Deformations of $\mathbb{A}^1$-cylindrical varieties

Abstract : An algebraic variety is called $\mathbb{A}^{1}$-cylindrical if it contains an $ \mathbb{A}^{1}$-cylinder, i.e. a Zariski open subset of the form $Z\times\mathbb{A}^{1}$ for some algebraic variety $Z$. We show that the generic fiber of a family $f:X\rightarrow S$ of normal $\mathbb{A}^{1}$-cylindrical varieties becomes $\mathbb{A}^{1}$-cylindrical after a finite extension of the base. Our second result is a criterion for existence of an $\mathbb{A}^{1}$-cylinder in $X$ which we derive from a careful inspection of a relative Minimal Model Program ran from a suitable smooth relative projective model of $X$ over $S$.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01622447
Contributeur : Adrien Dubouloz <>
Soumis le : mardi 24 octobre 2017 - 16:55:24
Dernière modification le : mardi 31 octobre 2017 - 10:51:19

Fichiers

DefA1Cyl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01622447, version 1
  • ARXIV : 1710.09108

Collections

Citation

Adrien Dubouloz, Takashi Kishimoto. Deformations of $\mathbb{A}^1$-cylindrical varieties. 2017. 〈hal-01622447〉

Partager

Métriques

Consultations de la notice

35

Téléchargements de fichiers

2