
The aim is to model the human behavior for several walking
speeds, for natural walking or walking with a device in hand,
and for different user morphologies. This human gait model is
also adapted to study the impact of different device carrying
modes on gait cycle characteristics.

A. Existing human gait simulation with upper limbs modeling

Human walking is a complex dynamic activity since the
human structure has a high degree of freedom (DOF) and 3D
deformable frames [16]. To overcome these problems, many
researches on gait pattern generation define the natural gait of
the biped by the movement that minimizes its energy [17]-[20].
In this context, an important challenge is to better understand
the role of upper limbs in human walking since there is an
infinity of solutions to produce the same locomotion patterns
due to the human motor system actuation redundancy [21].

Using parametric optimization for a 2D biped gait gen-
eration, it was proven that active arm swinging results in a
decrease of energetic criterion with respect to passive arm
swinging case [22]. This optimization technique is also used
in [23] to study different gait scenarios over a step. The
model used in this study considered one-link arms. However to
study different carrying modes such as texting/phoning modes,
two links per arm are at least needed. Moreover, to study
the possible impact of upper limbs constraints on the step
level symmetry, the extension of optimization to a stride is
necessary. Two consecutive steps are considered in the new
model as we aim to model the human periodical gait over its
cycle which is the stride.

B. Extended 2D biped model

The proposed biped in the sagittal plane is composed of
two identical three-link legs, two identical two-link arms and
a head-trunk segment (Fig. 2). All the joints are revolute and
supposed to be frictionless and independently actuated. All
links are modeled by rigid and massive segments. An active
role of arms during locomotion is assumed in this model.

Hands are neglected in this model and the head and the trunk
are merged in one link. The handheld device is modeled as a
punctual mass object whose inertias are neglected. This mass
is rigidly attached to the forearm and their mass and inertial
properties are merged. To adjust this 2D biped to a real human
subject, body segment inertial parameters (BSIPs) must be
estimated. First, segments lengths are estimated according to
the anatomical definition proposed in the anthropometric tables
[24], [25]. Then DeLeva regressions are used to estimate the
BSIPs [25]. These regressions, whose values were normalized
using data from different anthropometric surveys of Caucasian
populations, are suitable for 2D studies [25].

C. Optimization algorithm

A parametric optimization algorithm using SQP method
(Sequential Quadratic Programming) [27] is developed to
solve for the nonlinear constrained problem. The gait cycle
is composed of successive single support phases with flat
contact between the support foot and the ground and instan-
taneous Double Support (DS) phases. 3rd order polynomial
functions are used to interpolate joint motion histories for each
step. The parameters defining the polynomials coefficients
are determined using an optimization under several nonlin-
ear constraints on the validity of impact, ground reactions,
dynamic equilibrium, joint positions, rates and torques. The
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Fig. 2: Schematic in the sagittal plane of the 2D Biped with
its different DOF and corresponding actuators [26]

cost function to minimize is defined by the torques calculated
using the inverse dynamic model [28]. We consider the integral
of torque norm. This algorithm is tested for the biped model
fitted to one participant (mass = 100 kg, height = 1.85 m).

D. Results

The numerical simulations carried out for several gait ve-
locities show the following results:

1. During the optimized gait cycle, each arm reciprocally
flex and extend with phase opposite to its contralateral
leg. The range of arc of motion used at the shoulders
is 16.5◦-31.4◦ for walking velocity varying from 0.4 to
1.6 m/s. These values of optimal arm swing are close to
biomechanical data found in [29] (e.g. an average arc of
motion of 32◦ during moderate gait speed).

2. The effort criterion is higher for the texting mode than in
the normal swinging which supports the energetic effect
of natural walking reflected in the low cost for arms
swinging found in [12].

3. The durations of both steps (right and left) are no longer
equal when switching the handheld mass to 0.19 kg. This
outcome is illustrated in Fig. 3 where the right/left step
durations versus the gait velocity are plotted for texting
and swinging conditions.

The last result suggests that during walking with a device
in hand, the added mass or the constrained upper limbs
configuration may lead to a step level asymmetry of the gait
cycle. This observation refutes the hypothesis that all steps are
identical, which is commonly considered in PDR navigation
solution. To check its validity, this result is further investigated
with motion capture experiments that are detailed in section
III and analyzed in section IV.

III. EXPERIMENTAL APPROACH

The following experiments have been designed to study the
influence of a mass carried in hand on the walking gait cycles.
It is hypothesized that the presence of handheld mass may alter
the step level symmetry of the walking gait. This section starts
with the experimental setup and the scenarios. The parameters
used to assess the symmetry of the walking gait are then
presented followed by the analysis of the experimental data.
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Fig. 3: Right (red) and left (blue) steps durations versus the
walking speed for the loaded swinging (LS: dash-dot curves)

and texting (T: solid curves) modes. "Loaded" means with
the presence of a mass held in hand. The curve in black

corresponds to unloaded swinging (S) case.

A. Experimental Setup

The experiments were conducted in a motion capture room
equipped with ART IR tracking system working at a 60 Hz
sampling frequency where a treadmill was installed (Fig. 4).
The tracking system consists of eight cameras (four on the
floor and four close to the ceiling) and ART MoCap target
set, i.e. passive reflective clusters of markers. The handheld
device weighed 0.19 kg, which corresponds to the mass of a
smartphone (Fig. 5). Optical markers’ assemblies were taped
to it, to both feet and to the belt for getting accurate reference
trajectories of these locations.

Fig. 4: Experimental setup

Ten healthy individuals, six men and four women, with a
31 year average age (age range 21-52 years), 1.72 m average
height (with shoes) and 74.9 kg average mass, volunteered
to participate in this experimentation. All participants were
provided written informed consent (institutional review board
ethical process). The trials started after all participants were
acquainted with the treadmill and the device at the three
following velocities: V1 = 3.6 km/h (1 m/s), V2 = 5 km/h (1.38
m/s) and V3 = 5.8 km/h (1.61 m/s). Data record started only
after a participant had reached a steady state at each walking
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Fig. 5: Handheld device equipped with an optical markers’
assembly

speed. In addition, all participants were unaware of the specific
data processing.

Walking on a treadmill is acknowledged as being different
from natural walking. It is demonstrated that the treadmill
induces a more symmetric and consistent gait pattern [30].
The study requires accurate measurements of the markers’ po-
sitions in order to derive gait features. This was made possible
with a qualified motion capture system whose workspace is
limited to approximately 10 m2. Natural walking could not
be possible in this room because only too short distances (in
circles) could be traveled by the individuals in this space.
The use of a treadmill was preferred to test straight walking
scenarios. Another advantage of this alternative is that the
study could be conducted for several steady walking speeds.

The experiments were conceived to test the influence of
holding a connected object in hand on the gait cycle. Therefore
experiments were conducted with and without the small mass
in hand for all participants. Three different device carrying
modes, corresponding to different scenarios, were defined for
the experiments. They are :
• the unloaded swinging mode: the participant is naturally

walking with no mass in hand, i.e. the arms are freely
oscilating during the walk;

• the loaded swinging mode: the participant is naturally
walking while holding the device in his/her swinging
hand;

• the texting mode that corresponds to a body fixed de-
vice carrying mode: the participant is instructed to walk
watching his/her device’s screen so that the right upper
limbs configuration is comfortable for reading or texting
on the device.

Each scenario was performed for all three testing velocities
V1, V2 and V3.

B. Parameters used to assess the gait symmetry

Three different features are defined to analyze the symmetry
of the walking gait. They are now detailed.
• Step Duration. This is the time elapsed between two

successive detected steps. Step durations are calculated
for both legs. Labels are used to differentiate right step
duration from left step duration.

• Temporal Symmetry Index (T SIstep) over step. TSI over
step is defined as the ratio of time duration of the step
on the device’s side over the total duration of a stride
as defined in (1). This index is useful for studying the
temporal step symmetry. For step symmetric walking gait,
TSI over step should be 0.5.

TSIstep =
Time duration of step on the device’s side

Total time duration of the stride
(1)

• Temporal Symmetry Index (TSIstride) over stride. Simi-
larly, TSI over stride is defined as the ratio of time
duration of the first stride over the duration of two
successive strides. This index is useful for assessing the
step detection method. An accurate step detection should
result in a stride level symmetric gait irrespective of the
presence of mass in one hand [31].

C. Experimental Gait features extraction

Gait cycle is characterized by the occurrence of a stable
foot’s point during the flat foot phase, which corresponds to
step events. The Zero Velocity Detection (ZVD) method has
widely been adopted in the navigation field to detect steps.
It is based on an acceleration moving variance detector and
it searches for the periods when the foot-mounted cluster
of markers is stationary [10]. In our study, it is applied to
extract the step events from the acceleration data. It is obtained
by double differentiating the markers’ positions, which are
tracked by the motion capture system. In order to remove
the noise induced by the derivation, the data are low-pass
filtered with a zero-phase forward and reverse second order
Butterworth filter with a cut-off frequency of 10 Hz.
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Fig. 6: Step detection using the acceleration-moving variance
detector

The variance of the norm of the acceleration vector is cal-
culated over a sliding window and compared to an adaptive
threshold. The outcome is illustrated in Fig. 6, where the blue
dots correspond to the detected stance phases, i.e. the steps.
The detection is performed for both the right and left feet in
order to estimate the step durations.

IV. ANALYSIS OF THE EXPERIMENTAL DATA

200 continuous steps (100 continuous strides) were analyzed
for each trial using the ZVD method. To assess the accuracy of
this step detection method, TSI over strides were analyzed. It
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was found that for all subjects, and across any of the conditions
evaluated, the TSIstride values follow Gaussian distributions
and are centered around 0.5, with all standard deviations
remaining below 6.10-3. This result shows that the walking gait
is stride symmetric irrespective to the presence of mass in one
hand. This asserts the hypothesis (H1) found in biomechanics
litterature that is further used to build the model in the
simulation. Then, this analysis validates the precision of ZVD
method.
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Fig. 9: Probability density function of the TSIstep for the
texting mode at 5 km/h for one test participant

The analysis of the walking gait symmetry over steps is
conducted using the two-factor repeated measures analyze of
variance (RM ANOVA) [32], [33]. To apply the ANOVA
analysis, all TSIs are expected to follow Gaussian distributions
for the different scenarios [32]. This is effectively observed
with the experimental data sets and illustrated in Fig. 7, Fig.
8 and Fig. 9 where the TSIstep and the associated probability
density functions are plotted for the three different scenarios
at 5 km/h for one test person. A shift of the Gaussian mean is
observed on these three figures between the natural unloaded
arm swinging case that is centered at 0.5 and the two other
cases.

In total, 9000 strides were analyzed corresponding to the
three carrying modes and the three walking speeds. RM
ANOVA is applied to the TSIstep to assess possible changes of
the walking gait symmetry over steps induced by the presence
of a mass in hand. Two RM factors are considered. They
are the device carrying mode factor and the walking speed
factor. For the analysis, the three carrying modes and the three
walking speeds are all processed together. The results of the
RM ANOVA are given in Table I.

TABLE I: RESULTS OF THE REPEATED MEASURES
ANALYSIS (RM ANOVA) APPLIED TO TSIstep

influencing factor SS df MS F p

Carrying mode (CM) 9.3×10-4 2 4.65×10-4 5.530 0.013
Walking speed (WS) 8.8×10-5 2 4.42×10-5 0.243 0.7870
CM x WS 7.6×10-4 4 1.90×10-4 2.986 0.0316

In the RM ANOVA analysis, a F-test is used to find out
whether the factors of interest impact the TSIstep. The analysis
is conducted using a variance ratio of two sets of TSIstep
values. The derived p value must be below 5% to deduce that
the studied factor has an impact on the TSIstep values. In Table
I, it is found that the carrying mode has a significant influence
on the TSIstep, and therefore the gait symmetry, with a 1.34%
p value being below 5%. On the contrary, the analysis shows
that the walking speed factor has no significant influence on
the gait symmetry since the corresponding 78.7% p value is
much greater than 5%. The p value for the interaction of the
factors "Carrying mode" and "Walking speed" equals 3.16%,
which is below 5%. This result indicates that the influence
of the carrying mode on the gait symmetry depends on the
walking velocity. To deepen this analysis, the RM ANOVA is
conducted on the TSIstep for each walking speed (Vi, i=1, 2,
3) individually. The results are given in Table II.

TABLE II: EFFECT OF CARRYING MODE FACTOR ON
TSIstep FOR THE DIFFERENT GAIT SPEEDS

Effect of carrying mode factor
Walking speed MS F p

V1=3.6 km/h 5.1×10-4 12.487 3.97×10-4

V2=5 km/h 1.71×10-4 6.639 6.92×10-3

V3=5.8 km/h 1.66×10-4 1.142 0.341

For higher walking speed, an increased p value is observed.
The carrying mode has a significant influence on the gait
symmetry at the step level for the lower speeds. Both p values
for V1 and V2 are below 5%. On the contrary, for the highest
walking speed with a 34.1% p value, no significant effect of
the carrying mode on gait step symmetry is observed.

Looking at each test participant, Fig. 10 shows the average
TSIstep for all walking speeds with the three device carrying
modes. All TSI numbers are expressed to four significant
digits. A tendency may be concluded for the loaded swinging
and texting cases with respect to unloaded swinging mode.
Indeed, average TSIstep decreases for 8 participants out of
10 between the unloaded swinging mode and the two others.
The average TSIstep mean value for all participants in the
unloaded swinging mode is 0.4997. In loaded swinging and
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velocities). TSIstep mostly decreases for the loaded swinging
and texting cases with respect to unloaded swinging mode.

texting modes, a 0.4920 and 0.4943 average TSIstep are found
respectively.

To find out which device carrying mode has the greatest
influence on the gait symmetry at the step level, the RM
ANOVA analysis is conducted considering two combined fac-
tors: the unloaded swinging/loaded swinging and the unloaded
swinging/texting. The p values are found to be equal to 0.13%
and 8.35% respectively. We can conclude that the loaded
swinging mode has a greater impact on the gait step symmetry
than the texting mode. The same conclusion is found using
a post-hoc analysis where the hypothesis H0 stating that all
average TSI are equal is tested.

Tukey’s HSD (Honest Significant Difference) or Scheffé
tests are classically used in conjunction with ANOVA analysis
to determine where significant differences exist among more
than two modalities. The Tukey’s test gives a 7.1×10-3 HSD
for our experimental data set. This value is a threshold that is
compared to the separation between two means for assessing
if the later are significantly different. Let us note µ1, µ2 and µ3
the mean values of respectively the unloaded swinging, loaded
swinging and texting modes. The following three separations
can be computed and compared to the HSD.

µ1−µ2 = 7.67×10−3 > 7.1×10−3

µ1−µ3 = 5.38×10−3 < 7.1×10−3

µ3−µ2 = 2.29×10−3 < 7.1×10−3

(2)

These comparisons show that the unloaded swinging and
loaded swinging modes are significantly different and none
of these two modes is significantly different from the texting
case. This is further illustrated in Fig. 11 where the texting
and unloaded swinging modes, in blue and red respectively,
overlap.

V. IMPACT ON THE ESTIMATION OF TRAVELED DISTANCE
FOR PEDESTRIAN NAVIGATION APPLICATIONS

Existing step length models in pedestrian navigation al-
gorithms usually assume that the walking gait is step/stride
symmetric irrespective of the presence of a mass in hand.
In the previous sections, it was shown that this is not the
case. Because pedestrians can change directions at every step,

Fig. 11: Tuckey’s HSD test for the three device carrying
modes (considering all the walking velocities). Each group
mean is represented by a small circle, and each comparison
interval is represented by a bar extending out from the mean

value. Two group means are significantly different if their
intervals are disjoint. They are not significantly different if

their intervals overlap.

it would not be sufficient to estimate only stride length.
The risk would be to miss some angular changes in the
walking direction and accumulate errors in the estimated PDR
trajectories. Consequently it is interesting to assess the impact
of this assumption on the traveled distance estimate.

A. Position estimation error

Let us quantify the position estimation error due to the
walking gait asymmetry in a step symmetric modeling. An
example of step length model is given by [13]. In this model,
the step length s is related to the step frequency f and user’s
height h.Thus, if all steps are identical as assumed in PDR
navigation algorithms, we have

∆SD = ∆SG (3)

where ∆SD is the right step duration and ∆SG is the left step
duration. In this case, the stride duration is given by

∆Stride = ∆SD +∆SG = 2∆SD (4)

Considering the asymmetry induced by the handheld device,
Eq. 3 becomes

∆SD = TSI.∆Stride (5)

Thus, it is possible to estimate the induced error ε and the
error ratio ε% that are given by the following equations:{

ε = (2− 1
TSI )∆SD = ( 2TSI−1

TSI )∆SD

ε% =| 2TSI−1
TSI | ×100

(6)

B. Predicted errors based on empirical data

In the experiments, TSIstep mean value is µTSI1 = 0.4920 for
the loaded swinging mode and µTSI2 = 0.4943 for the texting
mode, representing respectively the error ratios ε1% = 3.25%
and ε2% = 2.3%. For a constant walking velocity, and con-
sidering 1 m long strides, the estimated error over a 100
m traveled distance without considering the gait asymmetry
equals 3.25 m and 2.3 m for the loaded swinging and the
texting modes respectively. These errors are significant for
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pedestrian navigation applications. Since the treadmill tends to
make the gait more symmetric, higher errors are expected for
overground walking. This suggests that the step length models
should be improved for the context of handheld sensors.

TABLE III: Error ratio ε% in % over the traveled distance
for each participant and for the different trials

Loaded Swinging Texting
participant ε%(V1) ε%(V2) ε%(V3) ε%(V1) ε%(V2) ε%(V3)

S1 10.26 3.02 4.00 5.39 2.25 8.47
S2 14.94 0.82 2.34 6.78 5.72 0.56
S3 4.40 2.91 1.25 6.38 3.30 1.54
S4 0.07 1.14 3.66 0.19 3.53 13.38
S5 3.22 3.09 3.73 2.75 0.70 4.00
S6 2.54 2.22 0.50 0.26 0.58 1.92
S7 7.02 0.92 10.47 2.76 1.44 2.70
S8 6.02 0.93 1.23 0.89 0.26 0.21
S9 5.13 1.54 16.86 0.26 9.78 22.09
S10 9.57 4.10 4.95 0.86 8.61 2.53

Mean 6.32 2.07 4.90 2.65 3.61 5.74

In Table III, the position estimation error ratio ε% corre-
sponding to each trial (carrying mode / walking speed) is
reported for all test participants. These values correspond to
the average TSIstep values. In the loaded swinging mode, the
impact on traveled distance estimation is found to be greater
at lower speed (ε%(V1) = 6.32%) than at higher walking ve-
locities. Indeed, at higher speed, the synchronization between
the arms and the legs increases and the impact of the added
mass is found to be less significant. On the contrary, for the
texting mode, the fact of walking with rigid upper limbs has
a greater impact on the position estimation at higher walking
velocities (ε%(V3) = 5.74%). In this scenario, the loaded arm
is not synchronized with the legs movement. This outcome
completes the results found in table II.

C. Comparison with predicted errors from simulation

Based on simulation model, The position estimation error
ratio is calculated for the walking velocities V1, V2 and V3 to
compare with the results based on the empirical data. The error
ratios corresponding to loaded swinging and texting modes are
shown in table IV.

TABLE IV: Error ratio ε% in % based on simulation results
for all testing speeds and for different carrying modes

Loaded Swinging Texting
Gait speed V1 V2 V3 V1 V2 V3

ε% 1.94 1.38 1.87 1.08 2.52 3.04

The error ratios calculated based on the conceived human
gait model are much lower than mean values found with
experimentation data. This is due to several limitations of the
proposed model. The identified limitations and recommenda-
tions for future work are the following:
• It has been assumed that most features of human walking

can be captured by analyzing it in sagittal plane. This
is true for leg movements. However, the observation of
the positions of the hand markers shows that humans
tend to increase their movement in the horizontal plane
with an increase in walking speed. Hence, to study

human walking with arm swinging, 3D model should be
considered.

• For the simplicity of walking gait cycle design, DS phases
were neglected. Humans have a well-defined DS phase
which should not be neglected to capture all the features
of human walking gait in the simulation.

• The simulation tool is unable to model the cognitive
effects of interacting with a device (dual-task paradigm),
interaction with other individuals, and making maneuvers.

VI. CONCLUSION

Using a human gait simulation over a stride with upper
extremity model, it was found that the presence of a mass in
hand, corresponding for example to a smartphone, alters the
step symmetry of the walking gait. This outcome, which is
further investigated with experiments in this paper, is of main
interest for health monitoring applications based on connected
objects.

The impact of the handheld mass on the walking gait is stud-
ied with experimental data collected with 10 test participants
and a 0.19 kg handheld device in a motion capture laboratory.
It is shown that the presence of a mass in hand changes
the gait symmetry at the step level whereas the gait remains
stride symmetric. As compared to a naturalistic walking (i.e.
without any mass in hand), it is also found that both carrying
modes: mass held in a swinging hand and in a "texting" hand,
which corresponds to a rigid arm with the eyes of the person
looking at the object’s screen, have impact on the walking
gait. Finally, for swinging mode, the impact of carrying a
mass in hand is found to be greater at lower speeds (3.6 km/h)
than at comfortable/faster speeds (5-5.8 km/h) while an inverse
tendency is observed for texting mode. These findings tend to
prove the importance of natural arm swinging that could be
captured with handheld devices.

Another important result for the field of pedestrian naviga-
tion based on inertial navigation systems is that the presence
of a handheld mass should be considered to adapt step length
models that are used in PDR processing strategy. Indeed, it
is commonly assumed in the literature that all the steps are
identical when a human is walking with a handheld device.
The outcome of this research shows that this assumption is a
source of error in the computation of the cumulative traveled
distance. In the long term, this study attempts to solve for the
direct modeling problem of human displacements solely based
data from a handheld inertial mobile unit classically embedded
in the connected object. The goal is to deduce the position of
the center of mass of the human using inertial and satellites
data recorded by the handheld device.

Finally this research shows that combining the two research
areas, i.e. biomechanics and pedestrian navigation, is a very
interesting way of addressing the challenges related to the
increase of individual’s autonomy using everyday objects.
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