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It is therefore natural to precribe the following conditions: 

Ou~O in the sense of distributions in IR X IR1 = ~ X (0, oo ), (0.5) 

the support of Du is contained in the "set of contact," the set 

where u(x, t) = <p(x). 
(0.6) 

In this paper, we prescribe 

<p" ~ 0. (0.7) 

This convexity condition on the function <p expresses the fact that the n1aterial 
obstacle {(x, z)jz ~ cp(x)} is concave. Condition (0. 7) ensures that there will not 
be "too many" reflections on the obstacle, which would cause the method 
described hereafter to fail. 

We need information on the nature of the reflection on the obstacle and we choose 
to impose that energy be conserved:; we shall, in fact, need a local energy conserva­
tion condition, which we will write as 

~ (-2 ou ~) + ~ (lou 1

2 + lou 1

2

) = 0 ox ox ot at ox at . 
(0.8) 

in the sense of distributions in 

The aim of this paper is to prove that, if u0 is in Hfoc( IR) and u1 is in Lioc( ~), 
then there exists a unique function u in L~c(~+; Htoc(~)) n Wf~~(IR+; Lioc(IR)) 
with IR f· = [0, + oo) which satisfies conditions (0.1 )-(0.6) and (0.8). We prove 
an analogous result in the case of a finite vibrating string, with fixed ends. 

Some results of continuity with respect to the data, of regularity, and the 
convergence of a numerical scheme are shown in the paper of A. Bamberger, and 
the author [4]. 

Before Amerio and Prouse, who proved the first result on the vibrating 
string with obstacle in [3], it seems that nobody had seriously progressed toward 
the solution of this problem. In the case with loss of energy, Citrini has given 
several results in [6, 7], along the line of Amerio and Prouse; the point obstacle 
has been studied by Amerio [1, 2], Citrini [6], and the author [12]. 

The plan is the following: 

T. lntroduct1:on. 1.1. Notations and general hypotheses_ Statement of the results. 
1.2. justification of the mathematical model. 1.3. Idea of the proof of existence. Role of 
the concavity hypothesis. 1.4. Comparison with the results of L. Amerio and G. Prouse. 
1.5. Explicit computations of examples. II. The Line of Influence and Its Properties. Il.l. De~ 
finition and first properties of the domain of influence and of the line of influence. 
II.2. Study of the values of the free solution and of its derivatives on the line of influence. 
Ill. Solution of a Linear Auxiliary Problem. !ILl. Statement of the result, idea of the proof. 
111.2. Computation of Ov in terms of w and a . III.3. Partial results of existence. III.4. 
Energy condition. End of the proof of theorem III.l. IV. Proof of Existence: Infinite String. 
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IV.l. Proof of existence in a general case. IV.2. An alternative construction when the 

obstacle cp is constant. V. Proof of Uniqueness: Infinite String. V.J. Results of trace. 

V.2. Proof of uniqueness. VI. The Finite String with Fixed Ends. VI.l. Existence. VI.2. 

Uniqueness. Appendix. A. 1. Elementary results about integration by substitution. 

A.2. The set t =--= a(x) in characteristic coordinates. 

I. INTRODUCTION 

I. I. Notations and General Hypotheses. Statement of the Results 

In what follows, we shall denote by 

u(x, t) the transverse displacement from its equilibrium position 

of the point of abscissa x of the string at the instant t, 

cp the obstacle, 

u0 the initial position of the string, 

u1 the initial velocity of the string. 

We make the following hypotheses: 

" > 0 cp :::---- (in the sense of distributions), 

1 ~ 2 )jdv 2 I u0 E H10c(~) = /v ELioc(IR dx ELloc(IR) , 

(I.l) 

(1.2) 

where Lioc(IR) is the well-known space of locally square-integrable functions; 

u0(x) ~ g>(x) Yx, 

(1.3) 

(1.4) 

(this makes sense because u0 and cp are continuous by hypotheses (I. I) and (1.2)); 

almost everywhere on the set {xju0(x) = cp(x)}. (1.5) 

In the case of a finite string with fixed ends, we replace (I. J) by 

and <p(O) < 0, g1(L) < 0, (1.6) 

and (1.2), (1.3) by 

Uo E Ho'(O,L) = lv EL2(0,L);;; EL"(O,L), v(O) = v(L) = oj ' (1.7) 

Ut EL2(0,L). (I.8) 
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We shall prove the following results : 

THEOREM IV.l (Infinite String). Under hypotheses (1.1 )-(!.5), there exists 

a unique function u such that 

u E Loo (iR+· 1!1 (IR)) n WL <XJ(iR+· L2 (IR)) 
loc ' loc loc ' loc ' 

u(x, 0) = u0(x) 

ou 
Bt (x, 0) = u1(x) 

u(x, t) ~ tp(x) 

Ou~O 

'Vx, 

almost everywhere, 

V(x, t) E iR X !R_+, 

in the sense of distributions in IR X IR; , 

supp D u C {(x, t) fu(x, t) = tp(x)}, 

~ (-2 ou ~) + ~ (lou 12 lou 1
2

) = 0 ox ox ot 8t ot + ox 

in the sense of distributions in ~ X ~; . 

(1.9) 

(1.1 0) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

THEOREM V.I (Finite String with fixed Ends). Under hypotheses (1.4)- (1.8), 
there · exists a unique function u such that 

u E L <XJ (iR+· H 1(0 L)) (\ WLCXJ(!R+· L 2(0 L)) 
loc ' o ' loc ' ' 

(1.16) 

and u satisfies conditions (1.1 0)-(1.15) with the relevant modifications on the domain. 

For simplicity, we shall denote problem (1.9)-(I. 1 5) by the symbol P oo , 
and problem (1.10)-(1.16) by the symbol Pr. 

The functional spaceL~c(IR+ ; Hfoc(IR)) n Wt0~(~+;Lioc(IR))is defined as the 
set of real functions v on IR X IR+ such that, for any finite positive L and T 

e~~,~p (( [1 u(x. t)l2 + 1 :: (x. t) 1· + 1 !~ (x. t) n dt) < + oo. (1.17) 

The functional space L~c(IR+ ; H0
1(0, L)) n Wf0~(R+; L2(0, L)) is defined to 

be the set of real functions v on [0, L] X R+ such that, for all finite positive T 

e~~,~~p (( [1 u(x, t)l2 + 1 : : (x, t) 1· + 1 a; (x. t) n dt) < + oo 

and 
(1.18) 

u(O, t) = u(L, t) = 0 'tit ~ 0. 

It will be shown in the course of the paper that condition (1.12) implies that 
(1.1 1 ) has a meaning. 
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I.2. Justification of the Mathematical Model 

Conditions (I. I 0) to (1.12) are quite natural. 
Condition (1.14) implies that, when the string does not touch the obstacle, 

it satisfies the wave equation. 
If at a time t and a point x, the string touches the obstacle with a nonzero 

velocity, there must necessarily be a discontinuity in the time derivative. Hence, 

generally, Du cannot be a function. As the string must leave the obstacle after 
the shock, Ou must be positive, i.e., (1.13). 

Condition (1. 1 5) expresses that the divergence of the vector field 

(1.19) 
. 
IS zero. 

The first component of this vector field is an energy flux density; it is similar 

to the Poynting vector which is well known in electromagnetism; see, for 

example, Landau and Lifschitz [I 1, p. 98]. 
The second component of Su is but a total energy density: kinetic plus poten­

tial energy. 
Condition (I.l5) is satisfied on any open set where D u is null: to convince 

oneself it is enough to multiply Du by oufot, and rewrite the expression in 
I 

divergence form. This classical manipulation is done in Courant and Hilbert 

[9, p. 660]. 
It is not enough-for example, in the case of the finite string with fixed 

ends-to impose an integral condition of the type 

( [\ ~ (x, t) 1
2 

+ I ~= (x , t) n dx = r (I ~: ,. + I u, 1
2

) dx 

almost everywhere in t. (1.20) 

Condition (1.20) is not local, and does not ensure that the velocity is reversed 

everywhere when a shock happens. 

Condition (1.15) expresses the conservation of energy across any curve, and 
especially the discontinuity curves of oujox and oufot. Proposition V.3 lays 
down precise! y this property. 

1.3. Idea of the Proof of Existence 

Role of the concavity hypothesis. Let us first consider the "free solution'' w, or 

solution of the problem without obstacle, with the initial data u0 , u1 of the 
problem with obstacle: 

Dw = 0, 

w(x, 0) = u0(x), 

8w 7ft (x, 0) = u1(x). 

(1.21) 
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It is well known that there exists a unique w in the functional class 
L~0(1R+; Hfoc(IR)} 11 W{~~(IR+;Lroc(IR)) which satisfies (1.21). Such a w is a 
continuous function. 

Let us now consider the set E: 

E = {(x, t) E IR X IR+jw(x, t) < <p(x)}. 

As w is continuous, E is unambiguously defined. Define the domain of influence 
to be the union, I, of all forward wave-cones with vortex in E. I is hatched in 
Fig. 1. 

FIG. 1. Sketch of domain and line of influence. 

Of course, E is included in I. By definition 

w(x, t) ~ <p(x) if (x, t) f# I. 

We can easily see that if w(x, t) > <p(x) for all (x, t) in a backward cone, then the 
solution u must be equal to w in that cone. 

We take u to be equal to w in all the complement of I, and we must now extend 
u across the boundary of I. 

The boundary of I, called line of influence, is the graph t = r(x) of a Lipschitz­
continuous function r: 

I r( X) - r(y) I ~ I X - Y I Vx, yE IR. 

Section 11 is devoted to studying the line of influence, and proving the follow­
ing properties: 

w(x, T(x)) = <p(x) if I T'(x)l < 1, 

if w(x, r(x)) = <p(x). 
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In Section Ill, we consider the following problem: 

V E W1• 00(~+ · L2 (!R)) n L00 (~+- fll (!R))· loc ' Ioc loc ' loc ' 

Ov! {(x,t) / t;ea(x)} := 0, 

v(x, 0) = v0(x), 

ov ot (x, 0) = v1(x), 

(1.22) 

o+v o-v 
Tt (x, a(x)) = - Tt (x, a(x)) a.e. on {x/l a'(x)l < 1 and a(x) > 0}. 

Here a is a given nonnegative Lipschitz-continuous function, with Lipschitz 
constant 1, and v0 , v1 are given, respectively, in Hfoc(IR) and Lioc(IR). 

We can prove that (I.22) possesses a unique solution v given explicitly in 
terms of a and w, the free solution with data v0 and v1 by 

V = W + tf * fL( W ), 

where <f is the elementary solution of the wave equation, and p.( w) is a measure 
given by 

<~L(w), t/1) = - 2 r (1 - r'(x)2) ~w (x, r(x)) tfo(x, r(x)) dx, 
J cut"T(x)> O} ut 

To complete the proof of existence, it remains to check that conditions (1.12) 
and (1.13) are satisfied by u, solution of (1.22) with (]' = r, u0 = v0 and u1 = v1 • 

The latter condition is easily verified, but to prove the former, we rely heavily 
on hypothesis (1.1 ). We can infer indeed from (I. I) that, once the string has 
touched the obstacle, it does not touch it any more. From the similar hypothesis 
(1.6), we can deduce that once the finite string has touched the obstacle, it does 
not touch it again after a finite time, depending only on the geometry of the 
obstacle and on the initial total energy; thus we can iterate easily the above 
procedure and obtain a solution at a finite time after a finite number of steps. 

If hypothesis (I.l) were left out, let us see what could happen: Let u0 , u1 , 

and q> be given by 

Then the free solution w is 

u0(x) = q>(x) = -x2, 

u1(x) = 0. 

w(x, t) = -x"' - tZ 

so that E = I = 1R X fR+ and -r = 0. The solution v of (1.22) satisfies 

Ov = 0 if t > 0, 

v(x, 0) = v0(x) = -x2, 

ov ot (x, 0) = vl(x) = 0 
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and it is readily computed: 

v(x, t) = w(x, t) = -x2 - t2• 

We see that condition (1.12) cannot be satisfied for any x and any positive tl 
Of course if the initial were nowhere zero, we could build a solution of (I.22) 

which would be positive in a ne~ghborhood of !R X {0}, and define a new line of 
influence, and perhaps do the same again a certain number of times. But in 
general nothing guarantees that there will be only a finite number of influence 
lines in a finite time. The lines of influence could accumulate, and a simple 
argument shows that in the limit, the velocity would be zero on the limit curve, 
or more precisely, on the noncharacteristic parts of the limit curve where the 
obstacle is convex. So we need a more powerful device-which is not yet known 
-to prove an existence theorem without hypothesis (I.l ). 

Finally, the reader should note that the existence proof given here is not at all 
variational. Of course, conditions (I.12) to (1.14) "look variational" but it is 
definitely difficult to include condition (1.15) in an efficient variational formula­
tion. 

1.4. Comparison with the Results of Amerio and Prouse 

In their first paper [3], Amerio and Prouse constructed a solution taking a 

rather unusual functional class of initial data. Lately, they could relax their 
hypothesis, in a still unpublished paper [14]. They consider a constant obstacle 
( g;' = 0), and they build a weak solution step by step, following the character­
istics, and extending functions across the lines of influence by means of con­
venient formulas. They do not define a functional class in which they seek a 
solution of a partial differential problem, in order to have a genuine theorem of 
uniqueness. The fundamental idea of line of influence originated from Amerio 
and Prouse's paper [3], and the present work uses this idea to a large extent. 

1.6. Explicit Computation of Examples 

EXAMPLE I. Infinite String. The simplest example one can devise is the 
following one: 

Then 

u0(x) = c > 0, 

u1(x) = -1, 

g;(x) = 0. 

w(x, t) = c - t, 

E=l=~+x[c,+oo] 
8



and the solution of problem P 00 is given by 

u(x, t) = c- t 

u(x, t) = t- c 

if 

if 

tE [0, c], 

t ;); c. 

EXAMPLE 2. Infinite String. This example shows how a wave "coming 
from minus infinity'' is reflected against a plane, oblique obstacle. Let us set 

u0(x) = X if x~O 

0 if X< 0, 

u1(x) = -1 if x;)=O 

0 if X< 0, 

<p(x) = ax with a E (0, 1). 

Then the free solution is given by 

w(x, t) = (x - t)+ = sup(O, x - t). 

The set E is defined by 

E = {(x, t)j(x - t)+ < ax} = {(x, t)jx ~ 0 and t ~ x(I - a)} 

and the set I is 

I= {(x, t)ft ~ max(-x, (I -a) x)}. 

Then the solution of problem P oo is given by 

u(x, t) = (x- t)+ 

u( x, t) = (2a - 1) x + t 
u(x, t) = a(x + t) 

I 

if 

if 

if 

t ~ max( -x, (1 -a) x), 

(1 - a) x ~ t ~ x, 

t ~I X'· 

X 

FIG. 2. The sets E and I of Example 2. 
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X 

FIG. 3. Evolution of function u of Example 2. 

EXAMPLE 3. Finite String. Given a string of unit length and data 

u0(x) = 0, 

U1(x) = -1T COS 1TX, 

cp(x) =- !, 

we can compute e~plicitly the solution of Pr for any time t. 
The initial data correspond to the free solution 

w(x, t) = -sin 1rt sin 1TX, 

so that 

E = {(x, t)/-sin 1Tl sin 1TX < - !} 

and the (first) line:, of influence is given by 

(see Fig. 4). 

r(x) = -~-- x 

r(x) ~ (l/7T) arc sin(l/(2 sin 1rx)) 

r(x) =- l + x 

if 

if 

if 

0 ~X~ t 1 

In the set where t ~ T( x }, u = w; the velocity is reversed in those points 
where 

t = r(x) and 

Therefore, in the curvilinear triangle 

T(x) ~ t ~ ! - I x - ! I 
we have 

u = -1- w. 
10
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0 1 1 

6 4 

.. . .1.--. ···-· ________ I _ -+-- - --t-·------t>-
1 3 5 l X 
2 4 6 

Fie. 4. The sets E and I of Example 3 . 

. ---·· 
/ / 

-1 - .3L'IL- -n;x: Si?t.- 11..t ----- -. . .. .. --~ 
Si.,!\- U s[,~ n.t 

-h--· 0 
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FIG. 5. Values of function u of Example 3 in the different regions of the x, t plane. 
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FIG. 6. Evolution of function u of Example 3. 

~-

FIG. 7. Evolution of function u of Example 3 (continued). 
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Next, we compute u as a free solution of the wave equation, with data on the 
characteristic segments 

t = !- !x-ll 

t = li-xl 

if 

if 

I X - ll < !, 

l X - lJ ........... ~ 2 :;::::- 4! 

as long as there is no new influence of the obstacle. 
The value of u is given, according to the regions, in Fig. 5. 
There is a new influence of the obstable beyond t == t· More precisely, we 

shall have the influence line: 

7"1(x) = 2 - T(x) 

= 2-x 

=I+x 

if 

if 

if 

O~x ~ t 

i~x ~ l. 

We can see that here, the solution is periodic in time, with period 3, and more­
over 

u(2 - t) = u(t). 

Figures 6 and 7 show the evolution of u for t comprised between 0 and 1, with 

a time step of 1/12. The computations were carried out explicitly using Fig. 5. 

Jl. THE LINE OF INFLUENCE AND ITS PROPERTIES 

II.l. Definition and First Properties of the Domain of Influence and of the Line 
of Influence 

Let us recall that the backward cone (or cone of dependence) of a point (x, t) 

is the set 

r-;.t = {(x', t') ~ IR X ~+;o ~ t' ~ t- l X - x' I} (11.1) 

and that the forward cone (or c.one of influence) of a point (x, t) is the set 

r;,t = {(x', t') E IR X !R+Jt' ~ t + l X - x' )}. (II.2) 

A fundamental result of the. theory of hyperbolic equations is the following; 
Let v be a solution of the wave equation 

Ov = 0, 

v(x, 0) = v0(x), 

ov 
~ (x, 0) = v1(x). 
ut · 
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If v0 and v1 have their support in C, then the support of v is included in 

u r-:.o. 
xec 

Let us define 

E = {(x, t) E IR X !R+fw(x, t) < cp(x)}. (11.3) 

One must not mistake E for the set 

{(x, t) E lR X JR+ jzv(x, t) ~ cp(x)} =I= E. 

We shall suppose that E is not empty; if it were, then the function w would 

be a solution of Pro and the existence problem would be solved. 
We now proceed to define the domain of influence and the line of influence. 

DEFINITION II.l. The domain of influence of the obstacle cp with respect to 

w, for t nonnegative is the set 

1 = U r:.t. (11.4) 
(x,t)EE 

DEFINITION 1!.2. The line of influence of the obstacle g; with respect to w, 
for t nonnegative, or more simply, the line of influence, is the boundary of the 

set I. 
The reader is referred to Fig. 8, to visualize the sets I, E, and the line of 

influence. 

/ 
~-------"--+---------········· · ··· · ··-··--···x:-!> 

Frc. 8. The sets r:,t T;:t, E, and I; the line and the domain of influence. 

The names "domain in influence" and "line of influence" are derived from 
the fact that outside the domain of influence, the obstacle does not alter the 
problem, and inside the domain of influence it does. These assertions will be a 

result of the existence and uniqueness theorem. 
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The boundary of I has the following properties. 

PROPOSITION 11.3. The line of influence is the graph of a Lipschitz-continuous 
function r, with Lipschitz constant I, 

I= {(x, t) E !R X ~+jt ~ r(x)} 

and therefore, I is closed. 

Proof. Define on ~ a function r by 

r(x) = inf{t' + [ x- x' 1/(x', t') E E}. (11.5) 

Obviously if (x, t) is in J, then 

t ~ r(x). 

Conversely, let t be greater than or equal to r(x). Then, for any positive E, 

there exists (xE, t,J in E such that 

t ~ t" + I X - XE I - € (11.6) 

and therefore 

I x" I + t,. ~ t + I x I + €. 

Extract from the bounded sequence (xe, t")" a convergent subsequence still 
denoted by ( x" , t")" . As E is closed, we shall have 

and using (11.6) 

t ~ 10 + [ x - x0 I . 

This shows that 

r(x) = min{t' + I x- x' lf(x', t') E E} (11.7) 

and that 

I= {(x, t)/t ~ r(x)}. 

Let us show now that r is Lipschitz-continuous, with Lipschitz constant 1. 
Given x, there exists (x0 , t0) in E such that 

r( x) = t0 + I x - x0 I . (11.8) 
15



On the other hand, for any x, the definition of r implies that 

-r( x) ~ to + I X - Xo I . (11.9) 

We deduce from (11.8) and (11.9) 

r(.x) - T( x) ~ t0 + I x - x0 I - t0 - I x - X0 I ~ I x - x I . 

By exchanging the roles of x and x, we obtain proposition 11.4. I 

II.2. Study of the Values of the Free Solution and of Its Derivatives on the Line 
of Influence 

LEMMA II. 5. The following implication holds: 

I -r'(x)l < I =>- w(x, r(x)) = cp(x). (11.10) 

Proof (by contradiction). Suppose I -r'(x0)[ < 1 and 

I.e., 

By continuity of w and cp, there exists a positive number r, such that 

I x- x 0 1
2 + I t - -r(x0)[

2 ~ r2 => (x, t) ~E. 

In particular, we shall have 

r I x - x0 I ~ 2112 => (x, T(x)) Ef= E. (II.ll) 

There exists (x1
, t') in E, by virtue of (11.7) such that 

T( x0) = t' + I x' - x0 I 

and, thanks to (!1.11 ), 

x0 #- x'. 

Suppose, for instance, x' > x0 . Then, if x0 < x < x0 + rf2112 , 

T(x) = ( T(x) - T(x0)) + -r(x0) 

= T'(x0) (x - x0) + o(x - x0) + t' + x' - x0 

= t' + x' - x + (x - x0) (1 + T'(x0)) + o(x - x0) 

?;:: -r(x') + x' - x + (x - x0 ) (1 + T'(x0)) + o(x - x0 ). 
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We deduce from this last inequality that, for an x near enough to x0 , 

1(x) > 1(x') + x' - x (II. I 2) 

by the hypothesis I r'(x0)l < 1. 
On the other hand, the Lipschitz constant of r is equal to I, which contradicts 

(11.12). 1 
Our knowledge of the influence line is improved by the following result. 

LEMMA 11.6. Let U = {xjw(x, r(x)) > <p(x)}, and let (a, b) be any connected 
component of U. Then 

r(x) = min(r(a) + x - a, r(h) + b - x), Vx E [a, b]. (II.I3) 

Proof. Suppose first that (a, r(a)) and (b, -r(b)) both lie on one characteristic 
segment. For instance, 

r(b) - b = r(a) - a. 

By Proposition 11.4, we know that 

r(x) - x .:s; T(a) - a, 

r(b) - b ~ r(x) - x, 
if a~ x ~b. 

(II.l4) 

(II.l5) 

(II.l6) 

Adding inequalities (11.15) and (II.16), and comparing the result to (II.I4), 
we obtain easily 

1(X) - X = T(a) - a = r(b) - b, 

i.e., relation (11. J 3). 
Suppose next that (a, T(a)) and (b, 1(b)) do not both lie on one characteristic 

segment, and set 

-T(x) = min(1(a) + x- a, r(b) + b- x). (I I. I 7) 

Clearly, on [a, b], we must have 

r(x) ~ r(x). 

Suppose there exists x0 E (a, b) such that 

(11.18) 

Therefore, by (II.7), there exists (x1 , t1) in E such that 

(II.I9) 
17



As the Lipschitz constant ofT is 1, the following inequality holds: 

Hence 

(11.20) 

and, by definition of E 

(11.21) 

The number x1 cannot be equal to a or b. Suppose, for example, that x1 ~ x0 • 

Then, write 

I.e., 

which implies 

T(a) - (x1 - a) ~ r(x1) 

= T(x0) + x1 - x0 

< f(x0) + x1 - x0 

~ T( a) + x0 - a + x1 - x0 

= T( a) + x1 - a, 

x1 - a > - I x1 - a I , 

x1 >a. 

We could show in a similar way that 

x1 <h. 

Relation (II. 21) contradicts the hypothesis w(x, 'T'(x)) > <p(x), therefore relation 

(11.18) cannot be fulfilled. I 
Lemma II.6 shows that on a connected component of U, the line of influence 

is made either of a characteristic segment (of slope + 1 or -1) or of a characteris­

tic segment of slope + 1, followed by a characteristic segment of slope -1. 
We introduce now the characteristic coordinates 

whence 

-x + t 
1]= 21/ 2 

g- T} 
X= 2112 , 

(II.22) 

(II .23) 
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and therefore 

a 1 (a a ) 
of = 2112 ox + ot ' 

a 1 ( a a ) 
O'YJ = 2112 - ox + Tt ' 

(IL24) 

a 1 (a a) 
ax = 2112 8~ - 81) ' 

(II.25) 

LEMMA I I. 7. Let x be such that 

w(x, r(x)) = cp(x). 

If moreover (3wfo~) (x, r(x)) exists (respectively (owfih]) (x, T(x)) exists), then the 
following inequality holds: 

ow tp'(x+) 
a~ (x, r(x)) ~ 2112 (II.26) 

(respectively 

aw (<p'(x-)) 
OTJ (x, -r(x)) ~ - 21 / 2 • (II.27} 

If (owjot) (x, -r(x)) exists, then 

ow Tt (x, T(x)) ~ 0. (II.28) 

Proof By hypothesis 

w(x, r(x)) = cp(x) (11.29} 

and, by definition of r, 

w(x + h, r(x) +h) ~ <p(x +h), Vh ~ 0. (11.30} 

Subtracting (11.29) from (II.30) and passing to the limit, (II.26) obtains. The 
other two inequalities are similarly proved. I 

As a result of Corollary A.2 note that 

(11.26) holds almost everywhere on MT + = {x/T'(x) > - 1 }, 

(II.27) holds almost everywhere on MT- = {xjT'(x) < 1}, 
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and 

(11.28) holds almost everywhere on M 7 = {x/1 T'(x)! < 1}. 

Under the hypothesis that E is nonvoid, M7 (and therefore M 7 + and M7 - ) is 
not null (with respect to the Lebesgue measure); this is a result of Theorems 
IV.2 and III.l below; see the end of subsection IV.l. 

IlL SoLUTION OF A LINEAR AuxiLIARY PRoBLEM 

III.l. Statement of the Result, Idea of the Proof 

In this section, we study a linear problem, whose solution will be a "candidate" 
for a solution of the nonlinear problem P oo • 

THEOREM III.l. Let a be a nonnegative Lipschitz-continuous function with 
Lipschitz constant 1 , and let v0 be in H[00( IR), v1 in L~00( IR). Then there exists a 
unique function u such that 

V E wl.oo(~+· L 2 (IR)) n L 00 (JR+· H 1 (~)) 
loe ' loc loc ' loc ' 

Ov \{(x.t)/t"'a(x).t>O} = 0 (in the sense of distributions), 

v(x, 0) = v0(x), 

av at (x, 0) = vl(x), 

o+v 8-v at (x, a(x)) = - 8t (x, a(x)) 

a.e. on {xfa(x) > 0 and I a'(x)l < 1}. 

(III.l) 

(111.2) 

(111.3) 

(III.4) 

(111.5) 

Condition (III.l) does not imply that Conditions (111.4) and (111.5) make 
sense. Thus, the first stage is to show (Lemma 111.2) that, with the help of 
(111.2), Conditions (111.4) and (111.5) do make sense. 

Next we shall suppose that there exists a solution v of (Ill. I) to (Ill. 5), and 
we shall compute Ov in the open set IR X IRi . We shall find an explicit formula 
for ~-t( w) = Ov in terms of a and w, the free solution of the wave equation with 
initial data v0 and v1 (Proposition 111.3). 

Then, it will only remain to show that w + C * ~-t(w) is a solution of (III.l)­
(III.5), for any a, v0 , and v1 ; moreover w + ~ * J.L( w) fulfills condition (1.15) 
(Proposition 111.6). Here C is the elementary solution of the wave equation. 

111.2. Computation of Ov in Terms of w and a 

LEMMA 111.2. Let v satisfy conditions (Ill. I) and (111.2). Then (8vfot) (x, 0) 
is defined almost everywhere on IR, and (o+vfot) (x, a(x)) and (8-vfot) (x, o{x)) 
are defined almost everywhere on the set {xfa(x) > 0 and I a'(x)l < 1}. 
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Proof. Let V be a connected component of {(x, t) jt > 0, t =1= a(x)}. On any 

rectangle R included in V, with characteristic sides, and vertices (x + h, t + k), 

(x -1- k, x + h) (x - h, t - k), and (x - k, x - h), a solution v of the wave 

equation is of the form 

v(x, t) = f(x + t) + g(x- t); 

moreover, f E Jll(x + t - I h + k I , x + t + I h + k j) and g E H 1(x - t -

I h - k I ' X + t + J h - k 1), by (III.l). 
The functions f and g are well defined save for an additive constant. 

We can join any points (x, t) and, (x, i) by a continuous arc in V, and this 

continuous arc can be covered by a finite number of open rectangles Ri with 

characteristic sides included in V. On each of these rectangles Ri we have 

(xi+ ti- l hi+ ki I , xi+ ti + I hi + ki I) 
n (xi+! + ti+l - I hi+l + k i+l I , xi+ I + t i +l + I hi+l + ki+r I) =F 0 . 

Therefore, we can choose the additive constant in such a way that fi = fH1 

on the intersection of these two intervals. 

Thus, because V is arcwise connected, we can define, save for an additive 

constant, two functions f and g such that 

f E Hloc(inf(x + t j(x, t) E V), sup(x, tf(x, t) E V)), 

g E Hloc(inf(x - tf(x, t) E V), sup(x, t/(x, t) E V)), 

v(x, t) = f(x + t) + g(x - t), 'r/(x, t) E V. 

More specifically, if V = {(x, t)/t > a(x)}, which is, of course, connected, 

we know from Corollary A.3, that almost everywhere on {x// a'(x)l < I}, 
j'(x + a(x)) and g'(x - a(x)) are defined. Then, in such a point 

1
. v(x, a(x) + h) - v(x, a(x)) 
lffi _.;__..:._.:__ -:----'---.;........c_ 

hfO h 
= lim f(x + a(x) +h)- f(x + a(x)) + li f(x- a(x)- h) -f(x- a(x)) 

h~O h hw h 

exists, and defines the right time-derivative of vat (x, a(x)). We argue similarly 

for (o-vjot) (x, a(x)) and (ovfot) (x, 0). I 
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We can now compute Ov if vis a solution of problem (III.l)-(111.5). 

PROPOSITION 111.3. Let v be a solution of (III.l )-(III.5), then Ov is a measure 
p,( w) defined by 

<t-t(w), "') = -2 J (1 - a'(x)2
) t/J(x, a(x)) 

8
; (x, a(x)) dx. 

a(~)>O t 
(III.6) 

Proof. To avoid notattonal ambiguities we shall write when f is a function 
of x and t 

(III.7) 

whence 

-(X+ t -X+ t) 
f(x, t) = f 2112 ' · 2112 • (111.8) 

Let 1/J be an infinitely differentiable test function with compact support in the 
open half-plane. We shall suppose that this support meets only one component 
V of {(x, t)/0 < t < a(x)}. Then 

<ov, f> = <ov, {i> = <2v~11, ~> = -2<ve, {111>· 

Let us denote by Y the graph of a in characteristic coordinates 

~ + 1] (~- '1]) 
1] E Y(~) ~ 2112 = a 2112 • 

By Lemma A.3, Y is a decreasing graph. 
Y is the function defined on 

{~/Y(~) is one-valued} 

with values Y(e) on this set. 
Let 

on V, v( X, t) = j (X + t) + g( X - t) 

v(x, t) = / 1(x + t) + g1(x- t) on {(x, t)/t > a(x)}. 

Then using (111.1 0) and (111.11 ), 

(111.9) 

(III.lO) 

(111.11) 

(111.12) 
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from which, after having integrated in TJ and substituting '= (x + a(x))/2112, 

we obtain 

<Dv, f ) = - 2 J [f'(x + a(x)) - f~(x + a(x))] if;(x, a(x)) (I + a'(x)) dx. 

As u is continuous, 

f(x + a(x)) + g(x- a(x)) = / 1(x + a(x)) + g1(x- a(x)), 

which we differentiate; according to Corollary A.2, 

(1 + a'(x)) f'(x + a(x)) + (1 - a'(x)) g'(x - a(x)) 
(III.14) 

=(I + a'(x))f~(x + a(x)) + (1 - a'(x)) g~(x- a(x)) a.e. 

On the other hand, (111.5) is written: 

f'(x + a(x))- g'(x- a(x)) = -f~(x + a(x)) + g~(x- a(x)), 
(111.15) 

a.e. on {xjj a'(x)j < I and a(x) > 0}. 

By linear combination of (III.l4) and (III.15), we deduce 

f ~ ( x + a( X)) = a' (X) f ' (X + a( X)) + ( I - a' (X)) g' ( x - a( X)) 

a.e. on {xfj a'(x)j < I and a(x) > 0} 

and from (III.14) 

(III.16) 

f~(x + a(x)) = f'(x + a(x)) a.e. on {x/a'(x) = 1 and a(x) > 0}. (III.l7) 

Therefore 

f'(x + a(x))- f~(x + a(x)) = (f'(x + a(x))- g'(x- a(x))) (1 - a'(x)) 
(111.18) 

a.e. on {x/a'(x) > -1 and a(x) > 0}. 

Carrying (III.l8) into (III.13), we obtain (111.6). I 

III.3. Partial Results of Existence 

Let us recall that the elementary solution t! of the wave equation in one space 
dimension is 

t!(x, t) = ~ 

C(x, t) = 0 

if t ~ I X I , 

elsewhere. 

We shall study in this section the distribution 

v = w + C * ~-t(w), 

(111.19) 

(111.20) 
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where the distribution ~-t(w) is defined by (111.6). 

LEMMA 111.4. Let a be a Lipschitz-continuous function, with Lipschitz constant 
J, and let v0 , v1 be given, respectively, in Htoc(IR) andLroc(IR). Then the linear form 

~ H- -2 J ifi(x, a(x)) : (x, a(x)) (1 - a'2(x)) dx 

defined for all"' in !2J(IR X IRt), is a measure. (Here w is the free solution of the 
wave equation with initial data v0 , v1). 

Proof. It is enough to show that X H- ( ow I ot) ( x, a( X)) ( 1 - a'2( X)) is locally 
integrable. Classically 

w(x, t) = f(x + t) + g(x- t) 

with f and g in Htoc(IR). Therefore 

I ~~ (x, a(x)) (1 - a'(x)2
) I 

~ 2 I f'(x + a(x)) (1 + a'(x))l + 2 I g'(x- a(x)) (1 - a'(x))l 

and by Lemma A. I, the functions x f-+ (1 + a'(x)) f'(x + a(x)) and 
x ~---+ (I - a'(x)) g'(x - u(x)) are locally integrable. I 

The convolution of this measure p.(w) with C can be defined thanks to the 
support condition of Schwartz [13, p. 170]. 

According· to Lemma A.5; p.(w) * tff is a continuous function, because the 
parts of characteristics are null with respect to the measure IL· 

Obviously, the function v defined by (111.20) satisfies conditions (111.2) and 
(111.3). 

Condition (111.4) is satisfied almost everywhere on {xja(x) > 0}; it is also 
satisfied almost everywhere on {xja(x) = 0} as will be proved by next lemma. 

LEMMA 111.5. Let A be the set {xfa(x) > 0}, and let B be the set of right and 
left Lebesgue points of the function 

x ~---+ (1 - a'2(x)) ~ (x, a(x)) IA(x). 

Then, if the point xis in B, zf (owfot) (x, a(x)) exists, if a'(x) exists, and if I a'(x)l 
< 1, then ( ()+vfot) (x, a(x)) exists. 

Moreover, if a(x) > 0, then 

o+v ow . Tt (x, a(x)) = - ot (x, a(x)). (III.21) 
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If a(x) = 0, then 
fJ+v 
Tt (x, a(x)) = 0. 

Proof We can write formula (111.20) in the form 

v(x, t) = w(x, t) + f J dp.(w). 
lx.t 

(111.22) 

Suppose t is greater than r(x), and let a(x, t) be the greatest number such that 

a(x, t) - a(a(x, t)) = x - t, 

and let a' be any number such that 

a' - a(a') = x - t. 

Then a'(s) = 1 on (a', a(x, t)) and 

f
a(x,t) OW 
, 1 A(x') Tt (x', a(x')) ( 1 - o.7(x')2) dx' = 0. 

a 

If, similarly, b(x, t) is the smallest number s~ch that 

b(x, t) + a(h(~, >t)) = x + .t 
then we may write, if t is greater than a(x), 

f
b(x.t) OW 

v(x; t) = w(x, t)- IA(x') T (x', a(x')) (l - a'(x')2) dx. 
a(x,t) t 

(111.23) 

For simplicity, set a(x, a(x) + h) = a(h) and b(x, a(x) + h) = b(h). From the 
hypothesis I a'(x)l < I, we deduce 

lim x - a(h) = 1 
h~O h 1 - a'(x)' 

(111.24) 

lim b( h) -. x = 1 . 
h~O h 1 + a'(x) 

(111.25) 

Using (111.23), we may write 

1
. v(x, a(x) + h) - v(x, a(x)) 
lffi _..;_____;:..._.:...__-=--~_,;..._:....:.... 

h.j.O h 

= lim w(x, a(x) +h)- w(x, a(x)) 
h.!.O · h 

- lim ) x -ha(h) · 
1 

(h) Jx I A(x') ~ (x', a(x')) (1 - a'2(x')) dx' 
h.j.O ~ x - a a(h) ut 

b(h)- X. 1 fb(h} 1 ( ') ow (I ('))(I '2( '))d '~ + h b( h) - X x A X Ot X ' 0' X - U X X ) 
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and by the hypotheses we made, (o+ufot) (x, a(x)) exists, and 

o;; (x, a(x)) = ~~ (x, a(x)) - [1 _
1
a'(x) + I + l~'(x)l (I - a'2(x) 1,.(~). 

(III.26) 
Relation (Ill.26). giv~s (111.21) and··(I1I.22). I 

Clearly, the complement of the set 'where ( o+vj ot) (x, a(x)) exists is null, so we 
obtain (III.4) and (111.5). 

Let us compute now the derivatives of v in characteristic coordinates, in the 
sense of distributions. 

We can write 

<fl, «/J) = -21 12 J [we(x, a(x)) + ~71(x, a(x))] (1 - a'2(x)) lA(x) «/J(x, a(x)) dx. 

(III.27) 
By the substitutions 

we transform (111.27) into 

. f _ - - - -2Y'(~) (~- Y(g)) <fl, «/J) = -2. we(~, Y(t)) t/1(~, Y(~}) · 
1 

_ Y'(t) lA 2112 dg 

f _ - -- . -2X'('IJ) (X('IJ)- 'IJ) 
-2 w71(X(7J}, 7J) t/J(X(7J), 7J) · 1 _ X'(7J) lA 2112 d'T], 

(III.28) 

where Y is defined in (111.10), X= Y- I, Y is the "one-valued part" of Y, and 
X is the ''one-valued part'' of X. The functions Y and X are defined everywhere 
except on a qenumerable set. 

If X is one-valued at 7J, and Y is one-valued at t, then, the value of vis given 
by 

v(~, 77) = w(~, TJ)- _y(~, 77)- z(~, TJ), (IIL29) 

where 

.Y(~, 7J) = J~ we(f, Y(f)) g(f) df 
:g(7)) 

= 0 elsewhere. 
(III.30) 

, -2Y'(f) f- Y(g') 
g(t) = I - Y'(f). 1,. ( 2112 ) , (111.31) 

z(~, 'TJ) = fn wn(X(1J'), 'TJ') h(1J') d1J' 
f(e) 

= 0 elsewhere. 
(III.32) 

h( ') = -2X'(71') • 1 (X(71') - 7J') 
7J 1 - X'('r]') A 2112 • 

(111.33) 
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Let us compute oyfog in the sense of distributions, from formula (111.30) 

Interchange the order of integrations in ~ and t: 

(III.34) 

Formula (111.34) proves that we can identify 

ay - -
{(~, TJ)/~ ~ X(TJ)}, 0~ (g, TJ) = w€(~, Y(g)) g(g) a.e. on 

(III.35) =0 a.e. on {(~, TJ){g < X(TJ)} . 

Similarly 

oz . -
{(g, TJ)/g ~ X(TJ)}, ag (~, TJ) = w1)(g, Y(g)) g(~) a.e. on 

(III.36) = 0 a.e. on {(g, TJ) /t < X(TJ)}· 

Now, formulas (111.35) and (111.36) allow us to compute ovfo~, using the fact 
that ow;ag does not depend on T): 

~ = Wf(g, Y(g)) (I - g(~)) - w1)(g, Y(~)) g(t) a. e. on {(t, 'YJ)fg ~ X(TJ)}, 

= wf(g, Y(g)) a.e. on {(g, 'YJ)/ g < X('Y))}. 

(III.37) 
Likewise 

az -
{(g, TJ)ITJ ~ Y(t)}, OTJ = w11(X(TJ), TJ) h(TJ) a.e. on 

= 0 a.e. on {(t, 'YJ)/7J < Y(~)}; 

ay -
07J = w{(X(TJ), TJ) h(TJ) a.e. on {(~, TJ)ITJ ~ Y(g)}, 

= 0 a.e. on {(~, TJ) fTJ < Y(t)}; 

and therefore 

~ - -
OTJ = -wf(X(TJ), TJ) h(TJ) + (I - h(7J)) w11(X(7J), TJ) 

a.e. on {(t, TJ)/TJ ~ Y(~)}, 
(IIL38) 

= wn(X(TJ), TJ) a.e. on {(~, TJ)/7J < Y(~)}. 
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111.4. Energy Condition. End of the Proof of Theorem Ill. I 

The vector field S v is given by 

In characteristic coordinates, Sv is transformed into 

(III.39) 

The goal of this section is to prove that the divergence of S;; (and therefore 
of Sv) is zero, and from that, to infer property (Ill. I). 

PROPOSITION III.6. Let v be defined by (111.20). Then 

V · Sv = 0 in the sense of distributions. (111.40) 

Proof. The divergence of S v , in the sense of distributions is given by 

<v . s .r.> _ 21,2 [(I Bv 12 a{l) (I av 12 a{;)] 
v ' 'f - - aTJ ' a g + a g ' a11 · (111.41) 

Now, using formula (111.37) 

Integrate by parts in ?J; 

f I av l2 ot/!_ dg d 
ag a?J 11 

= f {l(g, Y(g)) [I we(g, Y(g))l2 (III.42) 

- I we(g, Y(g)) (1 - g(g)) - w71(g, Y(g)) g(g}l2] ag. 

In the same fashion, from formula (111.38), we get 

f I av 1
2 

of;_ dg d 
BYJ a~ 1J 

= f f(X(?J), YJ) [w7l(X(1]), 77)12 (III.43) 

- 1 -u\~(X(?J), YJ) h(TJ) + w71(X(?J), .,) (1 - h(.,)}l 2] d"l. 
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Add (III.42) and (III.43), and go back to the x variable by the substitutions 

Then 

g = x + u(x) 
21/2 

7] = 
-x + a(x) 

tn 

tn 

2112 J [J ~~ r ~ + 1 ~:r ~ 1 df d~ 

(III.42), 

(III.43). 

= JA z/;(x, a(x)) {[I We /2 
- / w~a' - w11(1 - a')l2

] (1 + a') 

+ [I W11 !2 
- / wE(I + a') + W11a' 12] (1 - a')} dx 

and an elementary computation proves (111.40). I 

(111.44) 

End of the Proof of Theorem (III.l ). It remains only to prove (III.I ). For 
almost all t0 in ~R+, 

mes{xfa(x) = t0} = 0. (III.45) 

Let D be the set 

D = {(x, t)/0 < t ~ min(A + t0 - / x I , t)}, 

where t0 satisfies (111.45), and A is an arbitrary positive number. 

Let n be the exterior normal to oD, the boundary of D. Condition (III.45) 
implies that ovfot and ovfox are defined almost everywhere on IR X {t0}; the 

characteristic derivative ovf at is defined almost everywhere on the g character­
istic going through (-A - t0 , 0), and likewise, the characteristic derivative 

ovf O'I'J is defined almost everywhere on the 'fJ characteristic through (A + t0 , 0). 
Thanks to (III.40) 

and therefore 

f Su 'n = 0 
laD 

L: (/ ~: (x, to) J' + 1 :~ (x, to) J') dx < {;~:. (1 v,(xw + 1 :· (x) n dx, 

which implies (Ill .1 ). I 

IV. PROOF OF EXISTENCE; INFINITE STRING 

IV.I. Proof of Existence in the General Case 

Let us recall the hypotheses and the statement we have in the Introduction 
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The function cp represents the obstacle, and 

in the sense of distributions. 

The initial data are 

Uo E Hloc(IR), 

ui ELroc(IR) 

with the compatibility conditions 

u0(x) ~ cp(x) 

u1(x) ~ 0 

Vx E IR, 

a.e. on {xfu0(x) = cp(x)}. 

(IV.l) 

(IV.2) 

(IV.3) 

(IV.4) 

(IV.5) 

THEOREM IV.l (Infinite String). Under hypotheses (IV.l)-(IV.5), there exists 
a unique function u such that 

(IV.6) 

u(x, 0) = u0(x), 

8u 

Vx E IR, (IV.?) 

ot (x, 0) = ul(x), a.e. 1n IR, (IV.8) 

u(x, t) ~ cp(x), V(x, t) E IR X IJl+, (IV.9) 

Ou ~ O in the sense of distributions in IR X IR! , (IV.lO) 

supp Du C {(x, t) fu(x, t) = f~J(x)}, (IV.ll) 

~ (-2 ou ~) + ~(I ou 12 

+ IOU 12) = 0 ox ox ot at ot ox 
(IV.12) 

in the sense of distributions in 1R X Ill! . 

Moreover, the solution u is explicitly known: 

THEOREM IV.2. Let w be the free solution of the wave equation with initial 
data u0 and u1 

Ow =0, 

w(x, 0) = u0(x), 

ow Tt (x, 0) = u1(x). 

Define a measure t-t(w) on IR X ]0, + oo[ by 

(~-t(w), if;) = - 2 J ~w (x, T(x)) (1 - T ' 2(x)) if;(x, T(x)) dx, 
T(x)>o t 

(IV.13) 

(IV.14) 
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where x ~ r(x) is the line of influence of the obstacle 9' with respect tow, following 
Definition 11.2. 

Then the junction 

u = w + C * tt(w), (IV.l5) 

with 8 the elementary solution of the wave equation solves problem (IV.6}-(IV.12). 

Proof of Theorem IV.2. By Theorem III.l, we know that u given by (IV.15) 
satisfies conditions (IV.6)-(IV.8) and (IV.ll ). Condition (IV.lO) is seen to be 
satisfied by Lemma (II. 7) and the explicit expression (IV.I4) and condition 
(IV.12) results from Proposition 11!.6. 

So it remains to check condition (IV.9), for t ~ r(x). Set 

Z=U-(/J (IV.l6) 

and note that 

OZ == Du - Ocp = Du + cpH > 0, (IV.17) 

by conditions (IV.l) and (IV.IO). 
On the other hand 

2(~, 17) = l(X(71), 17) + J! 0~~ (f, 11) df 
'J{(TI) US 

(IV.18) 

if X is one-valued in TJ (same notations as in subsection III.2). 
With notations (III.ll) and (11!.12), and thanks to Lemma II.5, we have 

f(x + r(x)) + g(x- r(x)) = / 1(x + r(x)) + g1(x + r(x)) = cp(x) 

a.e. on M,. = {x/1 r'(x)l < 1 and -r(x) > 0}. 
(IV.19) 

Let us differentiate (IV.l9); then by a linear combination with (III.I5) which 
we write again as 

f '(x + r(x))- g'(x- r(x)) = -f~(x + a(x)) + g~(x- a(x)) a.e. on M,. 

we obtain 

j '(x + r(x)) + J;(x + r(x)) = cp'(x) 

g'(x- -r(x)) + g~(x- r(x)) = cp'(x) 

Therefore, Lemma Ill. 7 implies 

a.e. on M., , 

a.e. on M., . 

a.e. on M ,. . 

(IV.20) 

(IV.21) 

(IV.22) 
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On the set {x/'r(x) = 0}, the relation 

holds (still Lemma 11.51), and condition (IV.5) implies 

1 cp'(x) 
ft(x + T(x)) ~ -2- a.e. on {x/-r(x) = 0}. (IV.23) 

Relation (111.17) implies 

0 ) 1/2 I ( ) cp' (X) 
0~ [ft(x + t) + Ct(x - t ] !t=T<x> = 2 f t(x + -r x) = 2112 

a.e. on {x/-r'(x) = 1, -r(x) > 0, w(x, -r(x)) = cp(x)}. 
(IV.24) 

We can deduce from relations (IV.22)-(IV.24) that 

az 
~ (x, T(x)) ~ 0 a.e. on {x/-r'(x) > -1, w(x, T(x)) = cp(x)}, (IV.25) 

we know from (IV.l5) that DZ ~ 0, and we can now infer from (IV.25) that 

a. e. on {(g, TJ)/Y(e) ~ TJ and~ E C}, (IV.26) 

where C is defined as 

C = {~/2(~, Y(~)) = 0} (IV.27) 

and thus, 

(IV.28) 

Recall the definition of the set V, 

U = {xjw(x, -r(x)) > cp(x)}. 

Save for a null set, there is the obvious relation between U and C 

and besides, on U, the function -r is known very precisely. 
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Let U be the (at most) denumerable union of disjoint open intervals (ai, hi) 
(i E /), define ci by 

and define a subset J of I by 

Denote 

Then~ by Lemma II.6~ sa,ve for a null set,. the following relation holds: 

cc = U (ai , Yi)· (IV.29) 
iEJ 

Moreover 

if (IV.30) 

On the other hand, by relation (111.37), 

az aw - 1 I (g- Y(~)) 
a{(~, TJ) =a{(~, Y(~))- 2112 cp 2112 

if ai ~ ~ < Y i , TJ ~ Y (g), 
(IV.31) 

we can now estimate 

using relations (IV.29)- (IV.31 ). 
Let ~0 belong to the interval [ai, rd· Then 

(IV.32) 

As we suppose that X is one-valued in 7J, we never have 
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By the definition of the line of influence 

2(X(?J), ?J) ~ 0. 

If we put together (IV.32) and (IV.33), we get 

(IV.33) 

(IV.34) 

Using (IV.28) and (IV.34), we can see now that condition (IV.9) is satisfied. I 
Theorem IV.2 proves the existence of a solution to problem P oo , (IV.6)­

(IV.I2). 
Uniqueness will be proved in next chapter. 
We can infer from Theorems III.l and IV.2 that if E is nonvoid, then I T'(x)l 

l T'(x)l is not almost everywhere equal to one. Assume indeed that 

\ T'(x)l = 1 a.e. on {x/T(x) > 0}. (IV.35) 

Then, w is clearly the unique solution of problem (111.5)-(III.9) as conditions 
(111.6) and (111.9) are automatically fulfilled. We have proved by Theorem IV.2 
that 

on IR X IR+. 

Here, the measure /L(w) is equal to zero; therefore 

on IR X lfl+, (IV.36) 

and E is void. I 
In the same fashion, if u1 is almost everywhere nonnegative, E is void. 

IV.2. An Alternate Construction when the Obstacle cp is Constant 

A. Bamberger has the idea of a simpler construction, which is especially 
convenient when cp is a constant, which can be taken equal to zero. 

For this purpose, we can deduce from the results established between (IV.21) 
and (IV.24) the formulas 

if ~ ?: X(?J), ~ + Y(e) > 0, Y'(e) <:: 0, 

and w(~, Y(~)) = 0; (IV.37) 

elsewhere. 
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If we define almost everywhere a kernel K by 

K(t, TJ) = -I if ~ ~ X(TJ), ~ -I- Y(t) > 0, Y'(g) < 0, 

and w(~, Y(~)) = 0; (IV.38) 

= -!- 1 elsewhere 

then 

and therefore, integrating with respect to ~, 

(IV.39) 

Formula (IV.39) can be converted into the still simpler expression, where 

r - = -inf(r, 0), 

(IV.40) 

Formula (IV.40) will be proved, and generalizations and consequences will be 

given, in a joint work with Bamberger [4]. 

V. PROOF OF UNIQUENESS: INFINITE STRING 

The proof of uniqueness relies on several trace results which, I believe, do not 

appear elsewhere in the literature. The main difficulty is to define cleanly 

traces of derivatives ux and Ut on a space-like curve, i.e., a curve x ~ r(x) with 

I -r' loo < 1, when u is a solution of P oo . Once these traces are defined, we can 

derive from (IV. J 2) how the derivatives are transformed across a discontinuity 

line. Then, by comparison with the solution built in Section I V, uniqueness is 

proved. Note that allowing the initial position u0 to be equal to rp introduces an 
extra difficulty, as we have to give a meaning to (IV.8), using the other relations. 

V .l. Results of Trace 

We prove how condition (IV.IO) can be used to define traces. 

LEMMA V.l. Let il be a function in WI·1([a0 , b0] X [c0 , d0J), such that 

Then YJ ~ (Oil( o~) ( ~, YJ) is an -increasing function from ( a0 , b0 ] to L1( a0 , h0) 

and e~ (oujor;) (t, 17) is an increasing junction from [a0 , h0] to L 1(c0 , d0). 

35



Proof. If we suppose that v is smooth, we can write 

for arbitrary a, bin [a0 , b0] and c, din [c0 , d0). Then the conclusion is obvious. 
In the general case, regularize v by convolution with a smooth nonnegative 

function, and let this function tend to a Dirac mass; the conclusion still 
holds. I 

Let u be a function in W{~~( ~ X !Rt), such that Du is nonnegative. As a 
result of Lemma V .1 , the functions 

(V.l) 

(V.2) 

are defined on the set{(~, 77)/g ~ N~, "fJ > -g}, with N( a null set, and increasing 
in "fJ· Similarly, the functions 

~ r-+ lim ~u (g + h, 7J) = ij+(~, 7J), 
1)~0 U'YJ 

t r-+ lim ~u (~ - h, 71) = ij_(~, 7J) 
h~O UT) 

(V.3) 

(V.4) 

are defined on the set {(~, 7])/77 ~ N 17 and g > -71}, with N 71 a null set, and 
increasing in g. 

LetL~oc(X; m dx) be the set of functions on a subset X of 1R which are locally 
integrable with respect to the measure m(x) dx; here m is a locally integrable 
function (with respect to the Lebesgue measure). 

We have more precise information on P± and q± in the following proposition. 

PROPOSITION V.2. Let u be in W{~~( 1R X IRi) and let Du be nonnegative. Let a 

be an arbitrary Lipschitz-continuous function, with Lipschitz constant 1, and let a 

be positive on IR. Then 

P±(x, a(x)) E Lloc(IR; (1 + a') dx), 

q±(x, a(x)) E Lloc(IR; (1 - a') dx), 

(V.5) 

(V.6) 
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and, almost everywhere on {xfj a'(x) j < 1}, 

o+u ( ( )) _ 1. u(x, a(x) + h) - u(x, a(x)) 
8 x , a x - tm h t h~O 

1 
= 2112 (p+(x, a(x)) + q+(x, a(x))), 

(V.7) 

8-u ( ( )) - l' u(x, a(x) - h) - u(x, a(x)) 
8 x, a x - tm h t h-l-0 -

I 
= 

2112 
(p_(x, a(x)) + q_(x, a(x)). 

(V.8) 

Proof. Let us show, for instance, that P+ and p_ are in L}00(!R, (1 + a') dx), 
and for this purpose, fix two arbitrary numbers a < b. By definition, 

ou 
.P+(x, t) = p_(x, t) = ag (x, t) 

and, in the same way 

ou 
q+(x, t) = q_(x, t) = 

8
'YJ (x, t) 

We can find real numbers t1 and t2 such that 

a.e. on 1R X ~R; 

a.e. on 1R X IR; . 

0 < t1 ~ min a(x) ~ max a(x) ~ t2 [a,b] [a,h] 

and 

The functions p+ and p_ are increasing in 'r'J, so that 

(V.9) 

which proves (V.5). Here Y is the graph of a in characteristic coordinates. 
Relation (V.6) is proved in the same fashion. 
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On the other hand, the following equality holds for almost all A in (-rr1in~ a, 

+oo): 

ou 1 [au ou ] 
8t (x, a(x) + A) = 2112 8~ (x, a(x) + A) + 07J (x, a(x) + A) • (V.lO) 

Let us show that 

'lfol ~~ (x, a(x) + .\) = 2~1, (P+(x, a(x)) + q+(x, a(x))) (V.ll) 

in the L{0c(~: (1 - a'2) dx) topology. 
Let A =(a+ a(a))/21 12, B = (b + a(b))/2112 ; we shall estimate p+(x, a(x)) -

uE(x, a(x) + A) by a computation in ~, 1'J coordinates. 

Substitute in the first integral of (V.l2), g + A/2112 = ,, which supplies 

. fl!-At•'l' I :~ ( ~, y ( ~- 2~/2) + 2~/2) - P+(~, Yg)) Id~. 
A-~/21/2 S 

(V.l3) 

As Y is decreasing, and by definition of P+, 

a.e. 

Estimate (V.9) and the Lebesgue dominated convergence theorem imply that 
expression (V.l3) tends to zero as A decreases to zero. 

The same estimate (V.9) allows us to conclude that the second term of (V.l2) 
converges to zero. 

Therefore, we have shown that 

l.im 
8

8~ (x, a(x) + A) - P+(x, a(x)) = 0 
"-l-0 £ . . . 

(V.l4) 

in the Lloc(IR; (I - a') dx) topology; the result is still true in the Lf0 c(IR; 
(1 - a'2) dx) topology, which is weaker. In the same fashion we showthat 

lim ~u (x, u(x) + A)- q+(x, q(x)) = U 
AtO O'YJ 
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in the Lfoc(IR; (1 + a') dx) topology, and therefore in the Lf0c(IR; (1 - a'2) dx) 
topology. Thus we get (V.ll). 

To conclude, denote 

k(x, A) = u(x, a(x) + A); (V.l5) 

we have just proved that 

:~ ELfoc(-mjn a(x), +oo;Lloc(IR; (1- a'2) dx)) (V.16) 

and that okjoA has right and left limits at any A. This implies that 

1. k( ·, A + h) - k( ·, A) = 1. ~ (. \ + h) 
lffi h lffi ':I\ , 1\ ' h+O h+O Ul\ 

in the Lf00(1R; (1 - a'2) dx) topology, i.e., for A = 0, 

1 
2112 (P+(x, u(x)) + q+(x, u(x))) 

_ 1. u(x, u(x) + h) - u(x, u(x)) _ o+u ( ( )) 
- lffi h - '=~ X, a X 

htO ut 

a.e. on {x E IR/1 a'(x)l < 1}. 

This completes the proof of Proposition V.2. I 
The next result accounts for the fact that the derivative (ofox) u(x, a(x) +A) 

has no jumps across the line t = a(x). 

PROPOSITION V.3. Let u be in Wf0~(R X Rt) and let Du be nonnegative. Let a 
be an arbitrary Lipschitz-continuous function, with Lipschitz constant 1, and let a 
be positive on IR. Then 

P+(x, a(x)) (1 + a'(x)) - q+(x, a(x)) (1 - a'(x)) 

= p_(x, a(x)) (1 + a'(x)) - q_(x, a(x)) (1 - a'(x)) 

a.e. on {xfl a'(x)l < 1}. 

(V.17) 

Proof. With notation (V.l5), the following relation holds for almost all A. 

~= (', .\) = (1 + u'(·)) ~; (·, u{·) + .\)- {1 - u'{·)) ~ {•, u{•) +A). (V.18) 

From (V.15), we can infer that 

0~
2

:x ELfoc(-mJn u(x), +oo; .@'(IR)). 
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Therefore ( ok I ox) (., A) is continuous to P)' ( IR) with the weak topology. 
On the other hand, by (V.14) 

lim ~~ ( ·, a(·) + ,\) - p +( ·, a(·)) = 0 
A~O u~ 

tn Lloc([R, (1 + a') dx) 

and analogously 

lfi Lloc(IR, (1 - a') dx). 

Similar relations hold when the limit is taken as A increases to zero. The (very 
weak) continuity of okf ox with respect to ,\ completes the proof. I 

We need the weaker assumption that a is only nonnegative; to obtain con­
clusions analogous to those of Propositions V.2, and V.3, we shall make a 
stronger assumption on u. 

CoROLLARY V.4. Suppose that a is nonnegative and 

au ou L(XJ ( +.£1 ( )· ot , ox E loc IR , loc IR) , 

let the other assumptions of Proposition V.2 remain. 

(V.19) 

Then, the functional inclusion of Proposition V.2 on P+ and q+ as well as (V.7) 
still hold. On the other side, 

p_(x, a(x)) eLloc({xfa(x) > 0}, (1 + a') dx), 

q_(x, a(x)) eLloc({x/a(x) > 0}, (1 -a') dx), 
a-u 1 at (x, a-(x)) = 

2112 
(p_(x, a(x)) + q_(x, a(x))) 

a.e. on {x/1 a'(x)l < 1 and a(x) > 0}, 

and the conclusion of Proposition V.3 is replaced by 

p+(x, a(x)) (I + a'(x)) - q+(x, a(x)) (1 - a'(x)) 

= p_(x, a(x)) (1 + a'(x)) - q_(x, a(x)) (1 - a'(x)) 

(V.20) 

a.e. on {xfl u'(x)l < 1 and a(x) > 0}~ 

Proof. Hypothesis (V.I9) implies that the function 

t t-+ P+(. - t, t) 1 [a-t,b-t] 

which takes values in L1(1R) and is increasing, tends to a certain function 
p+0 • I [a.b] when t decreases to zero. 
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This simple remark allows us to relieve ourselves of the condition t1 > 0 for 
estimate (V.9). Then (V.ll) is still true. 

Concerning p_ and q_ , one must consider a compact interval [a, b] included 
in {xfa(x) > 0}, and argue as before. I 

V.2. Proof of Uniqueness 

Note first that conditions (IV.lO) and (IV.6) allow us to apply Corollary V.4, 
and to take a trace of oufot on the curve a(x) = 0. Thus, condition (IV.8) makes 
sense. 

With the help of subsection V.l, it is now possible to state how the time­
derivative of a function satisfying the local energy conservation condition 
is transformed across a space-like curve. This is the goal of next proposition . 

. PROPOSITION V.5. Let u be in the space Wf~~(~;; Ltoc(IR+)) n L~c(~;; 
Htoc(R)), such that Du is nonnegative, and let a be a Lipschitz-continuous, non­
negative function, with Lipschitz constant 1. If u satisfies 

~ ( _ 2 ou ou ) c ( lou 1

2 + I [}u 1

2

) = 0 . ox ox ot + ot ox ot in the sense of distributions 

(V.21) 

then it also satisfies 

I o+u J I a-u J Tt (x, a(x)) = Tt (x, a(x)) a.e. on {x/1 a'(x)l < 1 and a(x) > 0}. 

(V.22) 

Proof By Lemma V.l, the functions e ~ ! uTI(~, 7J)!2 and 7J ~I iiE(~, 7])[ 2 are 
of bounded variation, respeqtively, for almost every 'rJ and almost every t. 
Therefore the distribution 

a ( au ou ) o ( jou \2 jou j2) 
P = ax - 2 ax Tt + ot · ox + 8i ' 

which is written, in characteristic coordinates, 

is in fact the sum of two measures. 
Let us compute the measure by p of the set 

r = {(x, t) I a~ x ~band t = a(x)}, 
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in terms of the functions P± and q± defined in (V.l)-(V.4). We assume that a(x) 
is positive on (a, b). 

(b+a(l;l))/2112 · 

p(T) = p(f) = 2112 f [P+(g, Y(g))2 - p_(g, Y(0)2] dg 
(a+o(a)) /21 /2 

(-a+a(a))/21 / 2 

+ I [q+(X(T)), '7)2 - ij_(X(YJ), 7])2] d7j. 
(-b+a(b))/2112 

Substitute ~ = (x + a(x))/2112 in the first integral and 7J = (-x + a(x))/21/ 2 

in the second one. Then 

b 

p(F) = J {[p+(x, a(x))2 - p_(x, (x))2] (1 + a'(x)) 
a 

+ [q+(x, a(x))2 - q_(x, a(x))2] (1 - a'(x))} dx. 
(V.23) 

By Corollary V.4, the following relation holds: 

(p+(x, a(x)) (1 + a'(x)) - q+(x, a(x)) (1 - a'(x)))2 

- (p_(x, a(x)) (1 + a'(x)) - q_(x, a(x)) (1 - a'(x)))2 = 0 (V.24) 

a.e. on {x/1 a'(x)l < 1 and a(x) > 0}. 

Thanks to the identities 

2p±2(l + a') + 2q±2(1 - a') - (P±(I +a')- q±(l - a'))2 

= (P± +. q±)2 (1 - a'2) 

we obtain by subtracting the half of (V.24) from (V.23) 

b 

p(T) = ~· J [(p+(x, a(x)) + q+(x, a(x)))2 
a 

- (p_(x, a(x)) + q_(x, a(x)))2] (1 - a'2(x)) dx 

and by relations (V. 7) and (V.20), 

Jb (\ o+u \2 j o-u \2) p(F) = (L Tt (x, a(x)) - Tt (x, a(x)) (1 - a'2(x)) dx. 

As a and b are arbitrary, we obtain (V.22), if (V.21) is fulfilled. I 
Let u be the solution of P oo defined in (IV.I5), with associated measure 

1-L = Du and let v be another solution of P oo , with associated measure v === Ov. 
Let F be the support of v, and define a set J, analogous to the set I defined in 
(II.4) by 

I = U r:..t · (V.25) 
(z,t}EF 
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Arguing as in Section II, we can see that 

] = {(x, t)ft ~ a(x)}, 

where a is Lipschitz continuous, with Lipschitz constant l. Moreover, if 

[ a'(x)l < 1 

then, necessarily 

(x, a(x)) E F = supp v 

and, by condition (IV.ll) 

v(x, a(x)) = cp(x). (V.26) 

Let t be greater than a(x). Then, by the definition of the support of a measure 

v(x, t) = w(x, t) + }v(T;,t) > w(x, t). (V.27) 

As a first stage, we shall show, by contradiction, 

LEMMA V.6. 

r(x) ~ a(x) 'r/x E ~. 

Proof. We need to show that 

v(x, t) = w(x, t) = u(x, t) V(x, t) such that t ~ r(x). 

Let 

V= {(x, t)fv(x, t) > w(x, t)} 

and suppose that 

V n Jc--¥- 0. (V.28) 

By (V.27), necessarily 

V n Jc = {(x, t)/a(x) < t < r(x)}, 

and in particular 
V I Vrll(J = 0. 

If a(x) is smaller than r(x), and if I a'(x)l is smaller than 1, then relation (V.26) 
holds, and moreover 

v(x, t) ~ w(x, t) ~ rp(x) Vt E [0, r(x)]; 
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hence 

OW 
Tt (x, a(x)) = 0 a.e. on {x/0 < a(x) < T(x) and I a'(x)l < 1}. (V.29) 

We may apply Proposition V.5, and obtain 

o+v ot (x, a(x)) = 0 a. e. on {x/0 < a(x) < T(x) and I a'(x)\ < 1 }. (V.30) 

On the other hand, if we argue as in Proposition 111.3, we can estimate v \1c by 

f (o+v 8-v ) 
(v !1c, ljJ) = (I - a'2(x)) 8t (x, a(x)) - Bt (x, a(x)) if;(x, a(x)) dx. 

Using (V.29) and (V.30), we conclude that v !1c = 0, and therefore V n Jc is 
empty. This contradicts (V.28). I 

Let us now apply relation (V.22) to v on the line t = r(x). 

l
fJ+v I I aw I Tt (x, T(x)) = Bt (x, T(x)) a.e. on {xjT(x) > 0, \ T'(x)\ < l}. 

We may infer from Lemma 11.27 and condition (IV.9) that 

a+v ow Tt (x, T(x)) = - Tt (x, T(x)) 

o+u 
= Tt (x, T(x)) a.e. on {x(T(x) > 0 \ T'(x)] < 1}, 

Moreover, the function v - u satisfies 

v(x, T(x)) - u(x, T(x)) = 0 on 

D(v - u) IHx,t)/t>-r(x}} ):: 0. 

We deduce from (V.32)-(V.34) that 

Set 

and 

v(x, t)- u(x, t) ~ 0 on 

V= V l{(x.t)/t>T(x)}' 

P = suppv, 

{(x, t)ft > T(x)}. 

J = u r;t = {(x, t)Jt ~ a(x)}. 
(:x:,t>eP 

(V.31) 

(V.32) 

(V.33) 

(V.34) 

(V.35) 
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Suppose P is nonvoid. Then if t is greater than a(x), 

v(x, t) = u(x, t) + lv( T;,t) > u(x, t). 

lf I a'(x)l < 1, we obtain as in the proof of Lemma V.6 that 

cp(x) = v(x, a(x)) >- u((x, a(x)) >- cp(x); 

hence 

o+v 
Tt (x, a(x)) = 0 a.e. on {xja(x) > T(x) and I a(x)/' < 1}, 

and we obtain a contradiction when we compute v with a formula analogous 
to (V.31). 

Therefore P is empty, and the proof of uniqueness is completed. I 

VI. THE FINITE STRING WITH FIXED ENDS 

The solution of problem P 00 will enable us to solve problem Pr, and to give 
existence and uniqueness theorems analogous to Theorem IV.l. 

We are given a function ({J such that 

cp(O) < 0, 

and initial data 

in the sense of distributions on (0, L), 

q;(L) < 0, 

U0 E H0
1(0, L), 

UI E L 2(0, L ), 

with the compatibility conditions 

u0(x) ):: rp(x) 

u1(x) ):: 0 

'Vx E [0, L], 

a.e. on {x E (0, L]/u0(x) = cp(x)}. 

Then, the following result holds: 

(VI. I) 

(VI.2) 

(VI.3) 

(VI.4) 

(VI.5) 

(VI.6) 

THEOREM VI.J. Under hypotheses (VI.1 )-(VI.6) there existe a unique function 
u such that 

(VI.7) 
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u(x, 0) = u0(x) 

ou 
ot (x, 0) = ul(x) 

u(x, t) ? cp(x) 

Vx E IR, 

'VxE ~' 

\f(x, t) E ~ X !R+, 

Ou~O in the sense of distributions in ~ X ~R; , 
Supp Du C {(x, t)ju(x, t) = cp(x)}, 

~ ~ (-2 ou ~) ~ ( lou 1
2 

18u 1
2

) _ 0 l ox ox ot + ot ot + ox -
in the sense of distrz"butions in iR X IR~ . 

VI.l. Existence 

Extend the function cp to all of 1R by setting 

cp(x) = cp(O) + xcp'(O+) 

cp(x) = cp(L) + (x- L) cp'(L-) 

if 

if 

Extend the functions u0 and u1 to all of IR by setting 

fori= 0, 1. 

ui(x) = ui(-x), 

ui(x + 2L) = ui(x) 

Define initial data u0 , z11 on IR by 

u0(x) = max(u0(x), cp(x)), 

X~ 0, 

x~L. 

ul(x) = ul(x) 

=0 

if 

if 

u0(x) > cp(x), 

u0(x) ~ ffl(x). 

(VI.8) 

(VI.9) 

(VI.lO) 

(VI.ll) 

(VI.l2) 

(VI.l3) 

(VI.14) 

(VI.15) 

It is elementary to check that u0 , 111 , and cp satisfy conditions (IV.l) to (IV.5). 
Therefore, by Theorem IV.l, problem P oo possesses a unique solution u. Our 
goal is to show that u, restricted to ]0, L[ X ]0, 0::( solves problem Pr if a is 
suitably chosen. 

Let w be the free solution of the wave equation in all of !R, with periodic data 
u0 and u1 • This function w is classically known to be odd and 2L-periodic. 

There exists a positive number Ci. such that 

or I L - x I < a => w(x, t) - ffl(x) > 0. (VI.l6) 
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Indeed 

w(x, t) - cp(x) 

(f t I ow 
1

2 1/2 ~ w(O, t) - cp(O) - I x [112 

0 
ox (x, t) + cp'(x) dx) - I x 11 cp'(O+)! , 

(VI.l7) 
w(x, t) - cp(x) 

~ w(L, t)- cp(L) 

(rL low lz 112 
- I L- x 1

112 Jo ox (x, t) + cp'(x) dx) - (L- x) I cp'(L-)1, 

(VI.18) 

which supplies a possible a, 

112 _ · [ -<p(O) 
a: - mtn Evz + (f~ cp'(x)2 dx)112 + I cp'(O+)I Ll/2 ' 

-cp(L) J 
Ellz + (f ~cp'(x)2 dx)vz + 1 cp'(L -)I £112 ' 

(VI.l9) 

where 

E = r (I ~: r + I ul 1") dx. 

Let w be the free solution of the wave equation with data u0 , u1 • Then, by 
(VI.16), 

W = W In TL;2,L;2+a = {(x, t)/0 ~ t ::;; L/2 + a:- I Lj2- X I}· (VI.20) 

Besides, the influence line of the obstacle cp, with respect to w, satisfies 

f'(x) = -1 

f'(x) = +1 
if 

if 

X E (0, a) and f(x) < x + a, 

x E [ L - a:, L + a:] and f(x) < L + ex - x. 

To prove this, define the sets 

E = {(x', t')fw(x', t') < q>(x')} 

and 

E' = {(x', t') E E and x' ~a:}. 

Then 

f(x) = min{l x- x' I + t'f(x', t') E 2}. 

(VI.21) 
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If (x', t') is in /t, then by (V1.16) and (VI.20) 

or t' ~ x' + a:. 

Then, if ( x', t' ) is in E\E', 

t' + I x - x' I ~ t' + x - x' ~ x + a:. 

By the assumption that f(x) < x + ex, we see that 

f(x) = min{l x - x' l + t' /(x', t') E lt'} 

= min{t' + x' j(x', t') E £} - x, 

and this proves (VL21 ). Relation (VI.22) is similarly proved. 

Note that u satisfies the boundary conditions, for t ~ ex. Indeed 

u(x, t) = w(x, t) if t ~ f(x); 

then, thanks to (VI.21) and (V1.22), 

u(x, t) = w(x, t) if (x, t) E [0, L] X (0, ex] . 

Then by (VI.20), and since w is odd and 2L-periodic, 

u(O, t) = u(L, t) if 0 ~ t ~ a:. (VI.22) 

Being a solution of P oo , and satisfying the boundary conditions (VI.22), the 
function u solves problem Pf in the time interval [0, ex]. 

The procedure of constructing a solution can be resumed, if we note that 

on [0, L], u(x, a:) ~ cp(x) 

u(·, a:) E Ho(O,L), 
()+ " 
a;(·, a:) EL2(0,L), 

and moreover, the following equality holds: 

f (I: (x, t) 1· + 1 ~~ (x. t) n dx 

= r (I ~~ I.+ I ul 1') dx a.e. on [0, 0<). 

(Integrate V · Su on [0, L] X [0, t] .) 

(VI.23) 
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Taking as new initial data u(·, a) and ut(·, a), we can solve again a problem Pr 
in a bounded time interval [ ~, a' + a]. But the number ex' depends only on the 
energy of the data, and therefore can be taken to be equal to ex. 

By recurrence problem Pr can be solved on the whole infinite rectangle 
[0, L J X ~+; relation (VI. 7) holds, because (VI.23) is true almost everywhere 
on fR~. I 

VI.2. Uniqueness 

Let v be a solution of (VI. 7)-(VI.13). We shall extend v to !R+ X [0, cx/2] as 
foilows. 

Let u be the solution of problem P oc; with initial data (VI.l4), (VI.I5), and the 
obstacle f;. 

Set 

v(x, t) = v(x, t) 

v(x, t) = u(x, t) 

if max(O, I L/2- x I - Lf2- a/2) ~ t < cxj2, 

otherwise. 

Then, using (VI.l6), we can check that v is a solution of P cc· with data u0 , u1 , 

and f;. 
The theorem of uniqueness for P oo shows that necessarily v is equal to u in 

[0, L] X [0, ~J2]. This process can be iterated any number of times to prove 
uniqueness in [0, L J X !R+. I 

APPENDIX 

Throughout this appendix, we will denote by a a Lipschitz-continuous 
function, with Lipschitz constant 1, defined on ~. 

A. I . Elementary Results about Integration by Substitution 

LEMMA A.l. The following equivalence holds: 

(i) f ELloc((l + a) R, dx), 

(ii) f o (I+ a) ELfoc(~, (1 +a') dx). 

Moreover, if one of conditions (i) or (ii) is satisfied, then the identity 

b b+a(b) 

J j(x + a(x)) (1 + a'(x)) dx = J f(x) dx 
a a+a(a) 

(A.l) 

£s true for arbitrary real numbers a and b. 
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Proof. If !f; is an absolutely continuous, increasing function, with domain 
[a, b] and image [~, p], then 

f EL1(o:, P) => f o rp · t/;' EL1(a, b), 

and 

J8 
f(x) dx = Jb (f o !f;) (x) t/;'(x) dx. 

a: a 
(A.2) 

This classical result is proved for instance by Hewitt and Stromberg [10, 18.24, 
18.25, and 20.5]. 

Applying this result to 

t/; . I + a, (A.3) 

(a, b] an arbitrary bounded interval, 

[Q!, fi] = [a + a( a), h + a(h)], 

the implication (i) ~ (ii) obtains, with identity (A.l ). 
The inverse of I+ a=~ can be multivalued; in this lies the difficulty of 

the converse. 
The first point to check is that if f o if; is measurable with respect to the measure 

if/ dx, then f is measurable with respect to dx. 
For this purpose, let 

M = {xf(f o if;) (x) ~ a}. 

Then 

if;(M) = {xff(x) ~ a}. 

Set M is measurable with respect to if/ dx. Therefore, there exists for any 
positive e and compact K, a compact set K' such that 

1 M lx' is continuous; 

J 1 x\x'(x) t/;'(x) dx ~ E. 

As the function ~-~ defined almost everywhere is increasing, it is measurable. 
Let K 1 be any compact set in IR, and E1 be any positive number. Then, there 
exists a compact K~ such that 

is continuous; 
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Then llb(M) = lM o l{;- I, restricted to the compact set K{ n if;(K' ), is continu­

ous. Besides, the measure of K 1 n ~(K)i(K~ n f(K')) is majorized by e + e1 . 

Therefore, i{l(M) is measurable. Now the proof of (ii) ::::? (i) is easy by contra­

diction: Suppose that f is not locally integrable. Then there exists a sequence of 

integrable functions fn converging to I almost everywhere on [a + a( a), b + a( h)] 
such that 

J I fn(x + a(x))l dx--+- + oo; 
a+a(a) 

I ln(x)l ~ l f(x)j Vn, a.e. in x. 

This gives a contradiction, using identity ( A.l ). I 

CoROLLARY A.2. Let I be in Wl;~(ll + a) IR), then f o (I + a) is absolutely 
continuous on any compact interval of IR and 

d 
dx (f o (I + a)) (x) = f'(x + a(x)) (1 + a'(x)). 

Proof. By Lemma A.l we have 

J
c/J(b) b 

f'(x) dx = J j'(if;(x)) ~'(x) dx 
cb(a) a 

if~ =I+ a, and [a, b] is an arbitrary compact interval. 
The left-hand side of (A.5) can be expressed as 

tb(b) J f'(x) dx = f(ljJ(b)) - f(~(a)) 
1/J(a) 

since f is absolutely continuous. This proves Corollary A.2. I 

A.2. The Set t = a(x) in Characteristic Coordinates 

The characteristic coordinates (~, 'YJ) are defined as 

x + t 
~ = 2112 , 

The graph of a in characteristic coordinates is the set 

We shall write Y-1 =X and 

The set Y has the following property. 

(A.4) 

(A.5) 

(A.6) 
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LEMMA A.3. Y is a decreasing graph. 

Proof. Let 'YJ belong to Y(~) and 1]
1 to Y(f), and set 

~-'f} 
X = 21/ 2 ' 

t.' ' 
I S - TJ 

X = 21 12 

Then 

(g- f) ('fJ - 7J') == i[x + u(x)- x' - u(x')] [u(x)- x - a(x') + x'] 

and this expression is non positive for all x and x'. I 
We shall denote by Y the function defined on the set 

{~/ Y(~) is one-valued} 

by 

{Y(g)} = Y(g), 

and likewise, we define X as the "one-valued part" of X = Y-1• 

It is possible to show that Y is maximal monotone (for a definition see Brezis 
[5]) in IR X IR. 

A.3. Relation between the Continuity of a Function u, and the Structure of Du 

LEMMA A.4. Let u be a function of x and t such that Du is a measure. Then, 
if u = Du * C, the two following properties are equivalent. 

(i) u is continuous. 

(ii) The parts of characteristics are null with respect to Du. 

Proof. Let Du = ,_,+ - ,..,_- be the decomposition of Du = ,..,_ in its positive 
and negative parts. 

Let us prove first (i) => (ii). 
Take Rn to be a sequence of open characteristic rectangles with vertices 

Ln, Mn, Pn, Qn such that 

a closed segment of characteristic 
n 

Suppose for instance that Roo is a segment of ~-characteristic, with vertices 
Loo = Moo and P 00 = Qoo . Then 

Ln ~Loo' 

Mn~Moo = Loo , 

Pn~Poo , 

Qn~Qoo = P<XJ . 
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The following inequalities hold: 

p,+(Rn) - !L-(Rn) ~ u(Ln) - u(Mn) - u(Qn) + u(Pn) 

~ p.+(R,J - IL-(Rn) 

If u is continuous, we can pass to the limit in (A. 7), and 

which shows that f.J-(Roc) = 0. 

(A.7) 

Conversely, to prove (ii) ==> (i), suppose that the parts of characteristics are 

null with respect to Du, and fix an arbitrary point ( x0 , t 00 ) with t00 > 0. 
Let tn be a sequence decreasing to too , and t~ a sequence increasing to ! 00 • 

Then 

(A.8) 
n 

U T~. t~ = int T~. tctJ • (A.9) 
n 

As the parts of characteristics are Ou-null, 

Therefore, thanks to (A.8) and (A.9), 

This shows that ( tff * !L±) (x, t) is continuous with respect to t in any point. 

To prove the continuity of u with respect to x and t, just note the inclusions 

T;;,.t-l x-x0 1 C T;,t C T~.t+ lx-x0 1 · 

We have thus the inequalities 

and this completes the proof of Lemma A.4. 
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