The dynamic stochastic topic block model for dynamic networks with textual edges

Abstract : The present paper develops a probabilistic model to cluster the nodes of a dynamic graph, accounting for the content of textual edges as well as their frequency. Ver-tices are clustered in groups which are homogeneous both in terms of interaction frequency and discussed topics. The dynamic graph is considered stationary on a latent time interval if the proportions of topics discussed between each pair of node groups do not change in time during that interval. A classification variational expectation-maximization (C-VEM) algorithm is adopted to perform inference. A model selection criterion is also derived to select the number of node groups, time clusters and topics. Experiments on simulated data are carried out to assess the proposed methodology. We finally illustrate an application to the Enron dataset.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [55 références]  Voir  Masquer  Télécharger
Contributeur : Marco Corneli <>
Soumis le : lundi 23 octobre 2017 - 17:54:14
Dernière modification le : lundi 27 novembre 2017 - 14:14:02
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 15:32:20


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01621757, version 1



Marco Corneli, Charles Bouveyron, Pierre Latouche, Fabrice Rossi. The dynamic stochastic topic block model for dynamic networks with textual edges. 2017. 〈hal-01621757〉



Consultations de la notice


Téléchargements de fichiers