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Abstract

The growing interest for high dimensional and functional data analysis led in the
last decade to an important research developing a consequent amount of techniques.
Parallelized algorithms, which consist in distributing and treat the data into different
machines, for example, are a good answer to deal with large samples taking values in
high dimensional spaces. We introduce here a parallelized averaged stochastic gradient
algorithm, which enables to treat efficiently and recursively the data, and so, without
taking care if the distribution of the data into the machines is uniform. The rate of
convergence in quadratic mean as well as the asymptotic normality of the parallelized
estimates are given, for strongly and locally strongly convex objectives.

Keywords: Stochastic Gradient Descent, Averaging, Distributed estimation, Central Limit
Theorem, Asynchronous parallel optimization.

1 Introduction

The growing interest for high dimensional and functional data analysis led in the last
decade to many research papers developing a consequent amount of techniques. Data that
have to face statisticians can now be extremely large so that it creates a need for economic
calculation techniques. Parallelized algorithms are now a good answer to this challenge
and authors are using various techniques and software (multicore processors for example).
For instance, [27] deals with gradient descent for least square type functions (strongly con-
vex objective functions) by using a global averaging technique meaning that each machine
carries out a gradient descent and the final outcome of the procedure is an averaging of
all these results. In a recent work, [24] also deals with stochastic gradient by proposing a
rewriting procedure where each processor can rewrite the data of an other. This paper offers
good numerical results proving its efficiency and showing in particular that the rewriting
technique is sparse (meaning it does affect a too much important part of the data). We can
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also point out the work of [19] where two implementations of stochastic gradient are cou-
pled : one is over a computer network and the other one is on a shared memory system.
Finally, [3] introduces a parallelized averaged stochastic gradient algorithm and establishes
some convergence properties, such as the asymptotic normality. Those four examples show
in particular that the literature assumes (most of the time) that each machine, when work-
ing with a parallelized algorithm, receive the same amount of data. The reality of course
is far from this setup. Indeed, in many practical cases, data are acquired and treated by
different machines (see the nice example of software architecture given in [4]). For this rea-
son, it is interesting to investigate a parallelized algorithm when the distribution of the data
into the machines is not uniform. Moreover, data are often acquired sequentially, then, it is
important to have an algorithm which enables to simply update the estimates. We so focus
on the parallelization of averaged stochastic gradient algorithms.

Stochastic Gradient Descents (SGD for short) are usually used for estimating the minimizer
of a convex function and are commonly fast, do not need to store all the data into mem-
ory, and are recursive, which enables to simply update the estimates when the data arrive
sequentially [25, 9, 18]. In order to improve the convergence, [26] and [23] introduced the
Averaged Stochastic Gradient Descent (ASGD for short). Among the studied cases, two
of them attract a lot of attention : globally strongly convex objectives [2, 11], and locally
strongly convex ones [21, 22, 13, 14]. Indeed, in those cases the theoretical study can be
pushed very far due to the quite nice structure of the objective function.

In this paper, we introduce Parallelized Stochastic Gradient (PASG) algorithm, which con-
sists in running p samples of ASGD with sample sizes ni, i ∈ {1, ..., p}. After a run, the
results are centralized using an averaging step, i.e. taking the arithmetic mean of all the esti-
mates obtained with each SGD (or equivalently taking the weighted mean of those obtained
with each ASGD). The interest of this procedure is its ability to deal with large samples not
necessarily with the same size (we can suppose ni 6= nj for any i 6= j). We then establish
the efficiency of the algorithms by proving that they have a quadratic convergence rate of
O
( 1

n

)
, which is the optimal one for stochastic approximation. In a second time, we establish

the asymptotic normality of the estimates and see that it has an optimal asymptotic variance
[22].

The paper is organized as follows: Section 2, some recalls on SGD and its averaged version
are done and the general framework as well as the PASG algorithm are introduced. The
two contexts (globally and locally convex objective) are introduced in Section 3 as well as
the rate of convergence in quadratic mean and the asymptotic normality of the estimates
obtained with the PASG algortihm. Section 4, a simulation study for the estimation of the
geometric median shows the efficiency of the method. Finally, the proofs are postponed in
Section 5.
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2 Framework and algorithms

2.1 General framework and usual averaged stochastic gradient algorithm

Let X be a random variable taking values in a space X , and let H be a separable Hilbert
space, not necessarily of finite dimension, such as Rd or L2(I), for some close interval I ⊂ R.
In what follows, we denote by 〈., .〉 its inner product, and by ‖.‖ the associated norm. Let
G : H −→ R be the function we would like to minimize, defined for all h ∈ H by

G(h) := E [g (X, h)] , (1)

where g : X ×H −→ R. We consider from now that the functional G is convex, and that for
almost every x ∈ X , the functional g (x, .) is Fréchet-differentiable for the second variable
and we denote by∇hg (x, .) its gradient. Let X1, ..., Xn, ... be random variables with the same
law as X, the stochastic gradient descent (SGD for short) is defined recursively for all n ≥ 1
by ([25])

mn+1 = mn − γn∇hg (Xn+1, mn) , (2)

with m1 bounded, and a step sequence (γn)n≥1 of the form γn := cγn−α, with cγ > 0
and α ∈

( 1
2 , 1
)
. Remark that it is possible to take a step sequence of the form γn = c

n ,
but it necessitates to have some information on the smallest eigenvalue of the Hessian of
the functional G at m ([21]). In order to improve the convergence, [26] (see also [23] for
first results) introduced the averaged stochastic gradient descent (ASGD for short), defined
recursively for all n ≥ 1 by

mn+1 = mn +
1

n + 1
(mn+1 −mn) , (3)

with m1 = m1. We speak about averaging since it can be written as

mn =
1
n

n

∑
k=1

mk. (4)

2.2 The parallelized averaged stochastic gradient algorithm

We consider from now a set {1, ..., p} of machines. The data are spread over the ma-
chines, i.e. each entity i receives sequentially a sequence of independent random variables
Xi,1, ..., Xi,k, .... Then, each entity i = 1, ..., p will compute the SGD and its averaged version
defined recursively for all k ≥ 1 by{

mi,k+1 = mi,k − γk∇hg (Xi,k+1, mi,k) ,
mi,k+1 = mi,k +

1
k+1 (mi,k+1 −mi,k) ,

with m1,1 = m1,1, ..., mp,1 = mp,1 bounded and (γk)k≥1 a step sequence of the form γk =

cγk−α, with cγ > 0 and α ∈
( 1

2 , 1
)
. Let n = n1 + ...+ np, the parallelized averaged stochastic
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gradient estimate at time n is defined by

m̂n :=
1

∑
p
i=1 ni

p

∑
i=1

nimi,ni , (5)

which can be written as

m̂n =
1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

mi,k. (6)

Moreover, this algorithm can be written recursively. Indeed, setting n′ = n′1 + ... + n′p, such
that for all i = 1, ..., p we have n′i ≥ ni,

m̂n′ =
∑

p
i=1 ni

∑
p
i=1 n′i

m̂n +
1

∑
p
i=1 n′i

p

∑
i=1

(
n′imi,n′i

− nimi,ni

)
. (7)

3 Convergence results

3.1 Strongly convex objective

We now introduce sufficient conditions which ensures the convergence of stochastic gradi-
ent algorithms and of the PASG-algorithm when the functional G is strongly convex.

(H1) The functional G is differentiable and denoting by Φ its gradient, there exists m ∈ H
such that

Φ(m) := ∇G(m) = 0.

(H2) The functional G is twice continuously differentiable almost everywhere and for all
positive constant A, there is a positive constant CA such that for all h ∈ B (m, A),

‖Γh‖op ≤ CA,

where Γh is the Hessian of the functional G at h and ‖.‖op is the usual spectral norm
for linear operators.

(H3) There is a positive constant Cm such that for all h ∈ H,

‖∇G(h)− Γm(h−m)‖ ≤ Cm ‖h−m‖2 .

(H4) There are positive constants L1, L2 such that for all h ∈ H,

E
[
‖∇hg (X, h)‖2

]
≤ L1

(
1 + ‖h−m‖2

)
,

E
[
‖∇hg (X, h)‖4

]
≤ L2

(
1 + ‖h−m‖4

)
.
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(H5) The functional G is µ-strongly convex: for all h, h′ ∈ H,

G(h) ≥ G(h′) +
〈
∇G(h), h′ − h

〉
+ µ

∥∥h− h′
∥∥2 .

We now make some comments on the assumptions: (H1) simply states the existence of a
local minimum which is a necessary condition for our work. Assumptions (H2) to (H5)
are smoothness properties stating that G is µ-strongly convex, coercive and have at most
quadratic growth. (H5) is still standard and is the most favorable case when dealing with
convex optimization problems, leading to the best possible achievable rates. Remark that
the literature is very large on the rate of convergence of stochastic gradient algorithms in
the case of strongly convex objective (see [2] among others) and one can check that under
assumptions (H1) to (H5), there are positive constants C1, C2 such that for all n ≥ 1,

E
[
‖mn −m‖2

]
≤ C1

nα
, (8)

E
[
‖mn −m‖4

]
≤ C2

n2α
. (9)

The following theorem gives the rates of convergence in quadratic mean of the PASG-
algorithm.

Theorem 3.1. Suppose assumptions (H1) to (H5) hold. Then, for all n = ∑
p
i=1 ni,

E
[
‖m̂n −m‖2

]
≤ L1λ−2

min

∑
p
i=1 ni

+
5

∑
j=1

λ−2
minA2

j,p,n +
6

∑
j,j′=1,j 6=j′

λ−2
minAj,p,n Aj′,p,n,

where λmin ≥ µ is the smallest (or limit inf for infinite dimensional spaces) eigenvalue of Γm and

A2
1,p,n = A2

2,p,n :=
p2C1c−2

γ(
∑

p
i=1 ni

)2 , A2
3,p,n :=

4p2−ααc−2
γ C1

(∑
p
i=1 ni)

2−α , A2
4,p,n :=

C2
mC2 (1− α)−2 p2α(

∑
p
i=1 ni

)2α
,

A2
5,p,n :=

L1C1 (1− α)−1 pα(
∑

p
i=1 ni

)1+α
, A2

6,p,n := L1

∑
p
i=1 ni

.

More precisely, we have

E
[
‖m̂n −m‖2

]
≤ L1λ−2

min

∑
p
i=1 ni

+ o

(
1

∑
p
i=1 ni

)
.

Remark:

• One can note that the rate of convergence is the optimal one for strongly convex func-
tion (see [20] for instance) and that the choice α ∈ (1/2, 1) is crucial to obtain this
bound. Indeed, when α ∈ (0, 1/2), the result is different mainly because remainder
terms play a preponderant role while our choice is justified by the central limit theo-
rem. Indeed, the rate of convergence can be considered as optimal in our case since it
perfectly reflects the asymptotic normality (see Theorem 3.2).
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• Investigating the case α = 1 is a tricky question discussed before, and not necessary
since optimality is already obtained. However, we point out the work of ([2] and [10])
where the specificity of this case is discussed with accurate computations.

• Remark that the remainders terms are negligible since p = o
(

nmax{ 2α−1
2α , 1−α

2−α}
)

. For

example, for α = 2
3 , they are negligible since p = o

(√
n
)
.

• Among the classical examples, one can think about least-square regression, where the
objective function is of the form E

[
(〈X, h〉 −Y)2

]
, for X ∈ Rd and Y ∈ R (see [8, 7]

for instance).

In order to establish a Central Limit Theorem, let us now introduce a new assumption:

(H6) Let ‖.‖F be the Frobenius norm for linear operators,

lim
h→m
‖E [∇hg (X, m)⊗∇hg (X, m)]−E [∇hg (X, h)⊗∇hg (X, h)]‖F = 0,

where for all h, h′, h′′ ∈ H, h⊗ h′(h′′) = 〈h, h′′〉h′.

We can now give the asymptotic normality of (m̂n).

Theorem 3.2. Suppose assumptions (H1) to (H6) hold. Then, let n = ∑
p
i=1 ni,

lim
n→∞

√√√√ p

∑
i=1

ni (m̂n −m) ∼ N
(

0, Γ−1
m ΣΓ−1

m

)
,

where
Σ := E [∇hg (X, m)⊗∇hg (X, m)] .

3.2 Locally strongly convex objective

We now focus on the framework introduced by [13] and [14] when G is only locally strongly
convex:

(H7) There exists a positive constant ε such that for all h ∈ B (m, ε), there is a basis of
H composed of eigenvectors of Γh. Moreover, let us denote by λmin the limit inf of
the eigenvalues of Γm, then λmin is positive. Finally, for all h ∈ B (m, ε), and for all
eigenvalue λh of Γh, we have λh ≥ λmin

2 > 0.

(H8) For all integer q, there is a positive constant Lq such that for all h ∈ H,

E
[
‖∇hg (X, h)‖2q

]
≤ Lq

(
1 + ‖h−m‖2q

)
.

The main difference with previous framework is that we just have to assume the local strong
convexity of the functional we would like to minimize, and in return, we have to assume
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the existence of the q-th moments of the gradient. Note that under assumptions (H1) to
(H4) and (H7), it was proven that for all positive constant δ,

‖mn −m‖2 = o
(
(ln n)δ

nα

)
. (10)

Moreover, suppose assumption (H8) holds too, it was proven that for all positive integer p,
there is a positive constant Cp such that for all n ≥ 1,

E
[
‖mn −m‖2p

]
≤

Cp

npα
. (11)

Then, we can now give the rate of convergence in quadratic mean of the PASG-algorithm
for locally strongly convex objectives.

Theorem 3.3. Suppose assumptions (H1) to (H3) and (H7), (H8) hold. Then, for all n = ∑
p
i=1 ni,

E
[
‖m̂n −m‖2

]
≤ L1λ−2

min

∑
p
i=1 ni

+
5

∑
j=1

λ−2
minA2

j,p,n +
6

∑
j,j′=1,j 6=j′

λ−2
minAj,p,n Aj′,p,n,

where

A2
1,p,n = A2

2,p,n :=
p2C1c−2

γ(
∑

p
i=1 ni

)2 , A2
3,p,n :=

4p2−ααc−2
γ C1

(∑
p
i=1 ni)

2−α , A2
4,p,n :=

C2
mC2 (1− α)−2 p2α(

∑
p
i=1 ni

)2α
,

A2
5,p,n :=

L1C1 (1− α)−1 pα(
∑

p
i=1 ni

)1+α
, A2

6,p,n := L1

∑
p
i=1 ni

.

More precisely, we have

E
[
‖m̂n −m‖2

]
≤ L1λ−2

min

∑
p
i=1 ni

+ o

(
1

∑
p
i=1 ni

)
.

Finally, we also establish the asymptotic normality of (m̂n).

Theorem 3.4. Suppose assumptions (H1) to (H4) and (H6), (H7) hold. Then, let n = ∑
p
i=1 ni,

lim
n→∞

√√√√ p

∑
i=1

ni (m̂n −m) ∼ N
(

0, Γ−1
m ΣΓ−1

m

)
,

where
Σ := E [∇hg (X, m)⊗∇hg (X, m)] .

Remark:

• Among the classical examples, one can think about logistic regression [1], which leads
to minimize E [ln (1 + exp (−Y 〈X, h〉))], where Y ∈ {−1, 1} and X ∈ Rd. One can
also think about the estimation of the geometric median (see [15, 6, 5] among others),
where the objective function is E [‖X− h‖ − ‖X‖].
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4 Numerical experiments

In this section, in order to illustrate our theoretical work, we propose some numerical ex-
periments. We consider from now a Gaussian vector X taking values in Rd, with mean
E[X] = 0 and variance E[X⊗X] = Id. We focus on the estimation of the Geometric Median
of X, which is defined by [15, 17]

m := arg min
h∈Rd

E [‖X− h‖ − ‖X‖] .

Note that in this case, m = 0, and the SGD is defined for all i = 1, . . . , p and k ≥ 1 by [6]

mi,k+1 = mi,k + γk
Xi,k+1 −mi,k

‖Xi,k −mi,k‖
.

We now consider a step sequence γk = k−2/3 and numbers of machines equal to 1, 10, 50, 200, 500,
and we assume that data are uniformly distributed into the different machines. Note that
in this case, our algorithm is the same as the one introduced by [3]. Moreover, when p = 1,
this corresponds to the usual ASG algorithm. Finally, we also consider a case with p = 10
but where we have a Non-Equal Distribution ("NED" for short) between the machines, and
the following vector gives the percentage of data per machine:

vp = (0.05, 0.45, 1.5, 3, 8, 10, 10, 17, 20, 30)

In Figure 1, one can see that the number of used machines (with p �
√

n) does not seem
to have a strong impact on the quadratic error of the estimates, which tends to confirm
the results given by Theorems 3.1 and 3.3. Moreover, it seems to confirm that taking into
account the numbers of data per machine during the parallelization step enables to take
care of estimation coming from strongly different and inhomogeneous sources.
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Figure 1: Quadratic error obtained with the PASGD for a sample size n = 105 and for
different numbers of machines (p = 1, 10, 50, 200, 500) and for a Non-Equal Distribution
("NED") for p = 10.

Figure 2 tends to confirm Theorems 3.2 and 3.4, i.e it tends to confirm that the asymptotic
behavior of the PASG algorithm does not depend on the number of machines or on the
homogeneity of the data distribution.
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Figure 2: Evolution of the quadratic mean error compare to the sample size n for different
numbers of machines (p = 1, 10, 50, 200, 500) and for a Non-Equal Distribution ("NED") for
p = 10.
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In a recent work, [3] proposes to parallelize ASGD but for an uniform distribution of the
data between the machines, and so that without taking the number of data per machine into
account. In Figure 3, we show the significant improvement represented by our algorithm
compare to the previous one. Indeed, although the algorithm proposed by [3] stay quite
efficient in the context of Non-Equal Distribution, it can be very less accurate than the PSGD
algorithm.
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Figure 3: Comparison between the quadratic errors obtained with the PASG algorithm and
the ones obtained with the algorithm introduced by Bianchi et. al, for p = 10 machines and
with a Non-Equal Distribution.

5 Proofs

5.1 Some decompositions of the algorithms

We first recall some usual decompositions of the algorithms, which will be useful in the
proofs. First, for all k ≥ 1, let us introduce the sequences (ξi,k), defined, for all i = 1, ..., p
and for all k ≥ 1, by ξi,k+1 := ∇G (mi,k) − ∇hg (Xi,k+1, mi,k). Moreover, let us intro-
duce the sequences of σ-algebras (F1,k) , ...,

(
Fp,k

)
defined for all i = 1, ..., p and k ≥ 1

by Fi,k := σ (Xi,1, ..., Xi,k). Then, for all i = 1, ..., p, (ξi,k)k is a sequence of martingale differ-
ences adapted to the filtration (Fi,k)k. Moreover, the SGD can be written, for all i = 1, ..., p
and for all k ≥ 1, as

mi,k+1 = mi,k − γk∇G (mi,k) + γkξi,k+1. (12)

Moreover, linearizing the gradient, the SGD can be decomposed as

mi,k+1 −m = (IH − γkΓm) (mi,k −m) + γkξi,k+1 − γkδi,k, (13)
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where δi,k := ∇G (mi,k)− Γm (mi,k −m) is the remainder term in the Taylor’s expansion of
the gradient. Finally, summing these equalities, applying an Abel’s transform and dividing
by ni, one can obtain (see [22])

Γm [mi,ni −m] =
mi,1 −m

niγ1
− mi,ni+1 −m

niγni

+
1
ni

ni

∑
k=2

(mi,k −m)

(
1
γk
− 1

γk−1

)
− 1

ni

ni

∑
k=1

δi,k +
1
ni

n

∑
k=1

ξi,k+1. (14)

Finally, by linearity, the PASG algorithm can be written as

Γm [m̂n −m] =
1

∑
p
i=1 ni

p

∑
i=1

mi,1 −m
γ1

− 1

∑
p
i=1 ni

p

∑
i=1

mi,ni+1 −m
γni

+
1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=2

(mi,k −m)

(
1
γk
− 1

γk−1

)
− 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

δi,k +
1

∑
p
i=1 ni

p

∑
i=1

n

∑
k=1

ξi,k+1. (15)

5.2 Proof of Theorems 3.1 and 3.3

In order to prove Theorems 3.1 and 3.3, we just have to bound each term on the right-hand
side of (15).

Bounding E

[∥∥∥ 1
∑

p
i=1 ni

∑
p
i=1

mi,1−m
γ1

∥∥∥2
]

. With the help of Cauchy-Schwarz inequality and of

inequality (11) or (8), one can check that

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

mi,1 −m
γ1

∥∥∥∥∥
2
 ≤ p(

∑
p
i=1 ni

)2

p

∑
i=1

E

[∥∥∥∥mi,1 −m
γ1

∥∥∥∥2
]
≤

p2C1c−2
γ(

∑
p
i=1 ni

)2 := A2
1,p.

(16)

Bounding E

[∥∥∥ 1
∑

p
i=1 ni

∑
p
i=1

mi,ni+1−m
γni

∥∥∥2
]

. In the same way, with the help of Cauchy-Schwarz

inequality and of inequality (11) or (8),

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

mi,ni+1 −m
γni

∥∥∥∥∥
2
 ≤ p(

∑
p
i=1 ni

)2

p

∑
i=1

E

[∥∥∥∥mi,ni+1 −m
γni

∥∥∥∥2
]

≤ p(
∑

p
i=1 ni

)2

p

∑
i=1

C1c−2
γ (

ni

ni + 1
)α.

This yields,

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

mi,ni+1 −m
γni

∥∥∥∥∥
2
 ≤ p2c−2

γ C1(
∑

p
i=1 ni

)2 := A2
2,p. (17)

Bounding 1
∑

p
i=1 ni

∑
p
i=1 ∑ni

k=2 (mi,k −m)
(

1
γk
− 1

γk−1

)
. In the same way, applying Lemma 4.3
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in [12],

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=2

(mi,k −m)

(
1
γk
− 1

γk−1

)∥∥∥∥∥
2
 ≤ p(

∑
p
i=1 ni

)2

p

∑
i=1

E

∥∥∥∥∥ ni

∑
k=2

(mi,k −m)

(
1
γk
− 1

γk−1

)∥∥∥∥∥
2


≤ p(
∑

p
i=1 ni

)2

p

∑
i=1

(
ni

∑
k=2

√
E
[
‖mi,k −m‖2

] ∣∣∣∣ 1
γk
− 1

γk−1

∣∣∣∣
)2

.

Since ∣∣∣∣ 1
γk
− 1

γk−1

∣∣∣∣ ≤ α c−1
γ (k− 1)α−1,

and applying inequality (11) or (8)

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=2

(mi,k −m)

(
1
γk
− 1

γk−1

)∥∥∥∥∥
2
 ≤ pα2c−2

γ C1(
∑

p
i=1 ni

)2

p

∑
i=1

(
ni

∑
k=2

(k− 1)α−1

kα/2

)2

≤
pα2c−2

γ C1(
∑

p
i=1 ni

)2

p

∑
i=1

(
ni

∑
k=2

(k− 1)α−1

(k− 1)α/2

)2

≤
pα2c−2

γ C1(
∑

p
i=1 ni

)2

p

∑
i=1

(
ni

∑
k=2

(k− 1)α/2−1

)2

.

Then, since α < 1, with the help of an integral test for convergence and thanks to Hölder’s
inequality,

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=2

(mi,k −m)

(
1
γk
− 1

γk−1

)∥∥∥∥∥
2
 ≤ 4pαc−2

γ C1(
∑

p
i=1 ni

)2

p

∑
i=1

(ni − 1)α

≤
4p2−ααc−2

γ C1(
∑

p
i=1 ni

)2

(
p

∑
i=1

(ni − 1)

)α

≤
4p2−ααc−2

γ C1(
∑

p
i=1 ni

)2−α
:= A2

3,p. (18)

Bounding E

[∥∥∥ 1
∑

p
i=1 ni

∑
p
i=1 ∑ni

k=1 δi,k

∥∥∥2
]

. First, let us recall that there is a positive constant Cm

such that for all i = 1, ..., p, and for all integer k,

‖δi,k‖ ≤ Cm ‖mi,k −m‖2 . (19)

Moreover, thanks to Lemma 4.1 in [12],

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

δi,k

∥∥∥∥∥
2
 ≤ p(

∑
p
i=1 ni

)2

p

∑
i=1

E

∥∥∥∥∥ ni

∑
k=1

δi,k

∥∥∥∥∥
2
 ≤ p(

∑
p
i=1 ni

)2

p

∑
i=1

(
ni

∑
k=1

√
E
[
‖δi,k‖2

])2

.
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Then, applying inequalities (19) and (11) or (9),

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

δi,k

∥∥∥∥∥
2
 ≤ C2

m p(
∑

p
i=1 ni

)2

p

∑
i=1

(
ni

∑
k=1

√
E
[
‖mi,k −m‖4

])2

≤ C2
mC2 p(

∑
p
i=1 ni

)2

p

∑
i=1

(
ni

∑
k=1

k−α

)2

.

Thus, since 1/2 < α < 1, with the help of an integral test for convergence and thanks to
Hölder’s inequality,

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

δi,k

∥∥∥∥∥
2
 ≤ C2

mC2(1− α)−2 p(
∑

p
i=1 ni

)2

p

∑
i=1

n2−2α
i ≤ C2

mC2(1− α)−2 p2α(
∑

p
i=1 ni

)2

(
p

∑
i=1

ni

)2−2α

≤ C2
mC2(1− α)−2 p2α

(∑
p
i=1 ni)2α

:= A2
4,p. (20)

Bounding E

[∥∥∥ 1
∑

p
i=1 ni

∑
p
i=1 ∑n

k=1 ξi,k+1

∥∥∥2
]

. First, by definition of the sequences (ξi,k) and

thanks to assumption (H4) or (H8), for all i = 1, ..., p and for all positive integer k,

E
[
‖ξi,k+1‖2

]
= E

[
‖∇hg (Xi,+1, mi,k)‖2

]
−E

[
‖∇G (mi,k)‖2

]
≤ L1 + L1E

[
‖mi,k −m‖2

]
. (21)

Moreover, since for all i = 1, ..., p, (ξi,k) is a sequence of martingale differences adapted to
the filtration (Fi,k) and since for all i = 1, ..., p and j = 1, ..., p such taht i 6= j the sequences
(ξi,k) and

(
ξ j,k
)

are independent,

E

[
ni

∑
k=1

ξi,k

]
= 0 ∀i = 1, ..., p, and E

[〈
ni

∑
k=1

ξi,k,
nj

∑
k=1

ξ j,k

〉]
= 0, ∀i, j = 1, ..., p s.t i 6= j.

Then, applying inequality (21),

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

ξi,k+1

∥∥∥∥∥
2
 =

1(
∑

p
i=1 ni

)2

p

∑
i=1

E

∥∥∥∥∥ ni

∑
k=1

ξi,k+1

∥∥∥∥∥
2


=
1(

∑
p
i=1 ni

)2

p

∑
i=1

ni

∑
k=1

E
[
‖ξi,k+1‖2

]
≤ 1(

∑
p
i=1 ni

)2

p

∑
i=1

ni

∑
k=1

(
L1 + L1E

[
‖mi,k −m‖2

])

13



Then, thanks to inequality (11) or (8), and with the help of an integral test for convergence,

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

ξi,k+1

∥∥∥∥∥
2
 ≤ L1

∑
p
i=1 ni

+
L1C1(

∑
p
i=1 ni

)2

p

∑
i=1

ni

∑
k=1

k−α

≤ L1

∑
p
i=1 ni

+
L1C1(1− α)−1(

∑
p
i=1 ni

)2

p

∑
i=1

n1−α
i .

Finally, applying Hölder’s inequality and since α < 1,

E

∥∥∥∥∥ 1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

ξi,k+1

∥∥∥∥∥
2
 ≤ L1

∑
p
i=1 ni

+
L1C1(1− α)−1 pα(

∑
p
i=1 ni

)1+α
:= A2

6,p + A2
5,p. (22)

Conclusion. Since the smallest eigenvalue (or the limit inf of the eignevalues for infinite
dimensional spaces) of Γm denoted by λmin is positive, let n = ∑

p
i=1 ni,

E
[
‖m̂n −m‖2

]
≤ 1

λ2
min

E
[
‖Γm (m̂n −m)‖2

]
.

Then, applying Cauchy-Schwarz’s inequality as well as inequalities (16) to (22), one can
check that

E
[
‖m̂n −m‖2

]
≤

6

∑
j=1

λ−2
minA2

j,p,n +
6

∑
j,j′=1, j 6=j′

λ−2
minAj,p,n Aj′,p,n,

which concludes the proof.

5.3 Proof of Theorem 3.2 and 3.4

First, one can check that the first term on the right-hand side of equality (15) are negligeable,
i.e

1√
∑

p
i=1 ni

p

∑
i=1

mi,1 −m
γ1

= o (1) P,

1√
∑

p
i=1 ni

p

∑
i=1

mi,ni+1 −m
γni

= o (1) P,

1√
∑

p
i=1 ni

p

∑
i=1

ni

∑
k=2

(mi,k −m)

(
1

γk+1
− 1

γk

)
= o (1) P,

1√
∑

p
i=1 ni

p

∑
i=1

ni

∑
k=1

δi,k = o (1) P.

Indeed, it is a direct application of inequalities (16) to (22) when assumptions (H1) to (H5)
are verified and a direct application of Theorem 4.1 in [13] when assumptions (H1) to (H4)
and (H7) are verified. In order to get the asymptotic normality of the term

(
∑

p
i=1 ∑ni

k=1 ξi,k+1
)
,

14



let us first remark that with a good choice of index, this term can be seen as a sum of martin-
gale differences term. Then, we just have to check that assumptions of Theorem 5.1 in [16]
are fulfilled, i.e let

(
ej
)

j∈J be an orthonormal basis of H and ψj,j′ :=
〈
Σej, ej′

〉
for all j, j′ ∈ J,

we have to verify:

∀η > 0, lim
n→∞

P

 sup
1≤k≤ni ,i=1,...p

1√
∑

p
i=1 ni

‖ξi,k+1‖ > η

 = 0, (23)

lim
n→∞

1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

〈
ξi,k+1, ej

〉 〈
ξi,k+1, ej′

〉
= ψj,j′ a.s, ∀j, j′ ∈ J, (24)

∀ε > 0, lim
N→∞

lim sup
n→∞

P

(
1

∑
p
i=1 ∑ni

k=1

∞

∑
j=N

〈
ξi,k+1, ej

〉2
> ε

)
= 0. (25)

Proof of (23): Let η > 0, applying Markov’s inequality,

P

 sup
1≤k≤ni ,i=1,...p

1√
∑

p
i=1 ni

‖ξi,k+1‖ > η

 =
p

∑
i=1

ni

∑
k=1

P

 1√
∑

p
i=1 ni

‖ξk+1‖ > η


≤ η−4(

∑
p
i=1 ni

)2

p

∑
i=1

ni

∑
k=1

E
[
‖ξi,k+1‖4

]
.

Moreover, note that thanks to Assumption (H4) or (H8), for all i = 1, ..., p and 1 ≤ k ≤ ni,

E
[
‖ξi,k+1‖4

]
≤ 24E

[
‖∇hg (Xi,k+1, mi,k)‖4

]
≤ 24L2

(
1 + E

[
‖mi,k‖4

])
≤ 24L2 (1 + C2) .

Then,

P

 sup
1≤k≤ni ,i=1,...p

1√
∑

p
i=1 ni

‖ξi,k+1‖ > η

 ≤ η−424L2 (1 + C2)

∑
p
i=1 ni

.

Proof of (24): First, let ⊗ be the bilinear application defined for all h, h′, h′′ ∈ H by
(h⊗ h′) (h′′) = 〈h, h′′〉 h′. Note that

1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

ξi,+1 ⊗ ξi,k+1 =
1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

E [ξi,k+1 ⊗ ξi,k+1|Fi,k] +
1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

εi,k+1,

with εi,k+1 := ξi,k+1⊗ ξi,k+1−E [ξi,k+1 ⊗ ξi,k+1|Fi,k]. Remark that we a good choice of index,
(εi,k)i,k can be seen as a sequence of martingale differences, and one can check that

lim
n→∞

1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

εi,k+1 = 0 a.s.

Let us now prove that the sequence of operators (E [ξi,k+1 ⊗ ξi,k+1|Fi,k])i,k converges almost

15



surely to Σ with respect to the Frobenius norm when k goes to infinity. First, note that

‖E [ξi,k+1 ⊗ ξi,k+1|Fk]− Σ‖F

= ‖E [∇hg (Xi,k+1, mi,k)⊗∇hg (Xi,k+1, mi,k) |Fi,k]− Σ−∇G (mi,k)⊗∇G (mi,k)‖F

≤ ‖E [∇hg (Xi,k+1, mi,k)⊗∇hg (Xi,k+1, mi,k) |Fi,k]− Σ‖F + ‖∇G (mi,k)⊗∇G (mi,k)‖F .

Then, thanks to Assumption (H6), since ‖∇G (mi,k)‖ ≤ C ‖mi,k −m‖ for all i, k (see [13]),
and since (mi,k) converges almost surely to m,

lim
k→∞
‖E [∇hg (Xi,k+1, mi,k)⊗∇hg (Xi,k+1, mi,k) |Fi,k]− Σ‖F = 0 a.s, ∀i = 1, ..., p,

lim
k→∞
‖∇G (mi,k)⊗∇G (mi,k)‖F = lim

k→∞
‖∇G (mi,k)‖2

F = 0 a.s, ∀i = 1, ..., p.

Then, the sequences (E [ξi,k+1 ⊗ ξi,k+1|Fk])k≥1 converges almost surely to Σ with respect to
the Frobenius norm and as a consequence, for all j, j′ ∈ J,

lim
k→∞

〈
E (ξi,k+1 ⊗ ξi,k+1|Fi,k] (ej), ej′

〉
= ψj,j′ a.s, ∀i = 1, ..., p.

Thus, applying Toeplitz’s lemma, for all j, j′ ∈ J,

lim
n→∞

1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

〈
E (ξi,k+1 ⊗ ξi,k+1|Fi,k] (ej), ej′

〉
= ψj,j′ a.s.

Proof of (25): Let ε > 0, applying Markov’s inequality,

P

(
1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

∞

∑
j=N

〈
ξi,k+1, ej

〉
> ε

)
≤ ε−2

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

∞

∑
j=N

E
[〈

ξi,k+1, ej
〉2
]

≤ ε−2

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

∞

∑
j=N

E
[
E
[〈

ξi,k+1, ej
〉2 |Fi,k

]]
.

Since for all j ∈ J,
〈
ξi,k+1, ej

〉2
=
〈
ξi,k+1 ⊗ ξi,k+1

(
ej
)

, ej
〉
, by linearity and by dominated

convergence,

P

(
1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

∞

∑
j=N

〈
ξi,k+1, ej

〉
> ε

)
≤ 1

ε2

∞

∑
j=N

1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

E
[
E
[〈

ξi,k+1 ⊗ ξi,k+1
(
ej
)

, ej
〉
|Fi,k

]]
=

1
ε2

∞

∑
j=N

1

∑
p
i=1 ni

p

∑
i=1

ni

∑
k=1

E
[〈

E [ξi,k+1 ⊗ ξi,k+1|Fi,k]
(
ej
)

, ej
〉]

.

Since E [ξi,k+1 ⊗ ξi,k+1|Fi,k] converges almost surely to Σ and by dominated convergence,

lim sup
n

P

(
1
n

p

∑
i=1

ni

∑
k=1

∞

∑
j=N

〈
ξi,k+1, ej

〉
> ε

)
≤ 1

ε2

∞

∑
j=N

〈
Σ(ej), ej

〉
,

and one can conclude as in [14].
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